Skip to main content

Abstract

Recent advances in the molecular biology of hearing and deafness are being transferred from the research laboratory to the clinical arena. This transfer of knowledge is enhancing patient care by facilitating the diagnosis of hereditary deafness. Traditionally, hereditary deafness has been distinguished from nongenetic causes of deafness by otologic, audiologic, and physical examinations, complemented by a family history and ancillary tests such as temporal bone computed tomography, urinalysis, thyroid function studies, ophthalmoscopy, and electrocardiography. Even using this test battery, an unequivocal distinction between genetic and nongenetic causes of deafness often is difficult. If comorbid conditions are identified, the deafness may fall into one of more than 400 recognized types of syndromic hearing loss, but if hearing loss segregates as the only abnormality, diagnosing the deafness as nonsyndromic and inherited is challenging.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith RJH, Green GE, Van Camp G. Hereditary hearing loss and deafness [GeneClinics Web site]. 2003. Available at: http://www.geneclinics.org/.

    Google Scholar 

  2. Green GE, Scott DA, McDonald JM, et al. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA. 1999;281:2211–2216.

    Article  PubMed  CAS  Google Scholar 

  3. Van Camp G, Smith RJH. [Hereditary Hearing Loss home page]. 2003. Available at: http://webhost.ua.ac.be/hhh/.

    Google Scholar 

  4. Guilford P, Ben Arab S, Blanchard S, et al. A non-syndromic form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat Genet. 1994;6:24–28.

    Article  PubMed  CAS  Google Scholar 

  5. Kelsell DP, Dunlop J, Stevens HP, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387:80–83.

    Article  PubMed  CAS  Google Scholar 

  6. Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem. 1996;238:1–27.

    Article  PubMed  CAS  Google Scholar 

  7. Zelante L, Gasparini P, Estivill X, et al. Connexin 26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet. 1997;6:1605–1609.

    Article  PubMed  CAS  Google Scholar 

  8. Denoyelle F, Weil D, Maw MA, et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet. 1997;6:2173–2177.

    Article  PubMed  CAS  Google Scholar 

  9. Estivill X, Fortina P, Surrey S, et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet. 1998;351:394–398.

    Article  PubMed  CAS  Google Scholar 

  10. Scott DA, Kraft ML, Carmi R, et al. Identification of mutations in the connexin 26 gene that cause autosomal recessive nonsyndromic hearing loss. Hum Mutat. 1998;11:387–394.

    Article  PubMed  CAS  Google Scholar 

  11. Cohn ES, Kelley PM, Fowler TW, et al. Clinical studies of families with hearing loss attributable to mutations in the connexin 26 gene. Pediatrics. 1999:103;546–550.

    Article  PubMed  CAS  Google Scholar 

  12. Kikuchi T, Adams JC, Paul DL, et al. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol. 1994;114:520–528.

    PubMed  CAS  Google Scholar 

  13. Kikuchi T, Kimura RS, Paul DL, et al. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl). 1995;191:101–118.

    CAS  Google Scholar 

  14. Tekin M, Arnos KS, Pandya A. Advances in hereditary deafness. Lancet. 2001;358:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  15. Estivill X, Gasparini P [Connexin-deafness homepage]. 2003. Available at: http://davinci.crg.ies/deafness/.

    Google Scholar 

  16. Van Laer L, Coucke P, Mueller RF, et al. A common founder for the 35delG connexin 26 (GJB2) gene mutation in non-syndromic hearing impairment. J Med Genet. 2001;38:515–518.

    Article  PubMed  Google Scholar 

  17. Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet. 1998;62:792–799.

    Article  PubMed  CAS  Google Scholar 

  18. Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexin 26 gene (GJB2) among Ashkenzi Jews with nonsyndromic recessive deafness. N Eng J Med. 1998;339:1500–1505.

    Article  CAS  Google Scholar 

  19. Kudo T, Ikeda K, Kure S, et al. Novel mutations in the connexin 26 gene (GJB2) responsible for childhood deafness in the Japanese population. Am J Med Genet. 2000;90:141–145.

    Article  PubMed  CAS  Google Scholar 

  20. Denoyelle F, Marlin S, Weil D, et al. Clinical features of the prevalent form of childhood deafness, dFNB1, due to a connexin-26 gene defect: implications for genetic counseling. Lancet. 1999;353:1298–1303.

    Article  PubMed  CAS  Google Scholar 

  21. Green GE, Mueller RF, Cohn ES, Avraham KB, Kanaan M, Smith RJH. Audiological manifestations and features of Connexin 26 deafness. Audiolog Med 2003;1:5–11.

    Article  Google Scholar 

  22. Kenna MA, Wu BL, Cotanche DA, et al. Connexin 26 studies in patients with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg. 2001;127:1037–1042.

    PubMed  CAS  Google Scholar 

  23. Hohl D. Towards a better classification of erythrokeratodermias. Br J Dermatol. 2000;143:1133–1137.

    Article  PubMed  CAS  Google Scholar 

  24. Maestrini E, Korge BP, Ocana-Sierra J, et al. A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel’s syndrome) in three unrelated families. Hum Mol Genet. 1999;8:1237–1243.

    Article  PubMed  CAS  Google Scholar 

  25. Fukushima K, Sugata K, Kasai N, et al. Better speech performance in cochlear implant patients with GJB2-related deafness. Int J Pediatr Otorhinolaryngol. 2002;62:151–157.

    Article  PubMed  Google Scholar 

  26. Green GE, Scott DA, McDonald JM, et al. Performance of cochlear implant recipients with GJB2-related deafness. Am J Med Genet. 2002;109:167–170.

    Article  PubMed  Google Scholar 

  27. Smith RJ. Mutation screening for deafness: more than simply another diagnostic test. Arch Otolaryngol Head Neck Surg. 2001;127:941–942.

    PubMed  CAS  Google Scholar 

  28. Mueller RF, Nehammer A, Middleton A, et al. Congenital nonsyndromal sensorineural hearing impairment due to connexin 26 gene mutations—molecular and audiological findings. Int J Pediatr Otorhinolaryngol. 1999;50:3–13.

    Article  PubMed  CAS  Google Scholar 

  29. Sobe T, Vreugde S, Shahin H, et al. The prevalence and expression of inherited connexin 26 mutations associated with nonsyndromic hearing loss in the Israeli population. Hum Genet. 2000;106:50–57.

    Article  PubMed  CAS  Google Scholar 

  30. Ellis LA, Taylor CF, Taylor GR. A comparison of fluorescent SSCP and denaturing HPLC for high throughput mutations screening. Hum Mutat. 2000;15:556–564.

    Article  PubMed  CAS  Google Scholar 

  31. Liu WG, Smith DI, Rechtzigel KJ, et al. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. Nucleic Acids Res. 1998;26:1396–1400.

    Article  PubMed  CAS  Google Scholar 

  32. O’Donovan MC, Oefner PJ, Roberts SC, et al. Blind analysis of denaturing high-performance liquid chromatography as tool for mutation detection. Genomics. 1998;52:44–49.

    Article  PubMed  CAS  Google Scholar 

  33. Taliani MR, Roberts SC, Dukek BA, et al. Sensitivity and specificity of denaturing high-pressure liquid chromatography for unknown protein C gene mutations. Genet Test. 2001;5:39–44.

    Article  PubMed  CAS  Google Scholar 

  34. Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–422.

    Article  PubMed  CAS  Google Scholar 

  35. Phelps PD, Coffey RA, Trembath RC, et al. Radiological malformations of the ear in Pendred syndrome. Clin Radiol. 1998;53:268–273.

    Article  PubMed  CAS  Google Scholar 

  36. Reardon W, Coffey R, Chowdhury T, et al. Prevalence, age of onset, and natural history of thyroid disease in Pendred syndrome. J Med Genet. 1999;36:595–598.

    PubMed  CAS  Google Scholar 

  37. Morgans ME, Trotter WR. Association of congenital deafness with goitre: the nature of the thyroid defect. Lancet. 1958;1:607–609.

    Article  PubMed  CAS  Google Scholar 

  38. Li XC, Everett LA, Lalwani AK, et al. A mutation in PDS causes nonsyndromic recessive deafness. Nat Genet. 1998;18:215–217.

    Article  PubMed  CAS  Google Scholar 

  39. Scott DA, Wang R, Kreman TM, et al. Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and nonsyndromic hearing loss. Hum Mol Genet. 2000;9:1709–1715.

    Article  PubMed  CAS  Google Scholar 

  40. Johnsen T, Sorensen MS, Feldt-Rasmussen U, et al. The variable intrafamiliar expressivity in Pendred’s syndrome. Clin Otolaryngol. 1989;14:395–399.

    Article  PubMed  CAS  Google Scholar 

  41. Yong AML, Goh SS, Zhao Y, et al. Two Chinese families with Pendred’s syndrome—radiological imaging of the ear and molecular analysis of the pendrin gene. J Clin Endocrin Metab. 2001;86:3907–3911.

    Article  CAS  Google Scholar 

  42. Campbell C, Cucci RA, Green GE, et al. Pendred syndrome, DFNB4 and PDS—Identification of eight novel mutations and phenotypegenotype correlations. Hum Mut. 2001;17:403–411.

    Article  PubMed  CAS  Google Scholar 

  43. Chang E, Kolln K, Smith RJH. [Pendred syndrome/BOR homepage]. 2003. Available at: http://www.medicine.uiowa.edu/pendredandbor/.

    Google Scholar 

  44. Masmoudi S, Charfedine I, Hmani M, et al. Pendred syndrome: phenotypic variability in two families carrying the same PDS missense mutation. Am J Med Genet. 2000;90:38–44.

    Article  PubMed  CAS  Google Scholar 

  45. Prasad S, Kölln KA, Cucci RA, Trembath RC, Van Camp G, Smith RJH. Pendred syndrome and DFNB4—Mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of seven novel mutations. Am J Med Genet 124A:1–9, 2004.

    Article  PubMed  Google Scholar 

  46. Coyle B, Reardon W, Herbrick J, et al. Molecular analysis of the PDS gene in Pendred syndrome (sensorineural hearing loss and goitre). Hum Mol Genet. 1998;7:1105–1112.

    Article  PubMed  CAS  Google Scholar 

  47. Bespalova IN, Van Camp G, Bom SJ, et al. Mutations in the Wolfram syndrome 1 gene (WFS1) area a common cause of low frequency sensorineural hearing loss. Hum Mol Genet. 2001;10:2501–2508.

    Article  PubMed  CAS  Google Scholar 

  48. Young TL, Ives E, Lynch E, et al. Non-syndromic progressive hearing loss DFNA38 is caused by heterozygous missense mutation in the Wolfram syndrome gene WFS1. Hum Mol Genet. 2001;10:2509–2514.

    Article  PubMed  CAS  Google Scholar 

  49. Kunst HPM, Marres HAM, Huygen PLM, et al. Autosomal dominant non-syndromal low-frequency sensorineural hearing impairment linked to chromosome 4p16 (DFNA14): statistical analysis of hearing threshold in relation to age and evaluation of vestibuloocular functions. Audiology. 1999;38:165–173.

    Article  PubMed  CAS  Google Scholar 

  50. Brodwolf S, Böddeker IR, Ziegler A, et al. Further evidence for linkage of low-mid frequency hearing impairment to the candidate region on chromosome 4p16.3. Clin Genet. 2001;60:155–160.

    Article  PubMed  CAS  Google Scholar 

  51. Huygen PLM, Bom SJ, Van Camp G, et al. The clinical presentation of the DFNA loci where causative genes have not yet been cloned: DFNA4, DFNA6/14, DFNA7, DFNA16, DFNA20 and DFNA21. In: Cremers CWRJ, Smith RJH, eds. Advances in Otorhinolaryngology. Basel: Karger; 2002;98–106.

    Google Scholar 

  52. Bom SJH, Van Camp G, Cryns K, et al. Autosomal dominant lowfrequency hearing impairment (DFNA6/14): a clinical and genetic family study. Otol Neurotol. 2002:23:876–884.

    Article  PubMed  Google Scholar 

  53. Lynch ED, Lee MK, morrow JE, et al. Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science. 1997;278:1223–1224.

    Article  Google Scholar 

  54. Inoue H, Tanizawa Y, Wasson J, et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998;20:143–148.

    Article  PubMed  CAS  Google Scholar 

  55. Strom TM, Hörtnagel K, Hofmann S, et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum Mol Genet. 1998;7:2021–2028.

    Article  PubMed  CAS  Google Scholar 

  56. Cremers CWRJ, Wijdeveld PG, Pinckers AJ. Juvenile diabetes mellitus, optic atrophy, hearing loss, diabetes insipidus, atonia of the urinary tract and bladder, and other abnormalities (Wolfram syndrome): a review of 88 cases from the literature with personal observations on 3 new patients. Acta Paediatr Scand Suppl. 1977;264:1–16.

    PubMed  Google Scholar 

  57. Higashi K. Otologic findings of DIDMOAD syndrome. Am J Otol. 1991;12:57–60.

    PubMed  CAS  Google Scholar 

  58. Cryns K, Pfister M, Pennings RJE, et al. Mutations in the WFS1 gene that cause low frequency sensorineural hearing loss are small noninactivating mutations. Hum Genet. 2002;110:389–394.

    Article  PubMed  CAS  Google Scholar 

  59. Prasad S, Kölln KA, Cucci RA, Trembath RC, Van Camp G, Smith RJH. Pendred syndrome and DFNB4-Mutation screening of SLC26A4 by denaturing high-performance liquid chromatography and the identification of seven novel mutations. Am J Med Genet. 2004;124A:1–9.

    Article  PubMed  Google Scholar 

  60. Takeda K, Inoue H, Tanizawa Y, et al. WFS1 (Wolfram syndrome 1) gene product: predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Hum Mol Genet. 2001;10:477–484.

    Article  PubMed  CAS  Google Scholar 

  61. Sivakumaran TA, Lesperance MM. WFS1 Gene Mutation and Polymorphism Database [database online]. 2003. Available at: http://www.khri.med.umich.edu/research/lesperance_lab/lfsnhl.shtml.

    Google Scholar 

  62. Awata T, Inoue K, Kurihara S, et al. Missense variations of the gene responsible for Wolfram syndrome (WFS1/wolframin) in Japanese: possible contribution of the Arg456His mutation to type 1 diabetes as a nonautoimmune genetic basis. Biochem Biophys Res Commun. 2000;268:612–616.

    Article  PubMed  CAS  Google Scholar 

  63. Minton JAL, Hattersley AT, Owen K, et al. Association studies of genetic variation in the WFS1 gene and type 2 diabetes in U. K. populations. Diabetes. 2002;51:1287–1290.

    Article  PubMed  CAS  Google Scholar 

  64. Domenech E, Gomez-Zaera M, Nunes V. WFS1 mutations in Spanish patients with diabetes mellitus and deafness. Eur J Hum Genet. 2002;10:421–426.

    Article  PubMed  CAS  Google Scholar 

  65. Abdelhak S, Kalatzis V, Heilig R, et al. Protein, nucleotide, a human homologue of the Drosophila eyes absent gene underlies branchiooto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet. 1997;15:157–164.

    Article  PubMed  CAS  Google Scholar 

  66. Abdelhak S, Kalatzis V, Heilig R, et al. Protein, nucleotide, clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet. 1997;6:2247–2255.

    Article  PubMed  CAS  Google Scholar 

  67. Kumar S, Kimberling WJ, Weston MD, et al. Identification of three novel mutations in human EYA1 protein associated with branchiooto-renal syndrome. Hum Mutat. 1998;11:443–449.

    Article  PubMed  CAS  Google Scholar 

  68. Kumar S, Deffenbacher K, Cremers CW, et al. Branchio-oto-renal syndrome: identification of novel mutations, molecular characterization, mutation distribution, and prospects for genetic testing. Genet Test. 1998;1:243–251.

    Article  CAS  Google Scholar 

  69. Usami S, Abe S, Shinkawa H, et al. EYA1 nonsense mutation in a Japanese branchio-oto-renal syndrome family. J Hum Genet. 1999;44:261–265.

    Article  PubMed  CAS  Google Scholar 

  70. Fraser FC, Sproule JR, Halal F. Frequency of the branchio-oto-renal (BOR) syndrome in children with profound hearing loss. Am J Med Genet. 1980;7:341–349.

    Article  PubMed  CAS  Google Scholar 

  71. Chen A, Francis M, Ni L, et al. Phenotypic manifestations of branchio-oto-renal syndrome. Am J Med Genet. 1995;58:365–370.

    Article  PubMed  CAS  Google Scholar 

  72. Carmi R, Binshtock M, abeliovich D. The branchio-oto-renal (BOR) syndrome: report of bilateral renal agenesis in three sibs. Am J Med Genet. 1983;14:625–627.

    Article  PubMed  CAS  Google Scholar 

  73. Cremers CWRJ, Fikkers-Van Noord M. The earpits-deafness syndrome: clinical and genetic aspects. Int J Pediatr Otorhinolaryngol. 1980;2:309–322.

    Article  PubMed  CAS  Google Scholar 

  74. Greenberg CR, Trevenen CL, Evans JA. The BOR syndrome and renal agenesis. Prenatal Diagn. 1988;8:103–108.

    Article  CAS  Google Scholar 

  75. Van Widdershoven J, Monnens L, Assmann K, et al. Renal disorders in the branchio-oto-renal syndrome. Helv Paediatr Acta. 1983;38:513–522.

    PubMed  CAS  Google Scholar 

  76. Chitayat D, hodgkinson KA, Chen MF, et al. Branchio-oto-renal syndrome: further delineation of an underdiagnosed syndrome. Am J Med Genet. 1992;43:970–975.

    Article  PubMed  CAS  Google Scholar 

  77. Fitch N, Sorolovitz H. Severe renal dysgenesis produced by a dominant gene. Am J Dis Child. 1976;130:1356–1357.

    PubMed  CAS  Google Scholar 

  78. Gu JZ, wagner MJ, Haan EA, et al. Detection of a megabase deletion in a patient with branchio-oto-renal syndrome (BOR) and trichorhino-phalangeal syndrome (TRPS): implications for mapping and cloning of the BOR gene. Genomics. 1996;31:201–206.

    Article  PubMed  CAS  Google Scholar 

  79. Haan EA, Hull YJ, White S, et al. Tricho-rhino-phalangeal and branchio-oto syndromes in a family with an inherited rearrangement of chromosome 8q. Am J Med Genet. 1989;32:490–494.

    Article  PubMed  CAS  Google Scholar 

  80. Vincent C, Kalatzis V, Compain S, et al. A proposed new contiguous gene syndrome on 8q consists of branchio-oto-renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia: implications for the mapping of the BOR gene. Hum Mol Genet. 1994;3:1859–1866.

    Article  PubMed  CAS  Google Scholar 

  81. Vervoort V, Smith RJH, O’Brien J, et al. Genomic rearrangements of EYA1 account for a large fraction of families with BOR syndrome. Eur J Hum Genet. 2002;10:757–766.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Smith, R.J.H., Van Camp, G. (2007). Deafness. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics