Skip to main content

Part of the book series: Monograph Series in Underwater Acoustics ((UA))

Abstract

Active sonar and acoustic communication systems rely on electroacoustic transducers which “project” sound that is subsequently detected by hydrophones through a direct path or reflection from a target. Our focus in this chapter is on the projector which is significantly larger and more complex than the hydrophone because of the need to generate high acoustic intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Lindberg, “The application of high energy density transducer material to smart systems,” Mat. Res. Soc. Symp. Proc. Vol. 459, Materials Research Society, 1997. See also D.F. Jones and J.F. Lindberg, “Recent transduction developments in Canada and the United States,” Proceedings of the Institute of Acoustics, 17, Part 3, 15 (1995)

    Google Scholar 

  2. J.L. Butler and A.L. Butler, “Multistatic acoustic source for unmanned underwater vehicles,” SBIR Phase II Final Report, Image Acoustics, Inc., Cohasset, MA May 31, 2005, under Contract N66604-02-C-0787, NUWC, Newport RI

    Google Scholar 

  3. D.T. Laird and H. Cohen, “Directionality patterns from acoustic radiation from a source on a right cylinder,” J. Acoust. Soc. Am. 24, 46-49 (1952)

    Article  ADS  Google Scholar 

  4. J.L. Butler and A.L. Butler, “A Fourier series solution for the radiation impedance of a finite cylinder,” J. Acoust. Soc. Am. 104, 2773-2778 (1998)

    Article  ADS  Google Scholar 

  5. J.L. Butler, “Model for a ring transducer with inactive segments,” J. Acoust. Soc. Am. 59, 480-482 (1976)

    Article  ADS  Google Scholar 

  6. Channel Industries, Inc., Santa Barbara, CA 93111

    Google Scholar 

  7. D.A. Berlincourt, D.R. Curran, and H. Jaffe, Ch. 3, Piezoelectric and Piezomagnetic Materials, Physical Acoustics, Vol. I, Part A,W.P. Mason, Ed. (Academic Press, N.Y., 1964)

    Google Scholar 

  8. J.L. Butler, “Solution of acoustical-radiation problems by boundary collocation,” J. Acoust. Soc. Am. 48, 325-336 (1970)

    Article  ADS  MATH  Google Scholar 

  9. M.B. Moffet, M.D. Jevnager, S.S. Gilardi, and J.M. Powers, “Biased lead zirconate titanate as a high-power transduction material,” J. Acoust. Soc. Am. 105, 2248-2251 (1999)

    Article  ADS  Google Scholar 

  10. S. Butterworth and F.D. Smith, “Equivalent circuit of a magnetostrictive oscillator,” Proc. Phys. Soc. 43, 166-185 (1931)

    Article  ADS  Google Scholar 

  11. J.L. Butler and S.J. Ciosek, “Rare earth iron octagonal transducer,” J. Acoust. Soc. Am. 67, 1809-1811 (1980)

    Article  ADS  Google Scholar 

  12. S.M. Cohick and J.L. Butler, “Rare-earth iron “square ring” dipole transducer,” J. Acoust. Soc. Am. 72, 313-315 (1982)

    Article  ADS  Google Scholar 

  13. G.W. McMahon, “Performance of open ferroelectric ceramic cylinders in underwater transducers,” J. Acoust. Soc. Am. 36, 528-533 (1964)

    Article  ADS  Google Scholar 

  14. C.H. Sherman and N.G. Parke, “Acoustic radiation from a thin torus, with application to the free-flooding ring transducer,” J. Acoust. Soc. Am. 38, 715-722 (1965)

    Article  ADS  Google Scholar 

  15. A.L. Thuras, “Translating Device,” U. S. Patent 1,869,178 July 26, 1932

    Google Scholar 

  16. H. Levine and J. Schwinger, “On the radiation of sound from an unflanged circular pipe,” Phys. Rev., 73, 383-406 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. J.L. Butler “Multiport Underwater Sound Transducer,” U. S. Patent 5,184,332 February 2, 1993

    Google Scholar 

  18. A.L. Butler and J.L. Butler, “A deep-submergence, very low-frequency, broadband, multiport transducer,” Oceans 2002 Conference, Biloxi, MS, see also Sea Technology, 31-34, November 2003

    Google Scholar 

  19. A.E.H. Love, Mathematical theory of Elasticity, 4th ed. p. 452 (Cambridge University Press, London, 1934)

    Google Scholar 

  20. S.L. Ehrlich and P.D. Frelich, “Sonar Transducer,” U. S. Patent 3,290,646, December 6, 1966

    Google Scholar 

  21. R.S. Gordon, L. Parad, and J.L. Butler, “Equivalent circuit of a ring transducer operated in the dipole mode,” J. Acoust. Soc. Am., 58, 1311-1314 (1975)

    Article  ADS  Google Scholar 

  22. J.L. Butler, A.L. Butler, and J.A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am., 115, 658-665 (2004) and J.L. Butler and A.L. Butler, Multimode synthesized beam transducer apparatus,” U. S. Patent 6,734,604 B2, May 11, 2004

    Google Scholar 

  23. O.B. Wilson, Introduction to Theory and Design of Sonar Transducers, Chapter 6, (Peninsula Publishing Co., 1988)

    Google Scholar 

  24. H.B. Miller, “Origin of the 33-driven ceramic ring-stack transducer,” J. Acoust. Soc. Am. 86, 1602-1603 (1989)

    Article  ADS  Google Scholar 

  25. H.B. Miller, “Origin of mechanical bias for transducers,” J. Acoust. Soc. Am. 35, 1455 (1963). See also H.B. Miller, U. S. Patent 2,930,912, March 1960

    Google Scholar 

  26. W.C. Young, “Roark’s Formulas for Stress and Strain,” 6th ed. McGraw-Hill, NY, (1989), pp. 452-454

    Google Scholar 

  27. J.L. Butler, J.R. Cipolla, and W.D. Brown, “Radiating head flexure and its effect on transducer performance,” J. Acoust. Soc. Am. 70, 500-503 (1981)

    Article  ADS  Google Scholar 

  28. R.S. Woollett, Sonar Transducer Fundamentals, Section II, (Naval Underwater Systems Center, Newport, RI), undated

    Google Scholar 

  29. D. Stansfield, Underwater Electroacoustic Transducers, Chapter 8, (Bath University Press, Bath, UK, 1990)

    Google Scholar 

  30. J.L. Butler, M.B. Moffett, and K.D. Rolt, “A finite element method for estimating the effective coupling coefficient of magnetostrictive transducers,” J. Acoust. Soc. Am. 95, 2533-2535 (1994)

    Article  ADS  Google Scholar 

  31. M.B. Moffett, A.E. Clark, M. Wun-Fogle, J.F. Lindberg, J.P. Teter, and E.A. McLaughlin, “Characterization of Terfenol-D for magnetostrictive transducers”, J. Acoust. Soc. Am., 89, 1448-1455 (1991)

    Article  ADS  Google Scholar 

  32. S.C. Butler, “A 2.5 kHz magnetostrictive Tonpilz sonar transducer design,” SPIE 9th Symposium on Smart Structures and Materials, Conference Proceedings, Session 11, March 2002, San Diego, CA. Also, of historical interest, J.L. Butler and S.J. Ciosek, “Development of two rare-earth transducers, “U. S. Navy Journal of Underwater Acoustics, 27, 165-174 (1977)

    Google Scholar 

  33. W.M. Pozzo and J.L. Butler, “Elimination of magnetic biasing using magnetostrictive materials of opposite strain,” U. S. Patent 4,642,802, Feb. 10, 1987

    Google Scholar 

  34. J.L. Butler and A.E. Clark, “Hybrid Piezoelectric and Magnetostrictive Acoustic Wave Transducer, U. S. Patent 4,443,731, April 17, 1984 and “Hybrid Transducer,” U. S. Patent 5,047,683, September 10, 1991

    Google Scholar 

  35. S.C. Thompson, “Broadband Multi-Resonant Longitudinal Vibrator Transducer,” U. S. Patent 4,633,114, (1987). See also S.C. Thompson, M.P. Johnson, E.A. Mclaughlin, and J.F. Lindberg, “Performance and recent developments with doubly resonant wideband transducers, in Transducers for Sonics and Ultrasonics, Edited by M.D. McCollum, B.F. Hamonic and O.B.Wilson (Technomic Publishing Co. Inc., PA, 1992) and S.C. Butler, “Development of a high power broadband doubly resonant transducer” (DRT), UDT Conference Proceedings, November, 2001,Waikiki, Hawaii

    Google Scholar 

  36. J.L. Butler, S.C. Butler, and A.E. Clark, “Unidirectional magnetostrictive/piezoelectric hybrid transducer,” J. Acoust. Soc. Am. 88, 7-11 (1990)

    Article  ADS  Google Scholar 

  37. R.J. Bobber, “A linear, passive, nonreciprocal transducer,” J. Acoust. Soc. Am. 26, 98 (1954)

    Article  ADS  Google Scholar 

  38. J.L. Butler, A.L. Butler, and S.C. Butler, “Hybrid magnetostrictive/piezoelectric Tonpilz transducer,” J. Acoust. Soc. Am. 94, 636-641 (1993). See also, S.C. Butler, J.F. Lindberg and A.E. Clark, “Hybrid magnetostrictive/piezoelectric Tonpilz transducer,” Ferroelectrics, 187, 163-174 (1996)

    Article  Google Scholar 

  39. J.L. Butler, “Design of a 10 kHz wideband Hybrid transducer,” Image Acoustics, Inc., (December 31, 1993), and “Design of a 20 kHz wideband Hybrid transducer,” Image Acoustics, Inc., (May 31, 1994) with S.C. Butler and in collaboration withW.J. Hughes, Applied Research Laboratory, Penn State University

    Google Scholar 

  40. S.C. Butler and F.A. Tito, “A broadband hybrid magnetostrictive/piezoelectric transducer array,” Oceans 2000 MTS/IEEE Conference Proceedings, Vol. 3 September, 2000

    Google Scholar 

  41. P. Langevin, British Patent 145,691, July 28, 1921. See Fig. 1.4

    Google Scholar 

  42. G.E. Liddiard, “Ceramic sandwich electroacoustic transducers for sonic frequencies,” Acoustic Transducers, Benchmark Papers in Acoustics, Vol 14, Ed. I.D. Groves, (Hutchinson Ross Publishing Company, PA, 1981)

    Google Scholar 

  43. J.L. Butler and A.L. Butler, “Ultra wideband multiply resonant transducer,” MTS/IEEE Oceans 2003, San Diego, CA, September 2003. See also U. S. Patent 6,950,373, “Multiply Resonant Wideband Transducer Apparatus,” September 27, 2005

    Google Scholar 

  44. G.C. Rodrigo, “Analysis and design of piezoelectric sonar transducers,” Ph. D. Thesis, London, (1970). See also J.R. Dunn and B.V. Smith, “Problems in the realization of transducers with octave bandwidths, Proceedings of The Institute of Acoustics, Vol. 9, Part 2 (1987)

    Google Scholar 

  45. H.C. Lang, “Sound Reproducing System,” U. S. Patent 2,689,016, Sept. 14, 1954

    Google Scholar 

  46. C.C. Sims, “Bubble transducer for radiating high-power low-frequency sound in water,” J. Acoust. Soc. Am., 32, 1305-1308 (1960), “Underwater Resonant Gas Bubble,” U. S. Patent 3,219,970, 1965. (Also see T.H. Ensign and D.C. Webb, “Electroacoustic Performance Modeling of the Gas-Filled Bubble Projector,” in Transducers for Sonics and Ultrasonics, Edited by M.D. McCollum, B.F. Hamonic and O.B. Wilson (Technomic Publishing Co. Inc., PA, 1992)

    Google Scholar 

  47. S.C. Butler, “Triply resonant transducer”, MTS/IEEE Oceans 2003, San Diego, CA, September, 2003. See also U. S. Patent 6,822,373B1 “Broadband Triply Resonant Transducer,” November 23, 2004

    Google Scholar 

  48. J.F. Lindberg, “Parametric Dual Mode Transducer,” U. S. Patent 4,373,143, Feb. 9, 1983

    Google Scholar 

  49. G.W. Renner, Private communication with J.L.B.

    Google Scholar 

  50. R.A. Nelson and L.H. Royster, “On the vibration of a thin piezoelectric disk with an arbitrary impedance on the boundary,” J. Acoust. Soc. Am. 46, 828-830 (1969) and “Development of a mathematical model for the Class V flextensional underwater acoustic transducer,” J. Acoust. Soc. Am. 49, 1609-1620 (1971)

    Article  ADS  Google Scholar 

  51. R. Newnham, L. Bowen, K. Klicker and L. Cross, Materials in Engineering, 2, 93-106 (1980)

    Google Scholar 

  52. L.J. Bowen, U. S. Patent 5,340,510, August 23, 1984

    Google Scholar 

  53. L.J. Bowen et al., “Design, fabrication and properties of SonoPanel 1-3 piezocomposite transducers,” Material Systems Inc., Littleton, MA 01460

    Google Scholar 

  54. W.A. Smith and B.A. Auld, “Modeling 1-3 composite piezoelectrics: thickness-mode oscillations,” IEEE Trans. Ultrason. Ferroelectric. Freq. Cont. 38, 40-47 (1991)

    Article  Google Scholar 

  55. M. Avellaneda and P.J. Swart, “Calculating the performance of 1-3 piezoelectric composites for hydrophone applications: An effective medium approach,” J. Acoust. Soc. Am. 103, 1449-1467 (1998)

    Article  ADS  Google Scholar 

  56. W.A. Smith and B.A. Auld, “Modeling 1-3 composite piezoelectrics: thickness mode oscillations,” IEEE Trans. Ultrason. Ferroelec. Freq., Cont. 38, 40-47 (1991)

    Google Scholar 

  57. K.D. Rolt, “The history of the flextensional electroacoustic transducer,” J. Acoust. Soc. Am. 87, 1340-1349 (1990)

    Article  ADS  Google Scholar 

  58. H.C. Hayes in Design and Construction of Magnetostrictive Transducers, Summary Technical Report of Division 6, Vol. 13, National Defense Research Committee (1946). Also H. C. Hayes, “Sound Generating and Directing Apparatus,” U. S. Patent 2,064,911, December 22, 1936

    Google Scholar 

  59. W.J. Toulis, “Flexural-Extensional Electromechanical Transducer Apparatus,” U. S. Patent 3,277,433, October 4, 1966

    Google Scholar 

  60. G.A. Brigham, “Lumped parameter analysis of the Class IV (oval) flextensional transducer,” Technical Report, TR 4463, NUWC, Newport, RI, (August 15, 1973). See also G.A. Brigham, “Analysis of the class IV flextensional transducer by use of wave mechanics,” J. Acoust. Soc. Am., 56, 31-39 (1974) and G. A. Brigham and B. Glass, “Present status in flextensional transducer technology,” J. Acoust. Soc. Am., 68, 1046-1052 (1980)

    Article  ADS  Google Scholar 

  61. J.L. Butler, FLEXT, (Flextensional Transducer Program), Contract N66604-87-MB328 to NUWC, Newport, RI, Image Acoustics, Inc., Cohasset, MA 02025

    Google Scholar 

  62. H.C. Merchant, “Underwater Transducer Apparatus,” U. S. Patent 3,258,738, June 28, 1966

    Google Scholar 

  63. F.R. Abbott, “”Broad Band Electroacoustic Transducer,” U. S. Patent 2,895,062, July 14, 1959

    Google Scholar 

  64. L.H. Royster, “Flextensional underwater acoustic transducer,” J. Acoust. Soc. Am., 45, 671-682 (1969)

    Article  ADS  Google Scholar 

  65. G.W. McMahon and D.F. Jones, “Barrel Stave Projector” U. S. Patent 4,922,470, May 1, 1990

    Google Scholar 

  66. J.L. Butler, “Directional Flextensional Transducer,” U. S. Patent 4,754,441, June, 28, 1988, S.C. Butler, A.L. Butler and J.L. Butler, “Directional flextensional transducer,” J. Acoust. Soc. Am., 92, 2977-2979 (1992)

    Article  ADS  Google Scholar 

  67. S.C. Butler, J.L. Butler, A.L. Butler, and G.H. Cavanagh, “A low-frequency directional flextensional transducer and line array,” J. Acoust. Soc. Am., 102, 308-314 (1997)

    Article  ADS  Google Scholar 

  68. M.B. Moffett, J.F. Lindberg, E.A. McLaughlin, and J.M. Powers, “An equivalent circuit model for barrel stave flextensional transducers,” in Transducers for Sonics and Ultrasonics, ed. By M.D. McCollum, B.F. Hamonic, and O.B. Wilson, (Technomic Publishing Co., Lancaster, PA 1993)

    Google Scholar 

  69. C.J.A. Purcell, “Folded Shell Projector,” U. S. Patent 5,805,529, Sept. 8, 1998

    Google Scholar 

  70. G.W. McMahon and B.A. Armstrong, U. S. Patent 4, 524,693, June 25, 1985

    Google Scholar 

  71. G.W. McMahon and B.A. Armstrong, “A 10 Kw ring-shell projector”, Prog. In Underwater Acoustics, Plenum Pub. (1987)

    Google Scholar 

  72. J.L. Butler, “An electro-acoustic model for a flextensional ring shell transducer,” (The program FIRST), Contract N66604-88-M-B155, to NUWC, Newport, RI, Image Acoustics, Inc., Cohasset, MA, March 31, 1988

    Google Scholar 

  73. W.P. Mason, Piezoelectric Crystals and their Application to Ultrasonics, D. Van Nostrand, NY, 1950

    Google Scholar 

  74. R.E. Newnham and A. Dogan, “Metal-electroactive ceramic composite transducer,” U. S. Patent 5,729,007, March 17, 1998. See also, A. Dogan, “Flextensional “Moonie and Cymbal” Actuators,” Ph. D. thesis, The Pennsylvania State University, 1994, A. Dogan, K. Uchino and R.E. Newnham, “Composite piezoelectric transducer with truncated conical endcaps “Cymbal””, IEEE Trans, Ultrason., Ferroelect., Freq. Cont. 44, 597-605 (1997) and J.F. Tressler, R.E. Newnham, and W.J. Hughes, “Capped ceramic underwater sound projector: The “cymbal” transducer,” J. Acoust. Soc. Am. 105, 591-600 (1999)

    Article  ADS  Google Scholar 

  75. C.R.C. Standard Mathematical Tables, 12th Edition, p. 421, (Chemical Rubber Company, Cleveland, OH)

    Google Scholar 

  76. J.L. Butler, “Flextensional Transducer,” U. S. Patent 4,846,548, Sep. 5, 1989, see also H.C. Hayes, “Sound Generating and Directing Apparatus,” U. S. Patent 2,064,911, December 22, 1936 and, J.L. Butler, and K.D. Rolt, “A four-sided flextensional transducer,” J. Acoust. Soc. Am. 83 (1988) Abstract

    Google Scholar 

  77. J.L. Butler “Electro-Mechanical Transduction Apparatus”, U. S. Patent 4,845,688, July 4, 1989

    Google Scholar 

  78. J.L. Butler and A.L. Butler, “Single-sided electromechanical transduction apparatus”, U. S. Patent 6,654,316 B1, issued November 25, 2003

    Google Scholar 

  79. P.M. Morse, Vibration and Sound, Chapter IV, McGraw-Hill Book Company, NY, 1948

    Google Scholar 

  80. H.F. Olson, Acoustical Engineering, Chapter 3, D. Van Nostrand Company, NJ, 1957.

    Google Scholar 

  81. R.S. Woollett, “The Flexural Bar Transducer,” (Naval Undersea Warfare Center, Newport, RI, undated)

    Google Scholar 

  82. J.W. Fitzgerald, “Underwater Electroacoustic Transducer”, U. S. Patent 5,099,461, March 24, 1992

    Google Scholar 

  83. A.E. Clark, private communication

    Google Scholar 

  84. R.S. Woollett, Theory of the Piezoelectric Flexural Disk Transducer with Applications to Underwater Sound, USL Research Report No. 490, Naval Undersea Warfare Center, Newport, RI, 1960

    Google Scholar 

  85. D.J. Erickson, “Moment Bender Transducer”, U. S. Patent 5,204,844, April 20, 1993

    Google Scholar 

  86. W.T. Harris, U. S. Patent 2,812,452, November, 1957

    Google Scholar 

  87. H.W. Kompanek, U. S. Patents: 4,220,887, September, 1980, 4,257,482, March, 1981 and 4,651,044, March 1987

    Google Scholar 

  88. J.L. Butler, “An approximate electro-acoustic model for the slotted high output projector transducer,” Contract N62269-87-M-3792, NAVAIR, MD, Image Acoustics, Inc., December, 30, 1987

    Google Scholar 

  89. W.C. Young, “Roark’s Formulas for Stress and Strain,” 6th ed. McGraw-Hill, NY, (1989), pp. 117-120

    Google Scholar 

  90. K.D. Rolt and J.L. Butler, “Finite element modulus substitution method for sonar transducer effective coupling coefficient,” in Transducers for Sonics and Ultrasonics, Edited by M.D. McCollum, B.F. Hamonic, and O.B. Wilson, Technomic Publishing Co. Inc., PA, 1992

    Google Scholar 

  91. J.L. Butler TSCAT, “The computer program TSCAT for a tapered slotted cylinder transducer,” Contract N66604-93-D-0583, NUWC, Newport, RI, Image Acoustics, Inc., Cohasset, MA 02025, June 30, 1994

    Google Scholar 

  92. G.W. Stewart and R.B. Lindsay, Acoustics, pp 248-250 D. Van Nostrand, Inc., NY, 1930; H.J.W. Fay in Acoustic Transducers, Benchmark Papers in Acoustics, 14, Edited by Ivor Groves, Hutchinson Ross Publishing Co., Stroudsberg, PA, 1981 and K.D. Rolt, “The Fessenden oscillator: History, electroacoustic model, and performance estimate,” 127th Meeting of the Acoustical Society of America, June, 1994

    Google Scholar 

  93. D.P. Massa, “High-power electromagnetic transducer array for Project Artemis”, J. Acoust. Soc. Am., 98, No. 5, Pt. 2 (1995), F.W. Massa and F. Massa, Jr. “Electromagnetic transducers for high-power low-frequency, deep-water applications,” Journal of Underwater Acoustics, 20, No. 3, 621-629 (July 1970), and F.W. Massa, “Electromagnetic Transducers for Underwater Low-frequency High-power Use,” U. S. Patent 4,736,350, (Apr. 5, 1988)

    Google Scholar 

  94. J.V. Bouyoucos, “Hydroacoustic transduction,” J. Acoust. Soc. Am., 57, 1341-1351 (1975). (Also, see “Self-Excited Hydrodynamic Oscillators, Acoustic Research Laboratory, Harvard University, TM No. 36, July 31, 1955.)

    Google Scholar 

  95. D.D. Caulfield, “Predicting sonic pulse shapes of underwater spark discharges,” WHOI Report 62-12, March 1962

    Google Scholar 

  96. J.L. Butler and K.D. Rolt, “Feasibility of high power, low frequency, high efficiency plasma spark gap projector,” Final Report, SBIR Topic N92-088, June 23, 1993, Image Acoustics, Inc. and Massa Products Corporation

    Google Scholar 

  97. R. B Schaefer and D. Flynn, “The development of a sonobuoy using sparker acoustic sources as an alternative explosive SUS devices,” Oceans ”99, IEEE, Seattle, WA September 16, 1999

    Google Scholar 

  98. Originally manufactured by EG&G, currently manufactured by Applied Acoustic Engineering, Ltd., Great Yarmouth, Norfolk, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sherman, C.H., Butler, J.L. (2007). Transducers as Projectors. In: Transducers and Arrays for Underwater Sound. Monograph Series in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-33139-3_3

Download citation

Publish with us

Policies and ethics