Skip to main content

Abstract

Molecular biology entails the analysis and study of the chemical organization of the cell. Molecules comprise the smallest chemical component capable of performing all the activities (structural or catalytic) of a substance. One or more atoms constitute each molecule. This chapter describes the physical organization of cells, cellular organelles, and molecules important in cell division, inheritance, and protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Passarge E. Color Atlas of Genetics. 2nd ed. Stuttgart: Thieme; 2001.

    Google Scholar 

  2. Willets N. Plasmids. In Scaife DLJ, Galizzi A, eds. Genetics of Bacteria. London: Academic Press; 1985:165–195.

    Google Scholar 

  3. Hewitt WL. Penicillin-historical impact on infection control. Ann N Y Acad Sci. 1967;145:212–215.

    Article  PubMed  CAS  Google Scholar 

  4. Livermore DM. Antibiotic resistance in staphylococci. Int J Antimicrob Agents. 2000;16(suppl 1):S3–S10.

    PubMed  CAS  Google Scholar 

  5. Crick JWJF. A structure for deoxyribonucleic acid. Nature. 1953;171:737.

    Article  PubMed  Google Scholar 

  6. Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986;83:3746–3750.

    Article  PubMed  CAS  Google Scholar 

  7. Freier SM, Kierzek R, Jaeger JA, et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986;83:9373–9377.

    Article  PubMed  CAS  Google Scholar 

  8. Lewis ME, Arentzen R, Baldino F Jr. Rapid, high-resolution in situ hybridization histochemistry with radioiodinated synthetic oligonucleotides. J Neurosci Res. 1986;16:117–124.

    Article  PubMed  CAS  Google Scholar 

  9. Felsenfeld G, Groudine M. Controlling the double helix. Nature. 2003;421:448–453.

    Article  PubMed  CAS  Google Scholar 

  10. Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242:1168–1171.

    Article  PubMed  CAS  Google Scholar 

  11. Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242:1171–1173.

    Article  PubMed  CAS  Google Scholar 

  12. Kochetov AV, Ischenko IV, Vorobiev DG, et al. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett. 1998;440:351–355.

    Article  PubMed  CAS  Google Scholar 

  13. Gotoh O. Homology-based gene structure prediction: simplified matching algorithm using a translated codon (tron) and improved accuracy by allowing for long gaps. Bioinformatics. 2000;16:190–202.

    Article  PubMed  CAS  Google Scholar 

  14. Olivier M, Aggarwal A, Allen J, et al. A high-resolution radiation hybrid map of the human genome draft sequence. Science. 2001;291:1298–1302.

    Article  PubMed  CAS  Google Scholar 

  15. McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A. 1995;92:5431–5435.

    Article  PubMed  CAS  Google Scholar 

  16. Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–1900.

    Article  PubMed  CAS  Google Scholar 

  17. Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays. 2001;23:775–787.

    Article  PubMed  CAS  Google Scholar 

  18. Bruno C, Lofberg M, Tamburino L, et al. Molecular characterization of McArdle’s disease in two large Finnish families. J Neurol Sci. 1999;165:121–125.

    Article  PubMed  CAS  Google Scholar 

  19. Hou VC, Conboy JG. Regulation of alternative pre-mRNA splicing during erythroid differentiation. Curr Opin Hematol. 2001;8:74–79.

    Article  PubMed  CAS  Google Scholar 

  20. Lipes J, Skamene E, Newkirk MM. The genotype of mice influences the autoimmune response to spliceosome proteins induced by cytomegalovirus gB immunization. Clin Exp Immunol. 2002;129: 19–26.

    Article  PubMed  CAS  Google Scholar 

  21. Seidl R, Labudova O, Krapfenbauer K, et al. Deficient brain snRNP70K in patients with Down syndrome. Electrophoresis. 2001;22:43–48.

    Article  PubMed  CAS  Google Scholar 

  22. Wehner KA, Ayala L, Kim Y, et al. Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res. 2002;945:160–173.

    Article  PubMed  CAS  Google Scholar 

  23. Garzon D, Yu G, Fahnestock M. A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem. 2002;82:1058–1064.

    Article  PubMed  CAS  Google Scholar 

  24. Sakata N, Yamazaki K, Kogure T, Mukai T. Alternative splicing of Rh blood group polypeptide mRNA produces a novel transcript containing a short nucleotide insertion on human erythroleukemia K562 cells. Cell Biol Int. 2001;25:697–703.

    Article  PubMed  CAS  Google Scholar 

  25. Liu X, et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol. 2002;20:47–52.

    PubMed  CAS  Google Scholar 

  26. Phylactou LA, Darrah C, Wood MJ. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet. 1998;18:378–381.

    Article  PubMed  CAS  Google Scholar 

  27. Phylactou LA, Kilpatrick MW, Wood MJ. Ribozymes as therapeutic tools for genetic disease. Hum Mol Genet. 1998;7:1649–1653.

    Article  PubMed  CAS  Google Scholar 

  28. Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998;280:1593–1596.

    Article  PubMed  CAS  Google Scholar 

  29. Mansfield SG, Kole J, Puttaraju M, et al. Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing. Gene Ther. 2000;7:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  30. Urano Y, Watanabe K, Sakai M, Tamaoki T. The human albumin gene. Characterization of the 5′ and 3′ flanking regions and the polymorphic gene transcripts. J Biol Chem. 1986;261:3244–3251.

    PubMed  CAS  Google Scholar 

  31. Lin B, Rommens JM, Graham RK, et al. Differential 3′ polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Hum Mol Genet. 1993;2:1541–1545.

    Article  PubMed  CAS  Google Scholar 

  32. Boyd CD, Mariani TJ, Kim Y, Csiszar K. The size heterogeneity of human lysyl oxidase mRNA is due to alternate polyadenylation site and not alternate exon usage. Mol Biol Rep. 1995;21:95–103.

    Article  PubMed  CAS  Google Scholar 

  33. Gallie DR. Protein-protein interactions required during translation. Plant Mol Biol. 2002;50:949–970.

    Article  PubMed  CAS  Google Scholar 

  34. Chavatte L, Frolova L, Kisselev L, Favre A. The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur J Biochem. 2001;268:2896–2904.

    Article  PubMed  CAS  Google Scholar 

  35. Stratakis CA. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit (PRKAR1A) in patients with the “complex of spotty skin pigmentation, myxomas, endocrine over-activity, and schwannomas” (Carney complex). Ann N Y Acad Sci. 2002;968:3–21.

    Article  PubMed  CAS  Google Scholar 

  36. Valentine CR. The association of nonsense codons with exon skipping. Mutat Res. 1998;411:87–117.

    Article  PubMed  Google Scholar 

  37. Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24:3546–3551.

    Article  PubMed  CAS  Google Scholar 

  38. Maga G, Shevelev I, Ramadan K, Spadari S, Hubscher U. DNA polymerase theta purified from human cells is a high-fidelity enzyme. J Mol Biol. 2002;319:359–369.

    Article  PubMed  CAS  Google Scholar 

  39. Kuchta RD, Cowart M, Allen D, Benkovic SJ. Kinetic and structural investigations of the replicative fidelity of the Klenow fragment. Biochem Soc Trans. 1988;16:947–949.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Payne, D.A. (2007). Basics of Molecular Biology. In: Leonard, D.G.B., Bagg, A., Caliendo, A.M., Kaul, K.L., Van Deerlin, V.M. (eds) Molecular Pathology in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33227-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33227-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-33226-0

  • Online ISBN: 978-0-387-33227-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics