Advertisement

Cardiovascular Disease

  • Anant Khositseth
  • Michael J. Ackerman
Chapter
  • 1.7k Downloads

Abstract

During the last decade, techniques and advances in molecular genetics and genomics have yielded profound new insights into the fundamental mechanisms and genetic underpinnings for many heritable cardiovascular diseases. The resulting genotype-phenotype correlations facilitate: (1) molecular testing for the preclinical/presymptomatic identification of genetically susceptible individuals, (2) the possibility of gene-based prognosis, and (3) new opportunities for gene-specific or gene-targeted therapy including primary prevention in genotype-positive-phenotypenegative individuals. Cardiology has embraced new genetic discoveries, since sudden cardiac death (SCD) consumes more lives than any other medical condition in developed countries, with 1,000 SCDs occurring each day in the United States. Coronary artery disease (CAD) is the major cause of SCD, while other heritable processes including cardiomyopathies and the channelopathies may also predispose to fatal ventricular arrhythmias.

Keywords

Factor Versus Hypertrophic Cardiomyopathy Brugada Syndrome Ventricular Cardiomyopathy Arrhythmogenic Right Ventricular Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts: comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974;249:5153–5162.PubMedGoogle Scholar
  2. 2.
    Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Lindgren V, Luskey KL, Russell DW, Francke U. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proc Natl Acad Sci U S A. 1985;82:8567–8571.PubMedCrossRefGoogle Scholar
  4. 4.
    Yamamoto T, Davis CG, Brown MS, et al. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell. 1984;39:27–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Law SW, Lackner KJ, hospattankar AV, et al. Human apolipoprotein B-100: cloning, analysis of liver mRNA, and assignment of the gene to chromosome 2. Proc Natl Acad Sci U S A. 1985;82:8340–8344.PubMedCrossRefGoogle Scholar
  6. 6.
    Innerarity TL, weisgraber KH, Arnold KS, et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci U S A. 1987;84:6919–6923.PubMedCrossRefGoogle Scholar
  7. 7.
    Varret M, Rabes JP, Saint-Jore B, et al. A third major locus for autosomal dominant hypercholesterolemia maps to 1p34.1-p32. Am J Hum Genet. 1999;64:1378–1387.PubMedCrossRefGoogle Scholar
  8. 8.
    Heath KE, Gahan M, Whittall RA, Humphries SE. Low-density lipoprotein receptor gene (LDLR) world-wide website in familial hypercholesterolaemia: update, new features and mutation analysis. Atherosclerosis. 2001;154:243–246.PubMedCrossRefGoogle Scholar
  9. 9.
    Wilson DJ, Gahan M, Haddad L, et al. A World Wide Web site for low-density lipoprotein receptor gene mutations in familial hypercholesterolemia: sequence-based, tabular, and direct submission data handling. Am J Cardiol. 1998;81:1509–1511.PubMedCrossRefGoogle Scholar
  10. 10.
    Soria LF, Ludwig EH, Clarke HR, Vega GL, Grundy SM, McCarthy BJ. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci U S A. 1989;86:587–591.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaffney D, Reid JM, Cameron IM, et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia. Arterioscler Thromb Vasc Biol. 1995;15:1025–1029.PubMedGoogle Scholar
  12. 12.
    Pullinger CR, Hennessy LK, Chatterton JE, et al. Familial liganddefective apolipoprotein B. Identification of a new mutation that decreases LDL receptor binding affinity. J Clin Invest. 1995;95:1225–1234.PubMedGoogle Scholar
  13. 13.
    Nissen H, hansen PS, Faergeman O, Horder M. Mutation screening of the codon 3500 region of the apolipoprotein B gene by denaturing gradient-gel electrophoresis. Clin Chem. 1995;41:419–423.PubMedGoogle Scholar
  14. 14.
    Goldstein JL, Hobbs H, Brown M. Familial hypercholesterolaemia. In: Scriver C, Beauder A, Sly W, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:2863–2913.Google Scholar
  15. 15.
    Arca M, Zuliani G, Wilund K, et al. Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet. 2002;359:841–847.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson PW, Schaefer EJ, Larson MG, Ordovas JM. Apolipoprotein E alleles and risk of coronary disease. A meta-analysis. Arterioscler Thromb Vasc Biol. 1996;16:1250–1255.PubMedGoogle Scholar
  17. 17.
    Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101:1767–1772.PubMedGoogle Scholar
  18. 18.
    Humphries SE, Luong LA, Ogg MS, Hawe E, Miller GJ. The interleukin-6-174 G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men. Eur Heart J. 2001;22:2243–2252.PubMedCrossRefGoogle Scholar
  19. 19.
    Soufi M, Sattler AM, Maisch B, Schaefer JR. Molecular mechanisms involved in atherosclerosis. Herz. 2002;27:637–648.PubMedCrossRefGoogle Scholar
  20. 20.
    Garcia-Garcia AB, Real JT, Puig O, et al. Molecular genetics of familial hypercholesterolemia in Spain: ten novel LDLR mutations and population analysis. Hum Mutat. 2001;18:458–459.PubMedCrossRefGoogle Scholar
  21. 21.
    Griffin JH, Evatt B, Wideman C, Fernandez JA. Anticoagulant protein C pathway defective in majority of thrombophilic patients. Blood. 1993;82:1989–1993.PubMedGoogle Scholar
  22. 22.
    Grody WW, Griffin JH, Taylor AK, Korf BR, Heit JA. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med. 2001;3:139–148.PubMedGoogle Scholar
  23. 23.
    Press RD, Bauer KA, Kujovich JL, Heit JA. Clinical utility of factor V Leiden (R506Q) testing for the diagnosis and management of thromboembolic disorders. Arch Pathol Lab Med. 2002;126:1304–1318.PubMedGoogle Scholar
  24. 24.
    Rosendaal FR, Siscovick DS, Schwartz SM, et al. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood. 1997;89:2817–2821.PubMedGoogle Scholar
  25. 25.
    Holm J, Zoller B, Svensson PJ, Berntorp E, Erhardt L, Dahlback B. Myocardial infarction associated with homozygous resistance to activated protein C. Lancet. 1994;344:952–953.PubMedCrossRefGoogle Scholar
  26. 26.
    Holm J, Hillarp A, Zoller B, Erhardt L, Berntorp E, Dahlback B. Factor V Q506 (resistance to activated protein C) and prognosis after acute coronary syndrome. Thromb Haemost. 1999;81:857–860.PubMedGoogle Scholar
  27. 27.
    Marz W, Seydewitz H, Winkelmann B, Chen M, Nauck M, Witt I. Mutation in coagulation factor V associated with resistance to activated protein C in patients with coronary artery disease. Lancet. 1995;345:526.PubMedCrossRefGoogle Scholar
  28. 28.
    Holm J, Zoller B, Berntorp E, Erhardt L, Dahlback B. Prevalence of factor V gene mutation amongst myocardial infarction patients and healthy controls is higher in Sweden than in other countries. J Intern Med. 1996;239:221–226.PubMedCrossRefGoogle Scholar
  29. 29.
    Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med. 1995;332:912–917.PubMedCrossRefGoogle Scholar
  30. 30.
    Prohaska W, Mannebach H, Schmidt M, Gleichmann U, Kleesiek K. Evidence against heterozygous coagulation factor V 1691 G→A mutation with resistance to activated protein C being a risk factor for coronary artery disease and myocardial infarction. J Mol Med. 1995;73:521–524.PubMedCrossRefGoogle Scholar
  31. 31.
    Jeffery S, Leatham E, Zhang Y, Carter J, Pratel P, Kaski JC. Factor V Leiden polymorphism (FV Q506) in patients with ischaemic heart disease, and in different populations groups. J Hum Hypertens. 1996;10:433–434.PubMedGoogle Scholar
  32. 32.
    Dunn ST, Roberts CR, Schechter E, Moore WE, Lee ET, Eichner JE. Role of factor V Leiden mutation in patients with angiographically demonstrated coronary artery disease. Thromb Res. 1998;91:91–99.PubMedCrossRefGoogle Scholar
  33. 33.
    Boekholdt SM, Bijsterveld NR, Moons AH, Levi M, Buller HR, Peters RJ. Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation. 2001;104:3063–3068.PubMedCrossRefGoogle Scholar
  34. 34.
    Juul K, Tybjaerg-Hansen A, Steffensen R, Kofoed S, Jensen G, Nordestgaard BG. Factor V Leiden: the Copenhagen City Heart Study and 2 meta-analyses. Blood. 2002;100:3–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Wu AH, Tsongalis GJ. Correlation of polymorphisms to coagulation and biochemical risk factors for cardiovascular diseases. Am J Cardiol. 2001;87:1361–1366.PubMedCrossRefGoogle Scholar
  36. 36.
    Heinrich J, Budde T, Assmann G. Mutation in the factor V gene and the risk of myocardial infarction. N Engl J Med. 1995;333:881.PubMedCrossRefGoogle Scholar
  37. 37.
    Endler G, Mannhalter C. Polymorphisms in coagulation factor genes and their impact on arterial and venous thrombosis. Clin Chim Acta. 2003;330:31–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet. 1985;37:1–31.PubMedGoogle Scholar
  39. 39.
    Cleophas TJ, Hornstra N, van Hoogstraten B, van der Meulen J. Homocysteine, a risk factor for coronary artery disease or not? A meta-analysis. Am J Cardiol. 2000;86:1005–1009, A8.PubMedCrossRefGoogle Scholar
  40. 40.
    Jacques PF, Bostom AG, williams RR, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93:7–9.PubMedGoogle Scholar
  41. 41.
    Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–113.PubMedCrossRefGoogle Scholar
  42. 42.
    Castro R, Rivera I, Ravasco P, et al. 5,10-Methylenetetrahydrofolate reductase 677C→T and 1298A→C mutations are genetic determinants of elevated homocysteine. QJM. 2003;96:297–303.PubMedCrossRefGoogle Scholar
  43. 43.
    Andreassi MG, Botto N, Cocci F, et al. Methylenetetrahydrofolate reductase gene C677T polymorphism, homocysteine, vitamin B12, and DNA damage in coronary artery disease. Hum Genet. 2003;112:171–177.PubMedGoogle Scholar
  44. 44.
    Maron BJ, Bonow RO, Cannon RO 3rd, Leon MB, Epstein SE. hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (2). N Engl J Med. 1987;316:844–852.PubMedCrossRefGoogle Scholar
  45. 45.
    Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation. 1996;93:841–842.PubMedGoogle Scholar
  46. 46.
    Popjes ED, St John Sutton M. Hypertrophic cardiomyopathy: pathophysiology, diagnosis, and treatment. Geriatrics. 2003;58:41–46; quiz 47.PubMedGoogle Scholar
  47. 47.
    Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287:1308–1320.PubMedCrossRefGoogle Scholar
  48. 48.
    Maron BJ. Hypertrophic cardiomyopathy. Lancet. 1997;350:127–133.PubMedCrossRefGoogle Scholar
  49. 49.
    Maron BJ, Anan TJ, Roberts WC. Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation. 1981;63:882–894.PubMedGoogle Scholar
  50. 50.
    Jarcho JA, McKenna W, Pare JA, et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med. 1989;321:1372–1378.PubMedCrossRefGoogle Scholar
  51. 51.
    Thierfelder L, MacRae C, watkins H, et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci U S A. 1993;90:6270–6274.PubMedCrossRefGoogle Scholar
  52. 52.
    Watkins H, MacRae C, Thierfelder L, et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Genet. 1993;3:333–337.PubMedCrossRefGoogle Scholar
  53. 53.
    Carrier L, Hengstenberg C, Beckmann JS, et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Genet. 1993;4:311–313.PubMedCrossRefGoogle Scholar
  54. 54.
    MacRae CA, Ghaisas N, Kass S, et al. Familial hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest. 1995;96:1216–1220.PubMedGoogle Scholar
  55. 55.
    Poetter K, Jiang H, Hassanzadeh S, et al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet. 1996;13:63–69.PubMedCrossRefGoogle Scholar
  56. 56.
    Kimura A, Harada H, Park JE, et al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat Genet. 1997;16:379–382.PubMedCrossRefGoogle Scholar
  57. 57.
    Mogensen J, Klausen IC, Pedersen AK, et al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999;103:R39–R43.PubMedGoogle Scholar
  58. 58.
    Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: identification of a novel disease gene. Biochem Biophys Res Commun. 1999;262:411–417.PubMedCrossRefGoogle Scholar
  59. 59.
    Geisterfer-Lowrance AA, Kass S, Tanigawa G, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62:999–1006.PubMedCrossRefGoogle Scholar
  60. 60.
    Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32:1687–1694.PubMedCrossRefGoogle Scholar
  61. 61.
    Bonne G, Carrier L, Bercovici J, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11:438–440.PubMedCrossRefGoogle Scholar
  62. 62.
    Thierfelder L, Watkins H, MacRae C, et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994;77:701–712.PubMedCrossRefGoogle Scholar
  63. 63.
    Freeman K, Lerman I, Kranias EG, et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J Clin Invest. 2001;107:967–974.PubMedGoogle Scholar
  64. 64.
    Carrier L, Jongbloed R, Smeets H, Doevendans PA. Hypertrophic cardiomyopathy. In: Doevendans P, Wilde, AA, eds. Cardiovascular Genetics for Clinicians. Kluwer Academic Publishers: Dordrecht, The Netherlands; 2001:139–154.Google Scholar
  65. 65.
    Seidman C. Genetic causes of inherited cardiac hypertrophy: Robert L. Frye lecture. Mayo Clin Proc. 2002;77:1315–1319.PubMedGoogle Scholar
  66. 66.
    Marian AJ. Modifier genes for hypertrophic cardiomyopathy. Curr Opin Cardiol. 2002;17:242–252.PubMedCrossRefGoogle Scholar
  67. 67.
    Gollob MH, Seger JJ, Gollob TN, et al. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation. 2001;104:3030–3033.PubMedCrossRefGoogle Scholar
  68. 68.
    Blair E, Redwood C, Ashrafian H, et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10:1215–1220.PubMedCrossRefGoogle Scholar
  69. 69.
    Geier C, Perrot A, Ozcelik C, et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation. 2003;107:1390–1395.PubMedCrossRefGoogle Scholar
  70. 70.
    Arad M, Benson DW, Perez-Atayde AR, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–362.PubMedCrossRefGoogle Scholar
  71. 71.
    Simon DK, Johns DR. Mitochondrial disorders: clinical and genetic features. Annu Rev Med. 1999;50:111–127.PubMedCrossRefGoogle Scholar
  72. 72.
    Watkins H, Rosenzweig A, Hwang DS, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992;326:1108–1114.PubMedCrossRefGoogle Scholar
  73. 73.
    Marian AJ, Roberts R. Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol. 1998;9:88–99.PubMedCrossRefGoogle Scholar
  74. 74.
    Enjuto M, Francino A, Navarro-Lopez F, Viles D, Pare JC, Ballesta AM. Malignant hypertrophic cardiomyopathy caused by the Arg723Gly mutation in beta-myosin heavy chain gene. J Mol Cell Cardiol. 2000;32:2307–2313.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Driest SL, Ackerman MJ, Ommen SR, et al. Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation. 2002;106:3085–3090.PubMedCrossRefGoogle Scholar
  76. 76.
    Ackerman MJ, VanDriest SL, Ommen SR, et al. Prevalence and agedependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J Am Coll Cardiol. 2002;39:2042–2048.PubMedCrossRefGoogle Scholar
  77. 77.
    Watkins H, McKenna WJ, Thierfelder L, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332:1058–1064.PubMedCrossRefGoogle Scholar
  78. 78.
    Forissier JF, Carrier L, Farza H, et al. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation. 1996;94:3069–3073.PubMedGoogle Scholar
  79. 79.
    Moolman JC, Corfield VA, Posen B, et al. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997;29:549–555.PubMedCrossRefGoogle Scholar
  80. 80.
    Charron P, Dubourg O, Desnos M, et al. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation. 1998;97:2230–2236.PubMedGoogle Scholar
  81. 81.
    Niimura H, Bachinski LL, Sangwatanaroj S, et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998;338:1248–1257.PubMedCrossRefGoogle Scholar
  82. 82.
    Maron BJ, Niimura H, Casey SA, et al. Development of left ventricular hypertrophy in adults in hypertrophic cardiomyopathy caused by cardiac myosin-binding protein C gene mutations. J Am Coll Cardiol. 2001;38:315–321.PubMedCrossRefGoogle Scholar
  83. 83.
    Marian AJ, Yu QT, Workman R, Greve G, Roberts R. Angiotensinconverting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet. 1993;342:1085–1086.PubMedCrossRefGoogle Scholar
  84. 84.
    Lechin M, Quinones MA, Omran A, et al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation. 1995;92:1808–1812.PubMedGoogle Scholar
  85. 85.
    Yoneya K, Okamoto H, Machida M, et al. Angiotensin-converting enzyme gene polymorphism in Japanese patients with hypertrophic cardiomyopathy. Am Heart J. 1995;130:1089–1093.PubMedCrossRefGoogle Scholar
  86. 86.
    Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation. 2001;103:789–791.PubMedGoogle Scholar
  87. 87.
    Van Driest SL, Will ML, Atkins DL, Ackerman MJ. A novel TPM1 mutation in a family with hypertrophic cardiomyopathy and sudden cardiac death in childhood. Am J Cardiol. 2002;90:1123–1127.PubMedCrossRefGoogle Scholar
  88. 88.
    Durand JB, Abchee AB, Roberts R. Molecular and clinical aspects of inherited cardiomyopathies. Ann Med. 1995;27:311–317.PubMedCrossRefGoogle Scholar
  89. 89.
    Michels VV, Pastores GM, Moll PP, et al. Dystrophin analysis in idiopathic dilated cardiomyopathy. J Med Genet. 1993;30:955–957.PubMedGoogle Scholar
  90. 90.
    Keeling PJ, Gang Y, Smith G, et al. Familial dilated cardiomyopathy in the United Kingdom. Br Heart J. 1995;73:417–421.PubMedCrossRefGoogle Scholar
  91. 91.
    Grunig E, Tasman JA, Kucherer H, Franz W, Kubler W, Katus HA. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31:186–194.PubMedCrossRefGoogle Scholar
  92. 92.
    Mestroni L, Rocco C, Gregori D, et al. Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group. J Am Coll Cardiol. 1999;34:181–190.PubMedCrossRefGoogle Scholar
  93. 93.
    Keller DI, Carrier L, Schwartz K. Genetics of familial cardiomyopathies and arrhythmias. Swiss Med Wkly. 2002;132:401–407.PubMedGoogle Scholar
  94. 94.
    Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science. 1998;280:750–752.PubMedCrossRefGoogle Scholar
  95. 95.
    Olson TM, Kishimoto NY, whitby FG, Michels VV. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J Mol Cell Cardiol. 2001;33:723–732.PubMedCrossRefGoogle Scholar
  96. 96.
    Li D, Tapscoft T, Gonzalez O, et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 1999;100:461–464.PubMedGoogle Scholar
  97. 97.
    Gerull B, Gramlich M, Atherton J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002;30:201–204.PubMedCrossRefGoogle Scholar
  98. 98.
    Tsubata S, Bowles KR, Vatta M, et al. Mutations in the human deltasarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest. 2000;106:655–662.PubMedGoogle Scholar
  99. 99.
    Abraham WT, Gilbert EM, Lowes BD, et al. Coordinate changes in Myosin heavy chain isoform gene expression are selectively associated with alterations in dilated cardiomyopathy phenotype. Mol Med. 2002;8:750–760.PubMedGoogle Scholar
  100. 100.
    Li D, Czernuszewicz GZ, Gonzalez O, et al. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation. 2001;104:2188–2193.PubMedCrossRefGoogle Scholar
  101. 101.
    Keller DI, Carrier L, Schwartz K. Genetics of familial cardiomyopathies and arrhythmias. Swiss Med Wkly. 2002;132:401–407.PubMedGoogle Scholar
  102. 102.
    Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341:1715–1724.PubMedCrossRefGoogle Scholar
  103. 103.
    Schonberger J, Levy H, Grunig E, et al. Dilated cardiomyopathy and sensorineural hearing loss: a heritable syndrome that maps to 6q23–24. Circulation. 2000;101:1812–1818.PubMedGoogle Scholar
  104. 104.
    Arbustini E, Pilotto A, Repetto A, et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defectrelated disease. J Am Coll Cardiol. 2002;39:981–990.PubMedCrossRefGoogle Scholar
  105. 105.
    Bies RD, Maeda M, Roberds SL, et al. A 5′ dystrophin duplication mutation causes membrane deficiency of alpha-dystroglycan in a family with X-linked cardiomyopathy. J Mol Cell Cardiol. 1997;29:3175–3188.PubMedCrossRefGoogle Scholar
  106. 106.
    Melacini P, Fanin M, Duggan DJ, et al. Heart involvement in muscular dystrophies due to sarcoglycan gene mutations. Muscle Nerve. 1999;22:473–479.PubMedCrossRefGoogle Scholar
  107. 107.
    Franz WM, Cremer M, Herrmann R, et al. X-linked dilated cardiomyopathy: novel mutation of the dystrophin gene. AnnNYAcad Sci. 1995;752:470–491.CrossRefGoogle Scholar
  108. 108.
    Towbin JA, Bowles NE. Genetic abnormalities responsible for dilated cardiomyopathy. Curr Cardiol Rep. 2000;2:475–480.PubMedCrossRefGoogle Scholar
  109. 109.
    Matsuo M. Duchenne and Becker muscular dystrophy: from gene diagnosis to molecular therapy. IUBMB Life. 2002;53:147–152.PubMedGoogle Scholar
  110. 110.
    Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 1996;12:385–389.PubMedCrossRefGoogle Scholar
  111. 111.
    Barth PG, Wanders RJ, Vreken P, Janssen EA, Lam J, Baas F. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J InheritMetab Dis. 1999;22:555–567.CrossRefGoogle Scholar
  112. 112.
    Cantlay AM, Shokrollahi K, Allen JT, Lunt PW, Newbury-Ecob RA, Steward CG. Genetic analysis of the G4.5 gene in families with suspected Barth syndrome. J Pediatr. 1999;135:311–315.PubMedCrossRefGoogle Scholar
  113. 113.
    Ichida F, Tsubata S, Bowles KR, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103:1256–1263.PubMedGoogle Scholar
  114. 114.
    Morris GE, Manilal S. Heart to heart: from nuclear proteins to Emery-Dreifuss muscular dystrophy. Hum Mol Genet. 1999;8:1847–1851.PubMedCrossRefGoogle Scholar
  115. 115.
    Schmitt JP, Kamisago M, Asahi M, et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science. 2003;299:1410–1413.PubMedCrossRefGoogle Scholar
  116. 116.
    Otsu K, Fujii J, Periasamy M, et al. Chromosome mapping of five human cardiac and skeletal muscle sarcoplasmic reticulum protein genes. Genomics. 1993;17:507–509.PubMedCrossRefGoogle Scholar
  117. 117.
    Frank K, Kranias EG. Phospholamban and cardiac contractility. Ann Med. 2000;32:572–578.PubMedCrossRefGoogle Scholar
  118. 118.
    Brittsan AG, Kranias EG. Phospholamban and cardiac contractile function. J Mol Cell Cardiol. 2000;32:2131–2139.PubMedCrossRefGoogle Scholar
  119. 119.
    Haghighi K, Kolokathis F, Pater L, et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J Clin Invest. 2003;111:869–876.PubMedCrossRefGoogle Scholar
  120. 120.
    Chen J, Chien KR. Complexity in simplicity: monogenic disorders and complex cardiomyopathies. J Clin Invest. 1999;103:1483–1485.PubMedGoogle Scholar
  121. 121.
    Towbin JA. The role of cytoskeletal proteins in cardiomyopathies. Curr Opin Cell Biol. 1998;10:131–139.PubMedCrossRefGoogle Scholar
  122. 122.
    Corrado D, Thiene G, Nava A, Rossi L, Pennelli N. Sudden death in young competitive athletes: clinicopathologic correlations in 22 cases. Am J Med. 1990;89:588–596.PubMedCrossRefGoogle Scholar
  123. 123.
    Nava A, Bauce B, Basso C, et al. Clinical profile and long-term follow-up of 37 families with arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2000;36:2226–2233.PubMedCrossRefGoogle Scholar
  124. 124.
    Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M. Arrhythmogenic right ventricular cardiomyopathy. Dysplasia, dystrophy, or myocarditis? Circulation. 1996;94:983–991.PubMedGoogle Scholar
  125. 125.
    Rampazzo A, Nava A, Danieli GA, et al. The gene for arrhythmogenic right ventricular cardiomyopathy maps to chromosome 14q23–q24. Hum Mol Genet. 1994;3:959–962.PubMedCrossRefGoogle Scholar
  126. 126.
    Rampazzo A, Nava A, Erne P, et al. A new locus for arrhythmogenic right ventricular cardiomyopathy (ARVD2) maps to chromosome 1q42–q43. Hum Mol Genet. 1995;4:2151–2154.PubMedCrossRefGoogle Scholar
  127. 127.
    Severini GM, Krajinovic M, Pinamonti B, et al. A new locus for arrhythmogenic right ventricular dysplasia on the long arm of chromosome 14. Genomics. 1996;31:193–200.PubMedCrossRefGoogle Scholar
  128. 128.
    Rampazzo A, Nava A, Miorin M, et al. ARVD 4, a new locus for arrhythmogenic right ventricular cardiomyopathy, maps to chromosome 2 long arm. Genomics. 1997;45:259–263.PubMedCrossRefGoogle Scholar
  129. 129.
    Ahmad F, Li D, Karibe A, et al. Localization of a gene responsible for arrhythmogenic right ventricular dysplasia to chromosome 3p23. Circulation. 1998;98:2791–2795.PubMedGoogle Scholar
  130. 130.
    Li D, Ahmad F, Gardner MJ, et al. The locus of a novel gene responsible for arrhythmogenic right-ventricular dysplasia characterized by early onset and high penetrance maps to chromosome 10p12–p14. Am J Hum Genet. 2000;66:148–156.PubMedCrossRefGoogle Scholar
  131. 131.
    Melberg A, Oldfors A, Blomstrom-Lundqvist C, et al. Autosomal dominant myofibrillar myopathy with arrhythmogenic right ventricular cardiomyopathy linked to chromosome 10q. Ann Neurol. 1999;46:684–692.CrossRefGoogle Scholar
  132. 132.
    Rampazzo A, Nava A, Malacrida S, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71:1200–1206.PubMedCrossRefGoogle Scholar
  133. 133.
    Coonar AS, Protonotarios N, Tsatsopoulou A, et al. Gene for arrhythmogenic right ventricular cardiomyopathy with diffuse nonepidermolytic palmoplantar keratoderma and woolly hair (Naxos disease) maps to 17q21. Circulation. 1998;97:2049–2058.PubMedGoogle Scholar
  134. 134.
    Frances R, Rodriguez Benitez AM, Cohen DR. Arrhythmogenic right ventricular dysplasia and anterior polar cataract. Am J Med Genet. 1997;73:125–126.PubMedCrossRefGoogle Scholar
  135. 135.
    Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study involving nine families. J Am Coll Cardiol. 1988;12:1222–1228.PubMedGoogle Scholar
  136. 136.
    Protonotarios N, Tsatsopoulou A, Anastasakis A, et al. Genotypephenotype assessment in autosomal recessive arrhythmogenic right ventricular cardiomyopathy (Naxos disease) caused by a deletion in plakoglobin. J Am Coll Cardiol. 2001;38:1477–1484.PubMedCrossRefGoogle Scholar
  137. 137.
    Tiso N, Stephan DA, nava A, et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet. 2001;10:189–194.PubMedCrossRefGoogle Scholar
  138. 138.
    Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336:267–276.PubMedCrossRefGoogle Scholar
  139. 139.
    Zachara E, Bertini E, Lioy E, Boldrini R, prati PL, Bosman C. Restrictive cardiomyopathy due to desmin accumulation in a family with evidence of autosomal dominant inheritance. G Ital Cardiol. 1997;27:436–442.PubMedGoogle Scholar
  140. 140.
    Aroney C, Bett N, Radford D. Familial restrictive cardiomyopathy. Aust N Z J Med. 1988;18:877–878.PubMedGoogle Scholar
  141. 141.
    Goldfarb LG, Park KY, Cervenakova L, et al. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat Genet. 1998;19:402–403.PubMedCrossRefGoogle Scholar
  142. 142.
    Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342:770–780.PubMedCrossRefGoogle Scholar
  143. 143.
    Zhang J, Kumar A, Stalker HJ, et al. Clinical and molecular studies of a large family with desmin-associated restrictive cardiomyopathy. Clin Genet. 2001;59:248–256.PubMedCrossRefGoogle Scholar
  144. 144.
    Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111:209–216.PubMedCrossRefGoogle Scholar
  145. 145.
    Ichida F, Hamamichi Y, Miyawaki T, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999;34:233–240.PubMedCrossRefGoogle Scholar
  146. 146.
    Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium: a study of eight cases. Circulation. 1990;82:507–513.PubMedGoogle Scholar
  147. 147.
    Bleyl SB, Mumford BR, Thompson V, et al. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61:868–872.PubMedGoogle Scholar
  148. 148.
    Bleyl SB, Mumford BR, Brown-Harrison MC, et al. Xq28-linked noncompaction of the left ventricular myocardium: prenatal diagnosis and pathologic analysis of affected individuals. Am J Med Genet. 1997;72:257–265.PubMedCrossRefGoogle Scholar
  149. 149.
    D’Adamo P, Fassone L, Gedeon A, et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet. 1997;61:862–867.PubMedGoogle Scholar
  150. 150.
    Gedeon AK, Wilson MJ, Colley AC, Sillence DO, Mulley JC. X linked fatal infantile cardiomyopathy maps to Xq28 and is possibly allelic to Barth syndrome. J Med Genet. 1995;32:383–388.PubMedGoogle Scholar
  151. 151.
    Chen R, Tsuji T, Ichida F, et al. Mutation analysis of the G4.5 gene in patients with isolated left ventricular noncompaction. Mol Genet Metab. 2002;77:319–325.PubMedCrossRefGoogle Scholar
  152. 152.
    Ackerman MJ, Clapham DE. Ion channels—basic science and clinical disease. N Engl J Med. 1997;336:1575–1586.PubMedCrossRefGoogle Scholar
  153. 153.
    Ackerman MJ. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc. 1998;73:250–269.PubMedCrossRefGoogle Scholar
  154. 154.
    Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104:569–580.PubMedCrossRefGoogle Scholar
  155. 155.
    Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.PubMedCrossRefGoogle Scholar
  156. 156.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.PubMedCrossRefGoogle Scholar
  157. 157.
    Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–811.PubMedCrossRefGoogle Scholar
  158. 158.
    Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–639.PubMedCrossRefGoogle Scholar
  159. 159.
    Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–340.PubMedCrossRefGoogle Scholar
  160. 160.
    Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97:175–187.PubMedCrossRefGoogle Scholar
  161. 161.
    Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102:1178–1185.PubMedGoogle Scholar
  162. 162.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.PubMedCrossRefGoogle Scholar
  163. 163.
    Jiang C, Atkinson D, Towbin JA, et al. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet. 1994;8:141–147.PubMedCrossRefGoogle Scholar
  164. 164.
    Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–811.PubMedCrossRefGoogle Scholar
  165. 165.
    Wang Q, Shen J, Li Z, et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet. 1995;4:1603–1607.PubMedCrossRefGoogle Scholar
  166. 166.
    Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–2269.PubMedCrossRefGoogle Scholar
  167. 167.
    Schott JJ, Charpentier F, Peltier S, et al. Mapping of a gene for long QT syndrome to chromosome 4q25–27. Am J Hum Genet. 1995;57:1114–1122.PubMedGoogle Scholar
  168. 168.
    Mohler PJ, Gramolini AO, Bennett V. Ankyrins. J Cell Sci. 2002;115:1565–1566.PubMedGoogle Scholar
  169. 169.
    Tyson J, Tranebjaerg L, Bellman S, et al. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet. 1997;6:2179–2185.PubMedCrossRefGoogle Scholar
  170. 170.
    Chen Q, Zhang D, Gingell RL, et al. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation. 1999;99:1344–1347.PubMedGoogle Scholar
  171. 171.
    Splawski I, Timothy KW, Vincent GM, Atkinson DL, Keating MT. Molecular basis of the long-QT syndrome associated with deafness. N Engl J Med. 1997;336:1562–1567.PubMedCrossRefGoogle Scholar
  172. 172.
    Schulze-Bahr E, Wang Q, Wedekind H, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet. 1997;17:267–268.PubMedCrossRefGoogle Scholar
  173. 173.
    Schulze-Bahr E, Wedekind H, Haverkamp W, et al. The LQT syndromes—current status of molecular mechanisms. Z Kardiol. 1999;88:245–254.PubMedCrossRefGoogle Scholar
  174. 174.
    Romey G, Attali B, Chouabe C, et al. Molecular mechanism and functional significance of the MinK control of the KvLQT1 channel activity. J Biol Chem. 1997;272:16713–16716.PubMedCrossRefGoogle Scholar
  175. 175.
    Drici MD, Arrighi I, Chouabe C, et al. Involvement of IsKassociated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res. 1998;83:95–102.PubMedGoogle Scholar
  176. 176.
    Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74:1088–1094.PubMedCrossRefGoogle Scholar
  177. 177.
    Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for lifethreatening arrhythmias. Circulation. 2001;103:89–95.PubMedGoogle Scholar
  178. 178.
    Moss AJ, Zareba W, Hall WJ, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000;101:616–623.PubMedGoogle Scholar
  179. 179.
    Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. NEngl J Med. 1998;339:960–965.CrossRefGoogle Scholar
  180. 180.
    Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation. 2002;105:794–799.PubMedCrossRefGoogle Scholar
  181. 181.
    Shimizu W, Tanabe Y, Aiba T, et al. Differential effects of betablockade on dispersion of repolarization in the absence and presence of sympathetic stimulation between the LQT1 and LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol. 2002;39:1984–1991.PubMedCrossRefGoogle Scholar
  182. 182.
    Ackerman MJ, Khositseth A, Tester DJ, Hejlik JB, Shen WK, Porter CB. Epinephrine-induced QT interval prolongation: a gene-specific paradoxical response in congenital long QT syndrome. Mayo Clin Proc. 2002;77:413–421.PubMedGoogle Scholar
  183. 183.
    Martini B, Nava A, Thiene G, et al. Ventricular fibrillation without apparent heart disease: description of six cases. Am Heart J. 1989;118:1203–1209.PubMedCrossRefGoogle Scholar
  184. 184.
    Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–1396.PubMedCrossRefGoogle Scholar
  185. 185.
    Remme CA, Wever EF, Wilde AA, Derksen R, Hauer RN. Diagnosis and long-term follow-up of the Brugada syndrome in patients with idiopathic ventricular fibrillation. Eur Heart J. 2001;22:400–409.PubMedCrossRefGoogle Scholar
  186. 186.
    Viskin S, Belhassen B. Idiopathic ventricular fibrillation. Am Heart J. 1990;120:661–671.PubMedCrossRefGoogle Scholar
  187. 187.
    Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–296.PubMedCrossRefGoogle Scholar
  188. 188.
    Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105:1342–1347.PubMedCrossRefGoogle Scholar
  189. 189.
    Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation. 2000;102:2509–2515.PubMedGoogle Scholar
  190. 190.
    Wichter T, Schulze-Bahr E, Eckardt L, et al. Molecular mechanisms of inherited ventricular arrhythmias. Herz. 2002;27:712–739.PubMedCrossRefGoogle Scholar
  191. 191.
    Weiss R, Barmada MM, Nguyen T, et al. Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation. 2002;105:707–713.PubMedCrossRefGoogle Scholar
  192. 192.
    Akai J, Makita N, Sakurada H, et al. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. 2000;479:29–34.PubMedCrossRefGoogle Scholar
  193. 193.
    Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children: a 7-year follow-up of 21 patients. Circulation. 1995;91:1512–1519.PubMedGoogle Scholar
  194. 194.
    Swan H, Piippo K, viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42–q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol. 1999;34:2035–2042.PubMedCrossRefGoogle Scholar
  195. 195.
    Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine-or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13–21. Circulation. 2001;103:2822–2827.PubMedGoogle Scholar
  196. 196.
    Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200.PubMedGoogle Scholar
  197. 197.
    Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.PubMedCrossRefGoogle Scholar
  198. 198.
    Eldar M, Pras E, Lahat H. A missense mutation in the CASQ2 gene is associated with autosomal-recessive catecholamine-induced polymorphic ventricular tachycardia. Trends Cardiovasc Med. 2003;13:148–151.PubMedCrossRefGoogle Scholar
  199. 199.
    Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies: a new syndrome? Acta Paediatr Scand. 1971;60:559–564.PubMedGoogle Scholar
  200. 200.
    Sansone V, Griggs RC, Meola G, et al. Andersen’s syndrome: a distinct periodic paralysis. Ann Neurol. 1997;42:305–312.PubMedCrossRefGoogle Scholar
  201. 201.
    Canun S, Perez N, Beirana LG. Andersen syndrome autosomal dominant in three generations. Am J Med Genet. 1999;85:147–156.PubMedCrossRefGoogle Scholar
  202. 202.
    Plaster NM, Tawil R, Tristani-Firouzi M, et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell. 2001;105:511–519.PubMedCrossRefGoogle Scholar
  203. 203.
    Andelfinger G, Tapper AR, Welch RC, Vanoye CG, George AL Jr, Benson DW. KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. Am J Hum Genet. 2002;71:663–668.PubMedCrossRefGoogle Scholar
  204. 204.
    Ai T, Fujiwara Y, Tsuji K, et al. Novel KCNJ2 mutation in familial periodic paralysis with ventricular dysrhythmia. Circulation. 2002;105:2592–2594.PubMedCrossRefGoogle Scholar
  205. 205.
    Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110:381–388.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anant Khositseth
    • 1
  • Michael J. Ackerman
    • 2
    • 3
    • 4
  1. 1.Faculty of Medicine, Department of PediatricsRamathibodi HospitalBangkokThailand
  2. 2.Department of Medicine, Pediatrics, and Molecular PharmacologyMayo Clinic College of Medicine, Mayo ClinicRochesterUSA
  3. 3.Long QT Syndrome Clinic and Sudden Death Genomics LaboratoryMayo Clinic College of Medicine, Mayo ClinicRochesterUSA
  4. 4.Pediatric CardiologyMayo Clinic College of Medicine, Mayo ClinicRochesterUSA

Personalised recommendations