Skip to main content

Neurodegenerative Disorders

  • Chapter
  • 1947 Accesses

Abstract

Huntington disease (HD) is an autosomal dominant neurodegenerative disorder clinically characterized by the presence of choreiform movements, psychiatric sequelae, and dementia. While the majority (>90%) of HD patients become clinically symptomatic in adulthood, 5% to 10% of patients present with the juvenile-onset form of the disease, which is almost invariably associated with inheritance of the mutant allele from a symptomatic father. Unlike the adult-onset form of the disease, juvenile HD is generally characterized by the presence of progressive rigidity, seizures, ataxia, and dystonia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hug M, Hayden M. Huntington disease. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  2. Potter NT, Spector EB, Prior TW. Technical standards and guidelines for Huntington disease. In: The American College of Medical Genetics Standards and Guidelines for Clinical Genetics Laboratories, Bethesda MD. Available at: http://www.acmg.net. Accessed February 17, 2003.

    Google Scholar 

  3. GeneTests [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  4. Andrew SE, Goldberg YP, Theilman J, et al. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet. 1994;3:65–67.

    Article  PubMed  CAS  Google Scholar 

  5. Margolis RL, Stine OC, Callahan C, et al. Two novel single-base-pairsubstitutions adjacent to the CAG repeat in the Huntington disease gene (IT15): implications for diagnostic testing. Am J Hum Genet. 1999;64:323–326.

    Article  PubMed  CAS  Google Scholar 

  6. Maher TA, Ito M, Loose BA, et al. Implementation of long PCR for the detection of very large trinucleotide repeat expansion in a 3-year-old with juvenile Huntington disease. Am J Hum Genet. 2002;71:552.

    Google Scholar 

  7. Bird TD. Hereditary ataxia overview. GeneReviews [database online]. Seattle: University of Washington. available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  8. Potter NT, Nance MA, for the Ataxia Molecular Diagnostic Testing Group. Genetic testing for ataxia in North America. Mol Diagn. 2000;5:91–99.

    Article  PubMed  CAS  Google Scholar 

  9. Holmes SE, O’Hearn EE, McInnis MG, et al. Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet. 1999;4:391–392.

    Google Scholar 

  10. Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10:1441–1448.

    Article  PubMed  CAS  Google Scholar 

  11. Koob MD, moseley ML, Schut LJ, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet. 1999;21:379–384.

    Article  PubMed  CAS  Google Scholar 

  12. Matsuura T, Yamagata T, Burgess DL, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet. 2000;26:191–194.

    Article  PubMed  CAS  Google Scholar 

  13. Bidichandani SI, Ashizawa T. Friedreich ataxia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  14. Dorschner MO, Barden D, Stephens K. Diagnosis of five spinocerebellar ataxia disorders by multiplex amplification and capillary electrophoresis. J Mol Diagn. 2002;4:108–113.

    PubMed  CAS  Google Scholar 

  15. Mao R, Aylsworth AS, Potter NT, et al. Childhood-onset ataxia: testing for large CAG-repeats in SCA2 and SCA7. Am J Med Genet. 2002;110:338–345.

    Article  PubMed  Google Scholar 

  16. Imbert G, Saudou F, Yvert G, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–291.

    Article  PubMed  CAS  Google Scholar 

  17. Snow K, Mao R. Extreme expansion detection in spinocerebellar ataxia type 2 and type 7. In: Potter NT, ed. Neurogenetics: Methods and Protocols. Vol. 217. Totowa, NJ: Humana Press; 2002:41–50.

    Google Scholar 

  18. Dalton JC, Day JW, Ranum LPW, et al. Spinocerebellar ataxia type 8. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  19. Potter NT. Update on the genetics of ataxia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed February 17, 2003.

    Google Scholar 

  20. Filla A, De Michelle G, Cavalcanti F, et al. The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet. 1996;59:554–560.

    PubMed  CAS  Google Scholar 

  21. Potter NT, Miller CA, Anderson IJ. Mutation detection in an equivocal case of Friedreich ataxia. Pediatr Neurol. 2000;22:413–415.

    Article  PubMed  CAS  Google Scholar 

  22. Bird TD. Alzheimer overview. GeneReviews [database online]. Seattle: University of Washington. available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  23. McKusick VA. Alzheimer disease (OMIM #104300). Online Mendelian Inheritance in Man [database online]. Baltimore: Johns Hopkins University. Available at: http://www.ncbi.nlm.nih.gov/omim/. Accessed January 7, 2003.

    Google Scholar 

  24. Third Wave Technologies. Apolipoprotein E (ApoE). L-0008. Madison, WI; 2002. Available at: http://www.twt.com. Accessed February 17, 2003.

    Google Scholar 

  25. Janssen JC, Beck JA, Campbell TA, et al. Early onset familial Alzheimer disease: mutation frequency in 31 families. Neurology. 2003;60:235–239.

    PubMed  CAS  Google Scholar 

  26. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–2047.

    Article  PubMed  CAS  Google Scholar 

  27. Krüger R, Kuhn W, Müller T, et al. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet. 1998;18:106–108.

    Article  PubMed  Google Scholar 

  28. Mouradian MM. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology. 2002;58:179–185.

    PubMed  Google Scholar 

  29. Brice A, Dürr A, Lücking C, et al. Parkin type of juvenile Parkinson disease. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  30. Lücking CB, Brice A. Semiquantitative PCR for the detection of exon rearrangements in the parkin gene. In: Potter NT, ed. Neurogenetics: Methods and Protocols. Vol. 217. Totowa, NJ: Humana Press; 2002:13–26.

    Google Scholar 

  31. Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson’s disease. Nature. 1998;395:451–452.

    Article  PubMed  CAS  Google Scholar 

  32. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299:256–259.

    Article  PubMed  CAS  Google Scholar 

  33. Le W-D, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet. 2003;33:85–87.

    Article  PubMed  CAS  Google Scholar 

  34. Gaudette M, Saddique T. Amyotrophic lateral sclerosis overview. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 7, 2003.

    Google Scholar 

  35. Yang Y, Hentati A, Deng H-X, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet. 2001;29:160–165.

    Article  PubMed  CAS  Google Scholar 

  36. Hadano S, Hand CK, Osuga H, et al. A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet. 2001;29:166–173.

    Article  PubMed  CAS  Google Scholar 

  37. deCarvalho Aguiar PM, Ozelius LJ. Classification and genetics of dystonia. Lancet Neurol. 2002;1:316–325.

    Article  Google Scholar 

  38. Grotzsch H, Pizzolato G-P, Ghika J, et al. Neuropathology of a case of dopa-responsive dystonia associated with a new genetic locus, DYT14. Neurology. 2002;58:1839–1842.

    PubMed  CAS  Google Scholar 

  39. Klein C, Ozelius LJ. Dystonia: clinical features, genetics, and treatment. Curr Opin Neurol. 2002;15:491–497.

    Article  PubMed  Google Scholar 

  40. Leung JC, Klein C, Friedman J, et al. Novel mutation in the Tor1A (DYT1) gene in atypical early onset dystonia and polymorphisms in dystonia and early onset parkinsonism. Neurogenetics. 2001;3:133–143.

    Article  PubMed  CAS  Google Scholar 

  41. Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–48.

    Article  PubMed  CAS  Google Scholar 

  42. Furukawa Y. Dopa-responsive dystonia. GeneReviews [database online]. Seattle: University of Washington. Available at: http://www.genetests.org. Accessed January 21, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potter, N.T. (2007). Neurodegenerative Disorders. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics