Skip to main content

Part of the book series: Monograph Series in Underwater Acoustics ((UA))

Abstract

The previous six chapters presented the status of underwater sound transducers and arrays at the beginning of the twenty first century in considerable detail, but with a minimum of analytical background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.A. Berlincourt, D.R. Curran, and H. Jaffe, Chapter 3, Piezoelectric and Piezomagnetic Materials, Physical Acoustics, Vol. I, Part A, W.P. Mason, Ed. (Academic Press, N.Y., 1964)

    Google Scholar 

  2. R.S. Woollett, Sonar Transducer Fundamentals, Naval Underwater Systems Center, Newport, RI, undated

    Google Scholar 

  3. F.V. Hunt, Electroacoustics, Harvard University Press, New York, 1954

    Google Scholar 

  4. O.B.Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsula Publishing, Los Altos Hills, CA, 1988

    Google Scholar 

  5. D. Stansfield, Underwater Electroacoustic Transducers, Bath University Press, Bath, UK, 1991. See also G.W. Benthien and S.L. Hobbs, “Modeling of sonar transducers and arrays,” Tech Doc. 3181, April, 2004, available on CD, Spawar Systems Center, San Diego, CA

    Google Scholar 

  6. 5a A. Ballato,“Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks”, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 48, 1189–1240, (2001)

    Article  Google Scholar 

  7. K.S. Van Dyke, “The piezoelectric resonator and its equivalent network,” Proc. IRE, 16, 742–764 (1928)

    Article  Google Scholar 

  8. A.E. Clark and H.S. Belson, “Giant room temperature magnetostriction in TbFe2and DyFe2” Phys. Rev. B5, 3642 (1972)

    Google Scholar 

  9. A.E. Clark, “Magnetostrictive rare earth–Fe2 compounds,” Ferromagnetic Materials, 1, 531–589 (North-Holland Pub. Co., 1980)

    Google Scholar 

  10. 8a A.E. Clark, J.B. Restorff, M.Wun-Fogle, T.A. Lograsso, and D.L. Schlagel, “Magnetostrictive properties of b.c.c. Fe-Ga and Fe-Ga-Al alloys”, IEEE Trans. On Mag., 36, 3238 (2000). See also, A.E. Clark, K.B. Hathaway, M. Wun-Fogle, J.B. Restorff, V.M. Keppens, G. Petculescu, and R.A. Taylor, “Extraordinary magnetoelasticity and lattice softening in b.c.c. Fe-Ga alloys,” J. Appl. Phys. 93, 8621 (2003)

    Article  ADS  Google Scholar 

  11. S. Butterworth and F.D. Smith, “Equivalent circuit of a magnetostrictive oscillator,” Proc. Phys. Soc. 43, 166–185 (1931)

    Article  ADS  Google Scholar 

  12. “Design and Construction of Magnetostrictive Transducers,” Summary Technical Report of Division 6, Vol. 13, National Defense Research Committee (1946)

    Google Scholar 

  13. L. Camp, Underwater Acoustics, Wiley-Interscience, New York, 1970

    Google Scholar 

  14. E.L. Richardson, Technical Aspects of Sound II, Ch. 2, Elsevier Publishing Company, 1957

    Google Scholar 

  15. B.D.H. Tellegen, “The Gyrator, a New Network Element,” Philips Research Reports, 3, 81–101 (1948)

    MathSciNet  Google Scholar 

  16. R.M. Bozorth, Ferromagnetism, D. Van Nostrand, Inc., New York, 1951

    Google Scholar 

  17. J.L. Butler and N.L. Lizza, “Eddy current factor series for magnetostrictive rods,” J. Acoust. Soc. Am. 82, 378 (1987)

    Article  ADS  Google Scholar 

  18. W. Weaver, S.P. Timoshenko, and D.H. Young, Vibration Problems in Engineering, John Wiley and Sons, New York, 1990

    MATH  Google Scholar 

  19. J.L. Butler, “Underwater Sound Transducers,” Image Acoustics, Inc., Cohasset, MA, 02025, Course Notes, pp. 217 and 231 (1982)

    Google Scholar 

  20. TAC Program User’s Manual, General Electric, Syracuse, NY (1972). Developed for NUWC, Newport, RI

    Google Scholar 

  21. E. Geddes, “Audio Transducers,” (Geddes Associates LLC, 2002)

    Google Scholar 

  22. TRN Computer Program (NUWC, Newport, RI 02841). Developed by M. Simon and K. Farnham with array analysis module by Image Acoustics, Inc., Cohasset, MA 02025. The computer programs TRN and TAC are based on the program SEADUCER, See H. Ding, L. McCleary and J.Ward, “Computerized Sonar Transducer Analysis and Design Based on Multiport Network Interconnection Techniques,” TP-228, (1971), Transducer and Array Systems Division, Naval Undersea Research and Development Center, San Diego, CA

    Google Scholar 

  23. R. Krimholtz, D.A. Leedom, and G.L. Matthaei (KLM Transducer Model) “New Equivalent Circuit for Elementary Piezoelectric Transducers,” Electron. Lett., 6, No. 13, 398 (1970)

    Google Scholar 

  24. TAP Transducer Analysis Program, (Image Acoustics, Inc., Cohasset, MA 02025)

    Google Scholar 

  25. W.P. Mason, Electro-Mechanical Transducers and Wave Filters, p. 205 D. Van Nostrand Company, Inc., New York, 1942

    Google Scholar 

  26. G.E. Martin, “On the theory of segmented electromechanical systems,” J. Acoust. Soc. Am., 36, 1366–1370 (1964)

    Article  ADS  Google Scholar 

  27. W.B. Bickford, “A First Course in the Finite Element Method, Irwin, Boston, MA, 1990

    Google Scholar 

  28. O.C. Zienkiewicz, The Finite Element Method, McGraw-Hill Book Company (UK) Limited, Maidenhead, Berkshire, England, 1986

    Google Scholar 

  29. K.J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., N. J., 1982

    MATH  Google Scholar 

  30. ANSYS, Inc., Canonsburg, PA 15317

    Google Scholar 

  31. ATILA, Magsoft Corporation, Troy, NY 12180

    Google Scholar 

  32. PAFEC, PACSYS Ltd., Strelley Hall, Nottingham, NG86PE, UK

    Google Scholar 

  33. K.D. Rolt and J.L. Butler, “Finite Element Modulus Substitution Method for Sonar Transducer Effective Coupling Coefficient”, Transducers for Sonics and Ultrasonics, Edited by M.D. McCollum, B.F. Harmonic and O.B. Wilson, Technomic Publishing Co. Inc., PA, 1992

    Google Scholar 

  34. J.L. Butler and A.L. Butler, “Analysis of the MPT/Hybrid Transducer,” March 11, 2002, Image Acoustics, Inc., NUWC Contract N66604-00-M-7216

    Google Scholar 

  35. C. Tanasescu, “Solving large models faster than ever,” ANSYS Solutions, Fall, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sherman, C.H., Butler, J.L. (2007). Transducer Models. In: Transducers and Arrays for Underwater Sound. Monograph Series in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33139-3_7

Download citation

Publish with us

Policies and ethics