Molecular Pathology Methods

  • Megan J. Smith-Zagone
  • Joseph F. Pulliam
  • Daniel H. Farkas


Molecular pathology is based on the principles, techniques, and tools of molecular biology as they are applied to diagnostic medicine in the clinical laboratory. These tools were developed in the research setting and perfected throughout the second half of the 20th century, long before the Human Genome Project was conceived. Molecular biology methods were used to elucidate the genetic and molecular basis of many diseases, and these discoveries ultimately led to the field of molecular diagnostics. Eventually the insights these tools provided for laboratory medicine were so valuable to the armamentarium of the pathologist that they were incorporated into pathology practice. Today, molecular diagnostics continues to grow rapidly as in vitro diagnostic companies develop new kits for the marketplace and as the insights into disease gained by the progress of the Human Genome Project develop into laboratory tests.


Polymerase Chain Reaction Polymerase Chain Reaction Product Nest Polymerase Chain Reaction Neisseria Gonorrhoeae Polymerase Chain Reaction Amplicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kessler HH, Muhlbauer G, Stelzl E, Daghofer E, Santner BI, Marth E. Fully automated nucleic acid extraction: MagNA Pure LC. Clin Chem. 2001;47:1124–1126.PubMedGoogle Scholar
  2. 2.
    Fiebelkorn KR, Lee BG, Hill CE, Caliendo AM, Nolte FS. Clinical evaluation of an automated nucleic acid isolation system. Clin Chem. 2002;48:1613–1615.PubMedGoogle Scholar
  3. 3.
    Williams SM, Meadows CA, Lyon E. Automated DNA extraction for real-time PCR. Clin Chem. 2002;48:1629–1630.PubMedGoogle Scholar
  4. 4.
    Davies J, Reznikoff WS, eds. Milestones in Biotechnology: Classic Papers on Genetic Engineering. Boston: Butterworth-Heinemann; 1992.Google Scholar
  5. 5.
    Wasserman LM. A nested reverse-transcriptase-polymerase chain reaction assay to detect BCR/ABL. In: Killeen AA, ed. Methods in Molecular Medicine Molecular Pathology Protocols. Totowa, NJ: Humana Press; 2001:105–114.Google Scholar
  6. 6.
    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–5467.PubMedCrossRefGoogle Scholar
  7. 7.
    Esch RK. Basic nucleic acid procedures. In: Coleman WB, Tsongalis GJ, eds. Molecular Diagnostics for the Clinical Laboratorian. Totowa, NJ: Humana Press; 1997:55–58.Google Scholar
  8. 8.
    Schmaizing D, Koutny L, Salas-Solano O, Adourian A, Matsudaira P, Ehrlich D. Recent developments in DNA sequencing by capillary and microdevice electrophoresis [review]. Electrophoresis. 1999;20:3066–3077.CrossRefGoogle Scholar
  9. 9.
    Farkas DH. Specimen procurement, processing, tracking, and testing by the Southern blot. In: Farkas DH, ed. Molecular Biology and Pathology: A Guidebook for Quality Control. San Diego: Academic Press; 1993:51–75.Google Scholar
  10. 10.
    Farkas DH. Quality control of the B/T cell gene rearrangement test. In: Farkas DH, ed. Molecular Biology and Pathology: A Guidebook for Quality Control. San Diego: Academic Press; 1993:77–101.Google Scholar
  11. 11.
    Mullis K, Faloona F, Schart S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51:263–273.PubMedGoogle Scholar
  12. 12.
    Farkas DH. Thermal cyclers. In: Laboratory Instrument Evaluation Verification and Maintenance Manual. Northfield, IL: College of American Pathologists; 1998:130–133.Google Scholar
  13. 13.
    Loeffelholz MJ, Lewinski CA, Silver SR, et al. Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J Clin Microbiol. 1992;30:2847–2851.PubMedGoogle Scholar
  14. 14.
    DiDomenico N, Link H, Knobel R, et al. COBAS AMPLICOR: fully automated RNA and DNA amplification and detection system for routine diagnostic PCR. Clin Chem. 1996;42:1915–1923.PubMedGoogle Scholar
  15. 15.
    Greenfield L, White TJ. Sample preparation methods. In: Persing DH, Smith TF, Tenover FC, White TJ, eds. Diagnostics Molecular Microbiology Principles and Applications. Washington, DC: American Society for Microbiology; 1993:126–127.Google Scholar
  16. 16.
    Liu XY, Nelson D, Grant C, Morthland V, Goodnight SH, Press RD. Molecular detection of a common mutation in coagulation factor V causing thrombosis via hereditary resistance to activated protein C. Diagn Mol Pathol. 1995;3:191–197.CrossRefGoogle Scholar
  17. 17.
    Linderman R, Hu SP, Volpato F, Trent RJ. Polymerase chain reaction mutagenesis enabling rapid nonradioactive detection of common β-thalassaemia mutations in Mediterraneans. Br J Haematol. 1991;78:100.Google Scholar
  18. 18.
    Sorscher EJ, Huang Z. Diagnosis of genetic disease by primer-specified restriction map modification, with application to cystic fibrosis and retinitis pigmentosa. Lancet. 1991;11:1115–1118.CrossRefGoogle Scholar
  19. 19.
    Khanna M, Park P, Zirvi M, et al. Multiplex PCR/LDR for detection of K-ras mutations in primary colon tumors. Oncogene. 1999;18:27–38.PubMedCrossRefGoogle Scholar
  20. 20.
    McMillin DE, Muldrow LL, Laggette SJ. Simultaneous detection of toxin A and toxin B genetic determinants of Clostridium difficile using the multiplex polymerase chain reaction. Can J Microbiol. 1992;38:81–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Sugita T, Nakajima M, Ikeda R, Niki Y, Matsushima T, Shinoda T. A nested PCR assay to detect DNA in sera for the diagnosis of deep-seated trichosporonosis. Microbiol Immunol. 2001;45:143–148.PubMedGoogle Scholar
  22. 22.
    Ferrie RM, Schwarz MJ, Robertson NH, et al. Development, multiplexing, and application of ARMS tests for common mutations in the CFTR gene. Am J Hum Genet. 1992;51:251–262.PubMedGoogle Scholar
  23. 23.
    Bugawan TL, Begovich AB, Erlich HA. Rapid HLA-DPB typing using enzymatically amplified DNA and nonradioactive sequence-specific oligonucleotide probes. Immunogenetics. 1990;32:231–241.PubMedCrossRefGoogle Scholar
  24. 24.
    Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc Natl Acad Sci U S A. 1990;87:8923–8927.PubMedCrossRefGoogle Scholar
  25. 25.
    Jarvius J, Nilsson M, Landegren U. Oligonucleotide ligation assay. Methods Mol Biol. 2003;212:215–228.PubMedGoogle Scholar
  26. 26.
    Howell WM, Jobs M, Gyllensten U, Brookes AJ. Dynamic allelespecific hybridization. Nat Biotechnol. 1999;17:87–88.PubMedCrossRefGoogle Scholar
  27. 27.
    Baltimore D. Viral RNA-dependent DNA polymerase. Nature. 1970;226:1209–1211.PubMedCrossRefGoogle Scholar
  28. 28.
    Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000;25:169–193.PubMedCrossRefGoogle Scholar
  29. 29.
    Lay MJ, wittwer CT. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem. 1997;43:2262–2267.PubMedGoogle Scholar
  30. 30.
    Bernard PS, wittwer CT. Real-time PCR technology for cancer diagnostics. Clin Chem. 2002;48:1178–1185.PubMedGoogle Scholar
  31. 31.
    Olek A, Oswald J, Walter JAA. A modified and improved method of bisulfite based cytosine methylation analysis. Nucleic Acids Res. 1996;24:5064–5066.PubMedCrossRefGoogle Scholar
  32. 32.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–9826.PubMedCrossRefGoogle Scholar
  33. 33.
    Lo Y, Wong I, Zhang J, Tein M, Ng M, Hjelm N. Quantitative analysis of aberrant p16 methylation using real-time quantitative methylation-specific polymerase chain reaction. Cancer Res. 1999;59:3899–3903.PubMedGoogle Scholar
  34. 34.
    Fodde R, Losekoot M. Mutation detection by denaturing gradient gel electrophoresis (DGGE). Hum Mutat. 1994;3:83–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Lerman LS, Beldjord C. Comprehensive mutation detection with denaturing gradient gel electrophoresis. In: Cotton RGH, Edkins E, Forrest S, eds. Mutation Detection: A Practical Approach. Oxford: Oxford University Press; 1998:35–59.Google Scholar
  36. 36.
    Rosenbaum V, Riesner D. Temperature-gradient gel electrophoresis: thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem. 1987;26:235–246.PubMedCrossRefGoogle Scholar
  37. 37.
    Riesner D, Henco K, Steger G. Temperature-gradient gel electrophoresis: a method for the analysis of conformational transitions and mutations in nucleic acids and proteins. Adv Electrophoresis. 1991;4:169–250.Google Scholar
  38. 38.
    van der Luijt RB, Khan PM, Vasen HF, et al. Molecular analysis of the APC gene in 105 Dutch kindreds with familial adenomatous polyposis: 67 germline mutations identified by DGGE, PTT, and Southern analysis. Hum Mutat. 1997;9:7–16.PubMedCrossRefGoogle Scholar
  39. 39.
    De Braekeleer M, Mari C, Verlingue C, et al. Complete identification of cystic fibrosis transmembrane conductance regulator mutations in the CF population of Saguenay Lac-Saint-Jean (Quebec, Canada). Clin Genet. 1998;53:44–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Alkan S, Cosar E, Ergin M, Hsi E. Detection of T-cell receptor-gamma gene rearrangement in lymphoproliferative disorders by temperature gradient gel electrophoresis. Arch Pathol Lab Med. 2001;125:202–207.PubMedGoogle Scholar
  41. 41.
    Nagamine CM, Chan K, Lau YF. A PCR artifact: generation of heteroduplexes. Am J Hum Genet. 1989;45:337–339.PubMedGoogle Scholar
  42. 42.
    Bhattacharyya A, Lilley DM. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles). Nucleic Acids Res. 1989;17:6821–6840.PubMedCrossRefGoogle Scholar
  43. 43.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as singlestrand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989;86:2766–2770.PubMedCrossRefGoogle Scholar
  44. 44.
    Hayashi, K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991;1:34–38.PubMedGoogle Scholar
  45. 45.
    Liu Q, Feng J, Buzin C, et al. Detection of virtually all mutationssingle stranded conformational polymorphisms (DOVAM-S): a rapid method for mutation scanning with virtually 100% sensitivity. Biotechniques. 1999;26:932–942.PubMedGoogle Scholar
  46. 46.
    Widjojoatmodjo MC, Fluit AC, Verhoef J. Molecular identification of bacteria by fluorescence-based PCR-single-strand-conformation polymorphism of the 16S rRNA gene. J Clin Microbiol. 1995;33:2601–2606.PubMedGoogle Scholar
  47. 47.
    Liu W, Smith DI, Rechtzigel KJ, Thibodeau SN, James CD. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res. 1998;26:1396–1400.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Donovan MC, Oefner PJ, Roberts SC, et al. Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. Genomics. 1998;52:44–49.PubMedCrossRefGoogle Scholar
  49. 49.
    Wagner T, Stoppa-Lyonnet D, Fleischmann E, et al. Denaturing highperformance liquid chromatography detects reliably BRCA1 and BRCA2 mutations. Genomics. 1999;62:369–376.PubMedCrossRefGoogle Scholar
  50. 50.
    Roest PA, Roberts RG, Sugino S, van Ommen GJ, den Dunnen JT. Protein truncation test (PTT) for rapid detection of translationterminating mutations. Hum Mol Genet. 1993;2:1719–1721.PubMedCrossRefGoogle Scholar
  51. 51.
    Pohlreich P, Stribrna J, Kleibl Z, et al. Mutations of the BRCA1 gene in hereditary breast and ovarian cancer in the Czech Republic. Med Princ Pract. 2003;12:23–29.PubMedCrossRefGoogle Scholar
  52. 52.
    Zajac V, Kovac M, Kirchhoff T, Stevurkova V, Tomka M. The most frequent APC mutations among Slovak familial adenomatous polyposis patients. Neoplasma. 2002;49:356–361.PubMedGoogle Scholar
  53. 53.
    Laffler TG, Carrino JJ, Marshall RL. The ligase chain reaction in DNA-based diagnosis. Ann Biol Clin (Paris). 1993;51:821–826.Google Scholar
  54. 54.
    Burczak JD, Ching S, Hu H-Y, Lee HH. Ligase chain reaction for the detection of infectious agents. In: Wiedbrauk DL, Farkas DH, eds. Molecular Methods for Virus Detection. San Diego: Academic Press; 1995:315–328.Google Scholar
  55. 55.
    Mahony J, Chong S, Jang D, et al. Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction, and transcription-mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J Clin Microbiol. 1998;36:3122–3126.PubMedGoogle Scholar
  56. 56.
    Gorrin G, Friesenhahn M, Lin P, et al. Performance evaluation of the VERSANT HCV RNA qualitative assay by using transcriptionmediated amplification. J Clin Microbiol. 2003;41:310–317.PubMedCrossRefGoogle Scholar
  57. 57.
    Walker GT, Little MC, Nadeau JG, Shank DD. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc Natl Acad Sci U S A. 1992;89:392–396.PubMedCrossRefGoogle Scholar
  58. 58.
    Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M. Anchored multiplex amplification on a microelectronic chip array. Nat Biotechnol. 2000;18:199–204.PubMedCrossRefGoogle Scholar
  59. 59.
    Sooknanan R, van Gemen B, Malek LT. Nucleic acid sequence-based amplification. In: Wiedbrauk DL, Farkas DH, eds. Molecular Methods for Virus Detection. San Diego: Academic Press; 1995:261–285.Google Scholar
  60. 60.
    Polstra AM, Goudsmit J, Cornelissen M. Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes. BMC Infect Dis. 2002;2:18.PubMedCrossRefGoogle Scholar
  61. 61.
    Baeumner AJ, Cohen RN, Miksic V, Min J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron. 2003;18:405–413.PubMedCrossRefGoogle Scholar
  62. 62.
    Spadoro JP, Dragon EA. Quality control of the polymerase chain reaction. In: Farkas DH, ed. Molecular Biology and Pathology: A Guidebook for Quality Control. San Diego: Academic Press; 1993:149–158.Google Scholar
  63. 63.
    Wilber JC. Branched DNA for quantification of viral load. Immunol Invest. 1997;26:9–13.PubMedCrossRefGoogle Scholar
  64. 64.
    Nolte FS. Branched DNA signal amplification for direct quantitation of nucleic acid sequences in clinical specimens. Adv Clin Chem. 1998;33:201–235.PubMedGoogle Scholar
  65. 65.
    Elbeik T, Alvord WG, Trichavaroj R, et al. Comparative analysis of HIV-1 viral load assays on subtype quantification: Bayer Versant HIV-1 RNA 3.0 versus Roche Amplicor HIV-1 Monitor version 1.5. J Acquir Immune Defic Syndr. 2002;29:330–339.PubMedGoogle Scholar
  66. 66.
    Gleaves CA, Welle J, Campbell M, et al. Multicenter evaluation of the Bayer VERSANT HIV-1 RNA 3.0 assay: analytical and clinical performance. J Clin Virol. 2002;25:205–216.PubMedCrossRefGoogle Scholar
  67. 67.
    Hann HW, Fontana RJ, Wright T, et al. A United States compassionate use study of lamivudine treatment in nontransplantation candidates with decompensated hepatitis B virus-related cirrhosis. Liver Transpl. 2003;9:49–56.PubMedCrossRefGoogle Scholar
  68. 68.
    Hendricks DA, Stowe BJ, Hoo BS, et al. Quantitation of HBV DNA in human serum using a branched DNA (bDNA) signal amplification assay. Am J Clin Pathol. 1995;104:537–546.PubMedGoogle Scholar
  69. 69.
    Martinot-Peignoux M, Boyer N, Colombat M, et al. Serum hepatitis B virus DNA levels and liver histology in inactive HBsAg carriers. J Hepatol. 2002;36:543–546.PubMedCrossRefGoogle Scholar
  70. 70.
    Pawlotsky JM, Bastie A, Hezode C, et al. Routine detection and quantification of hepatitis B virus DNA in clinical laboratories: performance of three commercial assays. J Virol Methods. 2000;85:11–21.PubMedCrossRefGoogle Scholar
  71. 71.
    Beld M, Sentjens R, Rebers S, et al. Performance of the new Bayer VERSANT HCV RNA 3.0 assay for quantitation of hepatitis C virus RNA in plasma and serum: conversion to international units and comparison with the Roche COBAS Amplicor HCV Monitor, version 2.0, assay. J Clin Microbiol. 2002;40:788–793.PubMedCrossRefGoogle Scholar
  72. 72.
    Trimoulet P, Halfon P, Pohier E, Khiri H, Chene G, Fleury H. Evaluation of the VERSANT HCV RNA 3.0 assay for quantification of hepatitis C virus RNA in serum. J Clin Microbiol. 2002;40:2031–2036.PubMedCrossRefGoogle Scholar
  73. 73.
    Lorincz A, Anthony J. Hybrid capture: a system for nucleic acid detection by signal amplification technology. In: Van Dyke C, Woodfork K, eds. Luminescence Biotechnology: Instruments and Applications. Boca Raton, FL: CRC Press; 2002:149–158.Google Scholar
  74. 74.
    Mazzulli T, Drew LW, Yen-Lieberman B, et al. Multicenter comparison of the Digene hybrid capture CMV DNA assay (version 2.0), the pp65 antigenemia assay, and cell culture for detection of cytomegalovirus viremia. J Clin Microbiol. 1999;37:958–963.PubMedGoogle Scholar
  75. 75.
    Schachter J, Hook EW III, McCormack WM, et al. Ability of the Digene hybrid capture II test to identify Chlamydia trachomatis and Neisseria gonorrhoeae in cervical specimens. J Clin Microbiol. 1999;37:3668–3671.PubMedGoogle Scholar
  76. 76.
    Kessler HH, Pierer K, Dragon E, et al. Evaluation of a new assay for HBV DNA quantitation in patients with chronic hepatitis B. Clin Diagn Virol. 1998;9:37–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Lorincz A. Hybrid capture method for detection of human papilloma virus DNA in clinical specimens. Pap Rep. 1996;7:1–5.Google Scholar
  78. 78.
    Guan X-Y, Zhang H, Bittner M, Jiang Y, Meltzer P, Trent J. Chromosome arm painting probes. Nature Genet. 1996;12:10–11.PubMedCrossRefGoogle Scholar
  79. 79.
    Dyanov HM, Dzitoeva SG. Method for attachment of microscopic preparations on glass for in situ hybridization, PRINS, and in situ PCR studies. Biotechniques. 1995;18:823–826.Google Scholar
  80. 80.
    Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996;273:494–497.PubMedCrossRefGoogle Scholar
  81. 81.
    du Manoir S, Speicher MR, Joos S, et al. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993;90:590–610.PubMedCrossRefGoogle Scholar
  82. 82.
    Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M. N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologic features. Mod Pathol. 1998;11:1222–1227.PubMedGoogle Scholar
  83. 83.
    Ekins R, Chu FW. Microarrays: their origins and applications. Trends Biotechnol. 1999;17:217–218.PubMedCrossRefGoogle Scholar
  84. 84.
    Descamps D, Calvez V, Collin G, et al. Line probe assay for detection of human immunodeficiency virus type 1 mutations conferring resistance to nucleoside inhibitors of reverse transcriptase: comparison with sequence analysis. J Clin Microbiol. 1998;36:2143–2145.PubMedGoogle Scholar
  85. 85.
    Evans JG, Lee-Tataseo C. Determination of the factor V Leiden single-nucleotide polymorphism in a commercial clinical laboratory by use of NanoChip microelectronic array technology. Clin Chem. 2002;48:1406–1411.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Megan J. Smith-Zagone
    • 1
  • Joseph F. Pulliam
    • 2
  • Daniel H. Farkas
    • 3
    • 4
  1. 1.St Joseph HospitalEurekaUSA
  2. 2.Department of PathologyBaylor College of Medicine, Methodist HospitalHoustonUSA
  3. 3.Molecular Diagnostics, Department of PathologyThe Methodist HospitalHouston
  4. 4.Department of Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations