Skip to main content

Hematologic Disorders: Hemochromatosis, Hemoglobinopathies, and Rh Incompatibility

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Hereditary hemochromatosis (HHC) is an autosomal recessive disorder of iron metabolism resulting from excess iron storage in the liver, skin, pancreas, heart, joints, testes, and pituitary gland. If left untreated, life-threatening complications such as cirrhosis, diabetes, liver cancer, and cardiomyopathy may result. Iron overload and the resulting clinical complications can be avoided by early diagnosis and periodic phlebotomy to reduce the body’s iron stores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13:399–408.

    Article  PubMed  CAS  Google Scholar 

  2. Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol. 2001;154:193–206.

    Article  PubMed  CAS  Google Scholar 

  3. Lyon E, Frank EL. Hereditary hemochromatosis since discovery of the HFE gene. Clin Chem. 2001;47:1147–1156.

    PubMed  CAS  Google Scholar 

  4. Imperatore G, Pinsky LE, Motulsky A, Reyes M, Bradley LA, Burke W. Hereditary hemochromatosis: perspectives of public health, medical genetics, and primary care. Genet Med. 2003;5:1–8.

    PubMed  CAS  Google Scholar 

  5. Camaschella C, Roetto A, Cali A, et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet. 2000;25:14–15.

    Article  PubMed  CAS  Google Scholar 

  6. Njajou OT, Vaessen N, Joosse M, et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis. Nat Genet. 2001;28:213–214.

    Article  PubMed  CAS  Google Scholar 

  7. Burke W, Imperatore G, McDonnell SM, Baron RC, Khoury MJ. Contribution of different HFE genotypes to iron overload disease: a pooled analysis. Genet Med. 2000;2:271–277.

    Article  PubMed  CAS  Google Scholar 

  8. Somerville MJ, Sprysak KA, Hicks M, Elyas BG, Vicen-Wyhony L. An HFE intronic variant promotes misdiagnosis of hereditary hemochromatosis. Am J Hum Genet. 1999;65:924–926.

    Article  PubMed  CAS  Google Scholar 

  9. Beutler E, Gelbart T. A common intron 3 mutation (IVS3-48c→g) leads to misdiagnosis of the c.845G→A (C282Y) HFE gene mutation. Blood Cells Mol Dis. 2000;26:229–233.

    Article  PubMed  CAS  Google Scholar 

  10. Pointon JJ, Merryweather-Clarke AT, Carella M, Robson KJ. Detection of C282Y and H63D in the HFE gene. Genet Test. 2000;4:115–120.

    Article  PubMed  CAS  Google Scholar 

  11. Weatherall DJ, Clegg JB, Higgs DR, Wood WG. The hemoglobinopathies. In: Scriver CR, Beaudet AL, Sly W, Valle D, eds.The Metabolic and Molecular Basis of Inherited Disease. 8th ed. New York: McGraw-Hill; 2001:4571–4636.

    Google Scholar 

  12. Gay JC, Phillips JA III, Kazazian HH. Hematoglobinopathies and thalassemias. In: Rimoin DL, Connor JM, Pyeritz RE, eds. Emery and Rimoin’s Principles and Practices of Medical Genetics. New York: Churchill Livingstone; 1997:1599–1626.

    Google Scholar 

  13. Cao A, Galanello R. Beta-thalassemia. GeneReviews [database online]. Seattle, WA: University of Washington. Updated March 18, 2003.

    Google Scholar 

  14. Hatcher SL, Trang QT, Robb KM, Teplitz RL, Carlson JR. Prenatal diagnosis by enzymatic amplification and restriction endonuclease digestion for detection of haemoglobins A, S and C. Mol Cell Probes. 1992;6:343–348.

    Article  PubMed  CAS  Google Scholar 

  15. Hermann MG. Genotyping β-globin mutations (HbS, HbC, HbE) by multiplexing probe color and melting temperature. In: Meuer S, Wittwer CT, Nakagawara K, eds. Rapid Cycle Real-Time PCR: Methods and Applications. Heidelberg: Springer-Verlag; 2001:119–125.

    Google Scholar 

  16. Kattamis AC, Camaschella C, Sivera P, Surrey S, Fortina P. Human alpha-thalassemia syndromes: detection of molecular defects. Am J Hematol. 1996;53:81–91.

    Article  PubMed  CAS  Google Scholar 

  17. Tan AS, Quah TC, Low PS, Chong SS. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia. Blood. 2001;98:250–251.

    Article  PubMed  CAS  Google Scholar 

  18. Tuzmen S, Schechter AN. Genetic diseases of hemoglobin: diagnostic methods for elucidating beta-thalassemia mutations. Blood Rev. 2001;15:19–29.

    Article  PubMed  CAS  Google Scholar 

  19. Moreno I, Bolufer P, Perez ML, Barragan E, Sanz MA. Rapid detection of the major Mediterranean beta-thalassaemia mutations by real-time polymerase chain reaction using fluorophorelabelled hybridization probes. Br J Haematol. 2002;119:554–557.

    Article  PubMed  CAS  Google Scholar 

  20. Avent ND, Reid ME. The Rh blood group system: a review. Blood. 2000;95:375–387.

    PubMed  CAS  Google Scholar 

  21. Bowman JM. Immune hemolytic disease. In: Nathan DG, Oski FA, eds. Hematology of Infancy and Childhood. Philadelphia: W. b. Saunders; 1998:53–78.

    Google Scholar 

  22. van der Schoot CE, Tax GH, Rijnders RJ, de Haas M, Christiaens GC. Prenatal typing of Rh and Kell blood group system antigens: the edge of a watershed. Transfus Med Rev. 2003;17:31–44.

    Article  PubMed  Google Scholar 

  23. Singleton BK, Green CA, Avent ND, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood. 2000;95:12–18.

    PubMed  CAS  Google Scholar 

  24. Wagner FF, Flegel WA. RHD gene deletion occurred in the Rhesus box. Blood. 2000;95:3662–3668.

    PubMed  CAS  Google Scholar 

  25. Wagner FF, Frohmajer A, Flegel WA. RHD positive haplotypes in D negative Europeans. BMC Genet. 2001;2:10.

    Article  PubMed  CAS  Google Scholar 

  26. Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion. 2002;42:1079–1085.

    Article  PubMed  CAS  Google Scholar 

  27. Stamatoyannopoulos G, Nienhuis AW. Hemoglobin switching. In: Stamatoyannopoulos G, Nienhuis AW, Majerus PW, Varmus H, eds. The Molecular Basis of Blood Diseases. Philadelphia: W. b. Saunders; 1994:107–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bellissimo, D.B. (2007). Hematologic Disorders: Hemochromatosis, Hemoglobinopathies, and Rh Incompatibility. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics