Hereditary Nonpolyposis Colorectal Cancer

  • Erik C. Thorland
  • Stephen N. Thibodeau


Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant colon cancer syndrome. The first description of a cancer-prone family with HNPCC dates back to the late 1800s.1 However, it was not until the work of Lynch in the 1970s that a more complete clinical picture of this disorder began to emerge.2,3 The diagnosis of HNPCC has, until recently, been based primarily on family history. As a result, reliably differentiating patients with HNPCC from those with sporadic cancer has been difficult. However, the constellation of several clinical characteristics, in addition to family history, may raise suspicion of HNPCC.


Germline Mutation Familial Adenomatous Polyposis Lynch Syndrome Microsatellite Instability Hereditary Nonpolyposis Colorectal Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lynch HT, Smyrk TC, Watson P, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: an updated review. Gastroenterology. 1993;104:1535–1549.PubMedGoogle Scholar
  2. 2.
    Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer. Study of two large midwestern kindreds. Arch Intern Med. 1966;117:206–212.PubMedCrossRefGoogle Scholar
  3. 3.
    Lynch HT, Krush AJ. Cancer family “G” revisited: 1895–1970. Cancer. 1971;27:1505–1511.PubMedCrossRefGoogle Scholar
  4. 4.
    Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet. 1999;36:801–818.PubMedGoogle Scholar
  5. 5.
    Watson P, Lynch HT. The tumor spectrum in HNPCC. Anticancer Res. 1994;14:1635–1639.PubMedGoogle Scholar
  6. 6.
    Lynch HT, Fusaro RM, Roberts L, Voorhees GJ, Lynch JF. Muir-Torre syndrome in several members of a family with a variant of the Cancer Family Syndrome. Br J Dermatol. 1985;113:295–301.PubMedCrossRefGoogle Scholar
  7. 7.
    Jass JR, Stewart SM. Evolution of hereditary non-polyposis colorectal cancer. Gut. 1992;33:783–786.PubMedCrossRefGoogle Scholar
  8. 8.
    Jass JR. Colorectal adenoma progression and genetic change: is there a link? Ann Med. 1995;27:301–306.PubMedCrossRefGoogle Scholar
  9. 9.
    Alexander J, Watanabe T, Wu TT, Rashid A, Li S, Hamilton SR. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158:527–535.PubMedGoogle Scholar
  10. 10.
    Aarnio M, Mustonen H, Mecklin JP, Jarvinen HJ. Prognosis of colorectal cancer varies in different high-risk conditions. Ann Med. 1998;30:75–80.PubMedGoogle Scholar
  11. 11.
    Frei JV. Hereditary nonpolyposis colorectal cancer (Lynch syndrome II). Diploid malignancies with prolonged survival. Cancer. 1992;69:1108–1111.PubMedCrossRefGoogle Scholar
  12. 12.
    Kouri M, Laasonen A, Mecklin JP, Jarvinen H, Franssila K, Pyrhonen S. Diploid predominance in hereditary nonpolyposis colorectal carcinoma evaluated by flow cytometry. Cancer. 1990;65:1825–1829.PubMedCrossRefGoogle Scholar
  13. 13.
    Dolcetti R, Viel A, Doglioni C, et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am J Pathol. 1999;154:1805–1813.PubMedGoogle Scholar
  14. 14.
    Gryfe R, Kim H, Hsieh ET, et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 2000;342:69–77.PubMedCrossRefGoogle Scholar
  15. 15.
    Vasen HF, Mecklin JP, Khan PM, Lynch HT. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991;34:424–425.PubMedCrossRefGoogle Scholar
  16. 16.
    Aaltonen LA, Salovaara R, Kristo P, et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med. 1998;338:1481–1487.PubMedCrossRefGoogle Scholar
  17. 17.
    Cunningham JM, Cheong-Yong K, Christensen E, et al. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet. 2001;69:780–790.PubMedCrossRefGoogle Scholar
  18. 18.
    Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116:1453–1456.PubMedCrossRefGoogle Scholar
  19. 19.
    Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257.PubMedGoogle Scholar
  20. 20.
    Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon [comments]. Science. 1993;260:816–819.PubMedCrossRefGoogle Scholar
  21. 21.
    Ionov Y, Peinado MA, malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–561.PubMedCrossRefGoogle Scholar
  22. 22.
    Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–816.PubMedCrossRefGoogle Scholar
  23. 23.
    Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedCrossRefGoogle Scholar
  24. 24.
    Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993;365:274–276.PubMedCrossRefGoogle Scholar
  25. 25.
    Peltomaki P, Aaltonen LA, Sistonen P, et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science. 1993;260:810–812.PubMedCrossRefGoogle Scholar
  26. 26.
    Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75:1027–1038.PubMedCrossRefGoogle Scholar
  27. 27.
    Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 1993;75:1215–1225.PubMedCrossRefGoogle Scholar
  28. 28.
    Fishel R, Kolodner RD. Identification of mismatch repair genes and their role in the development of cancer. Curr Opin Genet Dev. 1995;5:382–395.PubMedCrossRefGoogle Scholar
  29. 29.
    Buermeyer AB, Deschenes SM, Baker SM, Liskay RM. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–564.PubMedCrossRefGoogle Scholar
  30. 30.
    Malkhosyan S, McCarty A, Sawai H, Perucho M. Differences in the spectrum of spontaneous mutations in the hprt gene between tumor cells of the microsatellite mutator phenotype. Mutat Res. 1996;316:249–259.PubMedGoogle Scholar
  31. 31.
    Ohzeki S, Tachibana A, Tatsumi K, Kato T. Spectra of spontaneous mutations at the hprt locus in colorectal carcinoma cell lines defective in mismatch repair. Carcinogenesis. 1997;18:1127–1133.PubMedCrossRefGoogle Scholar
  32. 32.
    Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368:258–261.PubMedCrossRefGoogle Scholar
  33. 33.
    Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science. 1994;263:1625–1629.PubMedCrossRefGoogle Scholar
  34. 34.
    Miyaki M, Konishi M, Tanaka K, et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet. 1997;17:271–272.PubMedCrossRefGoogle Scholar
  35. 35.
    Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature. 1994;371:75–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu Y, Berends MJ, Sijmons RH, et al. A role for MLH3 in hereditary nonpolyposis colorectal cancer. Nat Genet. 2001;29:137–138.PubMedCrossRefGoogle Scholar
  37. 37.
    Akiyama Y, Sato H, Yamada T, et al. Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res. 1997;57:3920–3923.PubMedGoogle Scholar
  38. 38.
    Wijnen J, de Leeuw W, Vasen H, et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nat Genet. 1999;23:142–144.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu Y, Berends MJ, Mensink RG, et al. Association of hereditary nonpolyposis colorectal cancer-related tumors displaying low microsatellite instability with MSH6 germline mutations. Am J Hum Genet. 1999;65:1291–1298.PubMedCrossRefGoogle Scholar
  40. 40.
    Beck NE, Tomlinson IP, Homfray T, et al. Use of SSCP analysis to identify germline mutations in HNPCC families fulfilling the Amsterdam criteria. Hum Genet. 1997;99:219–224.PubMedCrossRefGoogle Scholar
  41. 41.
    Wagner A, Barrows A, Wijnen JT, et al. Molecular analysis of hereditary nonpolyposis colorectal cancer in the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet. 2003;72:1088–1100.PubMedCrossRefGoogle Scholar
  42. 42.
    Lindor NM, Rabe MS, Peterson GM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency. JAMA. 2005;293:1979–1985.PubMedCrossRefGoogle Scholar
  43. 43.
    Lynch HT, Smyrk T, Lynch J. An update of HNPCC (Lynch syndrome). Cancer Genet Cytogenet. 1997;93:84–99.PubMedCrossRefGoogle Scholar
  44. 44.
    Nystrom-Lahti M, Wu Y, Moisio AL, et al. DNA mismatch repair gene mutations in 55 kindreds with verified or putative hereditary nonpolyposis colorectal cancer. Hum Mol Genet. 1996;5:763–769.PubMedCrossRefGoogle Scholar
  45. 45.
    Lewis CM, Neuhausen SL, Daley D, et al. Genetic heterogeneity and unmapped genes for colorectal cancer. Cancer Res. 1996;56:1382–1388.PubMedGoogle Scholar
  46. 46.
    Huang J, Kuismanen SA, Liu T, et al. MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res. 2001;61:1619–1623.PubMedGoogle Scholar
  47. 47.
    Baudhuin LM, Burgart LJ, Leontovich O, et al. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Familial Cancer. 2005;4:255–265.PubMedCrossRefGoogle Scholar
  48. 48.
    Bhattacharyya NP, Skandalis A, Ganesh A, Groden J, Meuth M. Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci U S A. 1994;91:6319–6323.PubMedCrossRefGoogle Scholar
  49. 49.
    Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998;58:1713–1718.PubMedGoogle Scholar
  50. 50.
    Zhou XP, Hoang JM, Li YJ, et al. Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes Cancer. 1998;21:101–107.PubMedCrossRefGoogle Scholar
  51. 51.
    Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Nat Cancer Inst. 2004;96:261–267.PubMedCrossRefGoogle Scholar
  52. 52.
    Pastrello C, Baglioni S, Tibiletti MG, Papi L, Fornasarig M, Morabito A, Agostini M, Genuardi M, Viel A: Stability of BAT26 in tumours of hereditary nonpolyposis colorectal cancer patients with MSH2 intragenic deletion, Eur J Hum Genet. 2006,14:63–68.PubMedGoogle Scholar
  53. 53.
    Konishi M, Kikuchi-Yanoshita R, Tanaka K, et al. Molecular nature of colon tumors in hereditary nonpolyposis colon cancer, familial polyposis, and sporadic colon cancer. Gastroenterology. 1996;111:307–317.PubMedCrossRefGoogle Scholar
  54. 54.
    Jass JR, Biden KG, Cummings MC, et al. Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J Clin Pathol. 1999;52:455–460.PubMedCrossRefGoogle Scholar
  55. 55.
    Cunningham JM, Boardman LA, Burgart LJ, Thibodeau SN. Microsatellite instability in colon cancers. In: Wells R, Warren S, eds. Genetic Instabilities and Hereditary Neurological Diseases. Academic Press, San Diego, CA; 1998:791–807.Google Scholar
  56. 56.
    Kane MF, Loda M, Gaida GM, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–811.PubMedGoogle Scholar
  57. 57.
    Cunningham JM, Christensen ER, Tester DJ, et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58:3455–3460.PubMedGoogle Scholar
  58. 58.
    Dietmaier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J. Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 1997;57:4749–4756.PubMedGoogle Scholar
  59. 59.
    Thibodeau SN, French AJ, Roche PC, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56:4836–4840.PubMedGoogle Scholar
  60. 60.
    Ganguly A, Rock MJ, Prockop DJ. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes [published erratum appears in Proc Natl Acad Sci U S A. 1994;91:5217]. Proc Natl Acad Sci U S A. 1993;90:10325–10329.PubMedCrossRefGoogle Scholar
  61. 61.
    Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as singlestrand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989;86:2766–2770.PubMedCrossRefGoogle Scholar
  62. 62.
    Lerman LS, Silverstein K, Grinfeld E. Searching for gene defects by denaturing gradient gel electrophoresis. Cold Spring Harb Symp Quant Biol. 1986;51:285–297.PubMedGoogle Scholar
  63. 63.
    Underhill PA, Jin L, Lin AA, et al. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Res. 1997;7:996–1005.PubMedGoogle Scholar
  64. 64.
    Powell SM, Petersen GM, Krush AJ, et al. Molecular diagnosis of familial adenomatous polyposis. N Engl J Med. 1993;329:1982–1987.PubMedCrossRefGoogle Scholar
  65. 65.
    Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–1900.PubMedCrossRefGoogle Scholar
  66. 66.
    Wijnen J, van der Klift H, Vasen H, et al. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet. 1998;20:326–328.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Y, Friedl W, Lamberti C, et al. Hereditary nonpolyposis colorectal cancer: frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer. 2003;103:636–641.PubMedCrossRefGoogle Scholar
  68. 68.
    Baudhuin LM, Mai M, French AJ, et al. Analysis of hMLH1 and hMSH2 gene dosage alterations in hererditary nonpolyposis colorectal cancer patients by novel methods. J Mol Diagn. 2005;7:26–235.Google Scholar
  69. 69.
    Gille JJ, Hogervorst FB, Pals G, et al. Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach. Br J Cancer. 2002;87:892–897.PubMedCrossRefGoogle Scholar
  70. 70.
    Yan H, Papadopoulos N, Marra G, et al. Conversion of diploidy to haploidy. Nature. 2000;403:723–724.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Erik C. Thorland
    • 1
  • Stephen N. Thibodeau
    • 2
  1. 1.Clinical Cytogenetics Laboratory, Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA
  2. 2.Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations