Advertisement

Neurodegenerative Disorders

  • Nicholas T. Potter
Chapter
  • 1.7k Downloads

Abstract

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder clinically characterized by the presence of choreiform movements, psychiatric sequelae, and dementia. While the majority (>90%) of HD patients become clinically symptomatic in adulthood, 5% to 10% of patients present with the juvenile-onset form of the disease, which is almost invariably associated with inheritance of the mutant allele from a symptomatic father. Unlike the adult-onset form of the disease, juvenile HD is generally characterized by the presence of progressive rigidity, seizures, ataxia, and dystonia.

Keywords

Amyotrophic Lateral Sclerosis Alzheimer Disease Huntington Disease Prenatal Testing Friedreich Ataxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hug M, Hayden M. Huntington disease. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  2. 2.
    Potter NT, Spector EB, Prior TW. Technical standards and guidelines for Huntington disease. In: The American College of Medical Genetics Standards and Guidelines for Clinical Genetics Laboratories, Bethesda MD. Available at: http://www.acmg.net. Accessed February 17, 2003.Google Scholar
  3. 3.
    GeneTests [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  4. 4.
    Andrew SE, Goldberg YP, Theilman J, et al. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet. 1994;3:65–67.PubMedCrossRefGoogle Scholar
  5. 5.
    Margolis RL, Stine OC, Callahan C, et al. Two novel single-base-pairsubstitutions adjacent to the CAG repeat in the Huntington disease gene (IT15): implications for diagnostic testing. Am J Hum Genet. 1999;64:323–326.PubMedCrossRefGoogle Scholar
  6. 6.
    Maher TA, Ito M, Loose BA, et al. Implementation of long PCR for the detection of very large trinucleotide repeat expansion in a 3-year-old with juvenile Huntington disease. Am J Hum Genet. 2002;71:552.Google Scholar
  7. 7.
    Bird TD. Hereditary ataxia overview. GeneReviews [database online]. Seattle: University of Washington. available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  8. 8.
    Potter NT, Nance MA, for the Ataxia Molecular Diagnostic Testing Group. Genetic testing for ataxia in North America. Mol Diagn. 2000;5:91–99.PubMedCrossRefGoogle Scholar
  9. 9.
    Holmes SE, O’Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;4:391–392.Google Scholar
  10. 10.
    Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10:1441–1448.PubMedCrossRefGoogle Scholar
  11. 11.
    Koob MD, moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21:379–384.PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191–194.PubMedCrossRefGoogle Scholar
  13. 13.
    Bidichandani SI, Ashizawa T. Friedreich ataxia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  14. 14.
    Dorschner MO, Barden D, Stephens K. Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J Mol Diagn. 2002;4:108–113.PubMedGoogle Scholar
  15. 15.
    Mao R, Aylsworth AS, Potter NT, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet. 2002;110:338–345.PubMedCrossRefGoogle Scholar
  16. 16.
    Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–291.PubMedCrossRefGoogle Scholar
  17. 17.
    Snow K, Mao R. Extreme expansion detection in spinocerebellar ataxia type 2 and type 7. In: Potter NT, ed. Neurogenetics: Methods and Protocols. Vol. 217. Totowa, NJ: Humana Press; 2002:41–50.Google Scholar
  18. 18.
    Dalton JC, Day JW, Ranum LPW, et al. Spinocerebellar ataxia type 8. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  19. 19.
    Potter NT. Update on the genetics of ataxia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed February 17, 2003.Google Scholar
  20. 20.
    Filla A, De Michelle G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–560.PubMedGoogle Scholar
  21. 21.
    Potter NT, Miller CA, Anderson IJ. Mutation detection in an equivocal case of Friedreich ataxia. Pediatr Neurol. 2000;22:413–415.PubMedCrossRefGoogle Scholar
  22. 22.
    Bird TD. Alzheimer overview. GeneReviews [database online]. Seattle: University of Washington. available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  23. 23.
    McKusick VA. Alzheimer disease (OMIM #104300). Online Mendelian Inheritance in Man [database online]. Baltimore: Johns Hopkins University. Available at: http://www.ncbi.nlm.nih.gov/omim/. Accessed January 7, 2003.Google Scholar
  24. 24.
    Third Wave Technologies. Apolipoprotein E (ApoE). L-0008. Madison, WI; 2002. Available at: http://www.twt.com. Accessed February 17, 2003.Google Scholar
  25. 25.
    Janssen JC, Beck JA, Campbell TA, et al. Early onset familial Alzheimer disease: mutation frequency in 31 families. Neurology. 2003;60:235–239.PubMedGoogle Scholar
  26. 26.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047.PubMedCrossRefGoogle Scholar
  27. 27.
    Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–108.PubMedCrossRefGoogle Scholar
  28. 28.
    Mouradian MM. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology. 2002;58:179–185.PubMedGoogle Scholar
  29. 29.
    Brice A, Dürr A, Lücking C, et al. Parkin type of juvenile Parkinson disease. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  30. 30.
    Lücking CB, Brice A. Semiquantitative PCR for the detection of exon rearrangements in the parkin gene. In: Potter NT, ed. Neurogenetics: Methods and Protocols. Vol. 217. Totowa, NJ: Humana Press; 2002:13–26.Google Scholar
  31. 31.
    Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395:451–452.PubMedCrossRefGoogle Scholar
  32. 32.
    Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Le W-D, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet. 2003;33:85–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Gaudette M, Saddique T. Amyotrophic lateral sclerosis overview. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.Google Scholar
  35. 35.
    Yang Y, Hentati A, Deng H-X, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;29:160–165.PubMedCrossRefGoogle Scholar
  36. 36.
    Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29:166–173.PubMedCrossRefGoogle Scholar
  37. 37.
    deCarvalho Aguiar PM, Ozelius LJ. Classification and genetics of dystonia. Lancet Neurol. 2002;1:316–325.CrossRefGoogle Scholar
  38. 38.
    Grotzsch H, Pizzolato G-P, Ghika J, et al. Neuropathology of a case of dopa-responsive dystonia associated with a new genetic locus, DYT14. Neurology. 2002;58:1839–1842.PubMedGoogle Scholar
  39. 39.
    Klein C, Ozelius LJ. Dystonia: clinical features, genetics, and treatment. Curr Opin Neurol. 2002;15:491–497.PubMedCrossRefGoogle Scholar
  40. 40.
    Leung JC, Klein C, Friedman J, et al. Novel mutation in the Tor1A (DYT1) gene in atypical early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics. 2001;3:133–143.PubMedCrossRefGoogle Scholar
  41. 41.
    Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Furukawa Y. Dopa-responsive dystonia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 21, 2003.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nicholas T. Potter
    • 1
  1. 1.Molecular DiagnosticsMolecular Pathology Laboratory Network, IncMaryvilleUSA

Personalised recommendations