Basics of Molecular Biology

  • Deborah Ann Payne


Molecular biology entails the analysis and study of the chemical organization of the cell. Molecules comprise the smallest chemical component capable of performing all the activities (structural or catalytic) of a substance. One or more atoms constitute each molecule. This chapter describes the physical organization of cells, cellular organelles, and molecules important in cell division, inheritance, and protein synthesis.


Replication Fork Nucleic Acid Molecule Survival Motor Neuron Protein Parent Strand Amino Acid Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Passarge E. Color Atlas of Genetics. 2nd ed. Stuttgart: Thieme; 2001.Google Scholar
  2. 2.
    Willets N. Plasmids. In Scaife DLJ, Galizzi A, eds. Genetics of Bacteria. London: Academic Press; 1985:165–195.Google Scholar
  3. 3.
    Hewitt WL. Penicillin-historical impact on infection control. Ann N Y Acad Sci. 1967;145:212–215.PubMedCrossRefGoogle Scholar
  4. 4.
    Livermore DM. Antibiotic resistance in staphylococci. Int J Antimicrob Agents. 2000;16(suppl 1):S3–S10.PubMedGoogle Scholar
  5. 5.
    Crick JWJF. A structure for deoxyribonucleic acid. Nature. 1953;171:737.PubMedCrossRefGoogle Scholar
  6. 6.
    Breslauer KJ, Frank R, Blocker H, Marky LA. Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci U S A. 1986;83:3746–3750.PubMedCrossRefGoogle Scholar
  7. 7.
    Freier SM, Kierzek R, Jaeger JA, et al. Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci U S A. 1986;83:9373–9377.PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis ME, Arentzen R, Baldino F Jr. Rapid, high-resolution in situ hybridization histochemistry with radioiodinated synthetic oligonucleotides. J Neurosci Res. 1986;16:117–124.PubMedCrossRefGoogle Scholar
  9. 9.
    Felsenfeld G, Groudine M. Controlling the double helix. Nature. 2003;421:448–453.PubMedCrossRefGoogle Scholar
  10. 10.
    Preston BD, Poiesz BJ, Loeb LA. Fidelity of HIV-1 reverse transcriptase. Science. 1988;242:1168–1171.PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242:1171–1173.PubMedCrossRefGoogle Scholar
  12. 12.
    Kochetov AV, Ischenko IV, Vorobiev DG, et al. Eukaryotic mRNAs encoding abundant and scarce proteins are statistically dissimilar in many structural features. FEBS Lett. 1998;440:351–355.PubMedCrossRefGoogle Scholar
  13. 13.
    Gotoh O. Homology-based gene structure prediction: simplified matching algorithm using a translated codon (tron) and improved accuracy by allowing for long gaps. Bioinformatics. 2000;16:190–202.PubMedCrossRefGoogle Scholar
  14. 14.
    Olivier M, Aggarwal A, Allen J, et al. A high-resolution radiation hybrid map of the human genome draft sequence. Science. 2001;291:1298–1302.PubMedCrossRefGoogle Scholar
  15. 15.
    McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci U S A. 1995;92:5431–5435.PubMedCrossRefGoogle Scholar
  16. 16.
    Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum Mol Genet. 1999;8:1893–1900.PubMedCrossRefGoogle Scholar
  17. 17.
    Wilkinson MF, Shyu AB. Multifunctional regulatory proteins that control gene expression in both the nucleus and the cytoplasm. Bioessays. 2001;23:775–787.PubMedCrossRefGoogle Scholar
  18. 18.
    Bruno C, Lofberg M, Tamburino L, et al. Molecular characterization of McArdle’s disease in two large Finnish families. J Neurol Sci. 1999;165:121–125.PubMedCrossRefGoogle Scholar
  19. 19.
    Hou VC, Conboy JG. Regulation of alternative pre-mRNA splicing during erythroid differentiation. Curr Opin Hematol. 2001;8:74–79.PubMedCrossRefGoogle Scholar
  20. 20.
    Lipes J, Skamene E, Newkirk MM. The genotype of mice influences the autoimmune response to spliceosome proteins induced by cytomegalovirus gB immunization. Clin Exp Immunol. 2002;129: 19–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Seidl R, Labudova O, Krapfenbauer K, et al. Deficient brain snRNP70K in patients with Down syndrome. Electrophoresis. 2001;22:43–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Wehner KA, Ayala L, Kim Y, et al. Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res. 2002;945:160–173.PubMedCrossRefGoogle Scholar
  23. 23.
    Garzon D, Yu G, Fahnestock M. A new brain-derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer’s disease parietal cortex. J Neurochem. 2002;82:1058–1064.PubMedCrossRefGoogle Scholar
  24. 24.
    Sakata N, Yamazaki K, Kogure T, Mukai T. Alternative splicing of Rh blood group polypeptide mRNA produces a novel transcript containing a short nucleotide insertion on human erythroleukemia K562 cells. Cell Biol Int. 2001;25:697–703.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu X, et al. Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol. 2002;20:47–52.PubMedGoogle Scholar
  26. 26.
    Phylactou LA, Darrah C, Wood MJ. Ribozyme-mediated trans-splicing of a trinucleotide repeat. Nat Genet. 1998;18:378–381.PubMedCrossRefGoogle Scholar
  27. 27.
    Phylactou LA, Kilpatrick MW, Wood MJ. Ribozymes as therapeutic tools for genetic disease. Hum Mol Genet. 1998;7:1649–1653.PubMedCrossRefGoogle Scholar
  28. 28.
    Lan N, Howrey RP, Lee SW, Smith CA, Sullenger BA. Ribozyme-mediated repair of sickle beta-globin mRNAs in erythrocyte precursors. Science. 1998;280:1593–1596.PubMedCrossRefGoogle Scholar
  29. 29.
    Mansfield SG, Kole J, Puttaraju M, et al. Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing. Gene Ther. 2000;7:1885–1895.PubMedCrossRefGoogle Scholar
  30. 30.
    Urano Y, Watanabe K, Sakai M, Tamaoki T. The human albumin gene. Characterization of the 5′ and 3′ flanking regions and the polymorphic gene transcripts. J Biol Chem. 1986;261:3244–3251.PubMedGoogle Scholar
  31. 31.
    Lin B, Rommens JM, Graham RK, et al. Differential 3′ polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. Hum Mol Genet. 1993;2:1541–1545.PubMedCrossRefGoogle Scholar
  32. 32.
    Boyd CD, Mariani TJ, Kim Y, Csiszar K. The size heterogeneity of human lysyl oxidase mRNA is due to alternate polyadenylation site and not alternate exon usage. Mol Biol Rep. 1995;21:95–103.PubMedCrossRefGoogle Scholar
  33. 33.
    Gallie DR. Protein-protein interactions required during translation. Plant Mol Biol. 2002;50:949–970.PubMedCrossRefGoogle Scholar
  34. 34.
    Chavatte L, Frolova L, Kisselev L, Favre A. The polypeptide chain release factor eRF1 specifically contacts the s(4)UGA stop codon located in the A site of eukaryotic ribosomes. Eur J Biochem. 2001;268:2896–2904.PubMedCrossRefGoogle Scholar
  35. 35.
    Stratakis CA. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit (PRKAR1A) in patients with the “complex of spotty skin pigmentation, myxomas, endocrine over-activity, and schwannomas” (Carney complex). Ann N Y Acad Sci. 2002;968:3–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Valentine CR. The association of nonsense codons with exon skipping. Mutat Res. 1998;411:87–117.PubMedCrossRefGoogle Scholar
  37. 37.
    Cline J, Braman JC, Hogrefe HH. PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 1996;24:3546–3551.PubMedCrossRefGoogle Scholar
  38. 38.
    Maga G, Shevelev I, Ramadan K, Spadari S, Hubscher U. DNA polymerase theta purified from human cells is a high-fidelity enzyme. J Mol Biol. 2002;319:359–369.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuchta RD, Cowart M, Allen D, Benkovic SJ. Kinetic and structural investigations of the replicative fidelity of the Klenow fragment. Biochem Soc Trans. 1988;16:947–949.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Deborah Ann Payne
    • 1
  1. 1.Department of PathologyUniversity of Texas Southwestern Medical Center-VeripathDallasUSA

Personalised recommendations