Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 259))

  • 901 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leschka, S., et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J, 2005, 26, 1482–7.

    Article  PubMed  Google Scholar 

  2. Leber, A.W., et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol, 2005, 46, 147–54.

    Article  PubMed  Google Scholar 

  3. Raff, G.L., et al. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol, 2005, 46, 552–7.

    Article  PubMed  Google Scholar 

  4. Mollet, N.R., et al. High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation, 2005, 112, 2318–23.

    Article  PubMed  Google Scholar 

  5. Ropers, D., et al. Investigation of aortocoronary artery bypass grafts by multislice spiral computed tomography with electrocardiographicgated image reconstruction. Am J Cardiol, 2001, 88, 792–5.

    Article  PubMed  CAS  Google Scholar 

  6. Nieman, K., et al. Evaluation of patients after coronary artery bypass surgery: CT angiographic assessment of grafts and coronary arteries. Radiology, 2003, 229, 749–56.

    PubMed  Google Scholar 

  7. Dewey, M., et al. Isotropic half-millimeter angiography of coronary artery bypass grafts with 16-slice computed tomography. Ann Thorac Surg, 2004, 77, 800–4.

    Article  PubMed  Google Scholar 

  8. Martuscelli, E., et al. Evaluation of venous and arterial conduit patency by 16-slice spiral computed tomography. Circulation, 2004, 110, 3234–8.

    Article  PubMed  CAS  Google Scholar 

  9. Schlosser, T., et al. Noninvasive visualization of coronary artery bypass grafts using 16-detector row computed tomography. J Am Coll Cardiol, 2004, 44, 1224–9.

    Article  PubMed  Google Scholar 

  10. Song, M.H., et al. Multidetector computed tomography versus coronary angiogram in evaluation of coronary artery bypass grafts. Ann Thorac Surg, 2005, 79, 585–8.

    Article  PubMed  Google Scholar 

  11. Trigo, A., et al. Non-invasive assessment of coronary artery bypass grafts by computed tomography: comparison with conventional coronary angiography. Rev Esp Cardiol, 2005, 58, 807–14.

    Article  Google Scholar 

  12. Nieman, K., et al. Coronary angiography with multi-slice computed tomography. Lancet, 2001, 357, 599–603.

    Article  PubMed  CAS  Google Scholar 

  13. Knez, A., et al. Usefulness of multislice spiral computed tomography angiography for determination of coronary artery stenoses. Am J Cardiol, 2001, 88, 1191–4.

    Article  PubMed  CAS  Google Scholar 

  14. Achenbach, S., et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically-gated, multislice spiral computed tomography. Circulation, 2001, 103, 2535–8.

    PubMed  CAS  Google Scholar 

  15. Nieman, K., et al. Usefulness of multislice computed tomography for detecting obstructive coronary artery disease. Am J Cardiol, 2002, 89, 913–8.

    Article  PubMed  Google Scholar 

  16. Vogl, T.J., et al. Techniques for the detection of coronary atherosclerosis: multi-detector row CT coronary angiography. Radiology, 2002, 223, 212–20.

    PubMed  Google Scholar 

  17. Kuettner, A., et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol, 2004, 43, 831–9.

    Article  PubMed  Google Scholar 

  18. Nieman, K., et al. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation, 2002, 107, 2051–4.

    Article  Google Scholar 

  19. Ropers, D., et al. Detection of coronary artery stenoses with thin-slices multidetector row spiral computed tomography and multiplanar reconstruction. Circulation, 2003, 107, 664–6.

    Article  PubMed  Google Scholar 

  20. Leta, R., et al. Non-invasive coronary angiography with 16 multidetector-row spiral computed tomography: a comparative study with invasive coronary angiography. Rev Esp Cardiol, 2004, 57, 217–24.

    Article  PubMed  Google Scholar 

  21. Mollet, N.R., et al. Multislice spiral computed tomography coronary angiography in patients with stable angina pectoris. J Am Coll Cardiol, 2004, 43, 2265–70.

    Article  PubMed  Google Scholar 

  22. Hoffmann, U., et al. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: patient-versus segment-based analysis. Circulation, 2004, 110, 2638–43.

    Article  PubMed  Google Scholar 

  23. Kuettner, A., et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol, 2005, 45, 123–7.

    Article  PubMed  Google Scholar 

  24. Hoffmann, M.H., et al. Noninvasive coronary angiography with multislice computed tomography. JAMA, 2005, 293, 2471–8.

    Article  PubMed  CAS  Google Scholar 

  25. Nakanishi, T., et al. Pitfalls in 16-detector row CT of the coronary arteries. Radiographics, 2005, 25, 425–38.

    PubMed  Google Scholar 

  26. Friesinger, G.C., and J.M. Perry, Jr. Coronary arteriography: indications and pitfalls. Cardiovasc Clin, 1975, 6, 265–81.

    PubMed  CAS  Google Scholar 

  27. Yamashita, T., A. Colombo, and J.M. Tobis. Limitations of coronary angiography compared with intravascular ultrasound: implications for coronary interventions. Prog Cardiovasc Dis, 1999, 42, 91–138.

    Article  PubMed  CAS  Google Scholar 

  28. Mintz, G.S., et al. Atherosclerosis in angiographically “normal” coronary artery reference segments: an intravascular ultrasound study with clinical correlations. J Am Coll Cardiol, 1995, 25, 1479–85.

    Article  PubMed  CAS  Google Scholar 

  29. Johnston, P.W., S. Fort, and E.A. Cohen. Noncritical disease of the left main coronary artery: limitations of angiography and the role of intravascular ultrasound. Can J Cardiol, 1999, 15, 297–302.

    PubMed  CAS  Google Scholar 

  30. Hong, M.K., et al. Limitations of angiography for analyzing coronary atherosclerosis progresion or regression. Ann Intern Med, 1994, 121, 348–54.

    PubMed  CAS  Google Scholar 

  31. Mintz, G.S., et al. Limitations of angiography in the assessment of plaque distribution in coronary artery disease: a systematic study of target lesion eccentricity in 1446 lesions. Circulation, 1996, 93, 924–31.

    PubMed  CAS  Google Scholar 

  32. Katritsis, D., and M. Webb-Peploe. Limitations of coronary angiography: an underestimated problem? Clin Cardiol, 1991, 14, 20–4.

    PubMed  CAS  Google Scholar 

  33. Botas, J. Assessment and therapeutic guideline of intermediate coronary lesions in the catheterization laboratory. Rev Esp Cardiol, 2003, 56, 1218–30.

    Article  PubMed  Google Scholar 

  34. Nissen, S.E., and P. Yock. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation, 2001, 103, 604–16.

    PubMed  CAS  Google Scholar 

  35. Lee, D.Y., et al. Effect of intracoronary ultrasound imaging on clinical decision making. Am Heart J, 1995, 129, 1084–93.

    Article  PubMed  CAS  Google Scholar 

  36. Caussin, C., et al. Coronary plaque burden detected by multislice computed tomography after acute myocardial infarction with near-normal coronary arteries by angiography. Am J Cardiol, 2003, 92, 849–52.

    Article  PubMed  Google Scholar 

  37. Leber, A.W., et al. Accuracy of multidetector spiral computed tomography in identifying and differentiating the composition of coronary atherosclerotic plaques: a comparative study with intracoronary ultrasound. J Am Coll Cardiol, 2004, 43, 1241–7.

    Article  PubMed  Google Scholar 

  38. Schoenhagen, P., et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis, 2003, 14, 459–62.

    Article  PubMed  Google Scholar 

  39. Achenbach, S., et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation, 2004, 109, 14–7.

    Article  PubMed  Google Scholar 

  40. Achenbach, S., et al. Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol, 2004, 43, 842–7.

    Article  PubMed  Google Scholar 

  41. Lawler, L.P., H.K. Pannu, and E.K. Fishman. MDCT evaluation of the coronary arteries, 2004: how we do it-data acquisition, postprocessing, display, and interpretation. Am J Roentgenol, 2005, 184, 1402–12.

    Google Scholar 

  42. Schragin, J.G., et al. Non-cardiac findings on coronary electron beam computed tomography scanning. J Thorac Imaging, 2004, 19, 82–6.

    Article  PubMed  Google Scholar 

  43. Prokop, M., and A.J. Van der Molen. Spiral and Multislice Computed Tomography of the Body, 1st ed. Stuttgart: Thieme Verlag, 2003, 804–7.

    Google Scholar 

  44. Schroeder, S., et al. Reliability of differentiating human coronary plaque morphology using contrast-enhanced multislice spiral computed tomography: a comparison with histology. J Comput Assist Tomogr, 2004, 28, 449–54.

    Article  PubMed  Google Scholar 

  45. de Feyter, P., et al. Noninvasive visualisation of coronary atherosclerosis with multislice computed tomography. Cardiovasc Radiat Med, 2004, 5, 49–56.

    Article  PubMed  Google Scholar 

  46. Gerber, T.C., et al. Current results and new developments of coronary angiography with use of contrast-enhanced computed tomography of the heart. Mayo Clin Proc, 2002, 77, 55–71.

    Article  PubMed  Google Scholar 

  47. van Ooijen, P.M., et al. Coronary artery imaging with multidetector CT: visualization issues. Radiographics, 2003, 23, e16.

    PubMed  Google Scholar 

  48. Bache, R.J. Vasodilator reserve: a functional assessment of coronary health. Circulation, 1998, 98, 1257–60.

    PubMed  CAS  Google Scholar 

  49. Brown, B.G., E.L. Bolson, and H.T. Dodge. Dynamic mechanisms in human coronary stenosis. Circulation, 1984, 70, 917–22.

    PubMed  CAS  Google Scholar 

  50. Gould, K.L., K. Lipscomb, and G.W. Hamilton. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia measures of coronary flow reserve. Am J Cardiol, 1974, 33, 87–94.

    Article  PubMed  CAS  Google Scholar 

  51. Keane, D., et al. Comparative validation of quantitative coronary angiography systems: Results and implications from a multicenter study using a standardized approach. Circulation, 1995, 91, 2174–83.

    PubMed  CAS  Google Scholar 

  52. Herrington, D.M., M. Siebes, and G.D. Walford. Sources of error in quantitative coronary angiography. Cathet Cardiovasc Diagn, 1993, 29, 314–21.

    Article  PubMed  CAS  Google Scholar 

  53. Takagi, A., et al. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation, 1999, 100, 250–5.

    PubMed  CAS  Google Scholar 

  54. Jasti, V., et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation, 2004, 110, 2831–6.

    Article  PubMed  Google Scholar 

  55. Hermiller, J.B., et al. Unrecognized left main coronary artery disease in patients undergoing interventional procedures. Am J Cardiol, 1993, 71, 173–176.

    Article  PubMed  CAS  Google Scholar 

  56. Komatsu, S., et al. Detection of coronary plaque by computed tomography with a novel plaque analysis system, ‘Plaque Map’, and comparison with intravascular ultrasound and angioscopy. Circ J, 2005, 69, 72–7.

    Article  PubMed  Google Scholar 

  57. Caussin, C., et al. Comparison of lumens of intermediate coronary stenosis using 16-slice computed tomography versus intravascular ultrasound. Am J Cardiol, 2005, 96, 524–8.

    Article  PubMed  Google Scholar 

  58. Mollet, N.R., et al. Value of preprocedure multislice computed tomographic coronary angiography to predict the outcome of percutaneous recanalization of chronic total occlusions. Am J Cardiol, 2005, 95, 240–3.

    Article  PubMed  Google Scholar 

  59. Chiurlia, E., et al. Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol, 2005, 95, 1094–7.

    Article  PubMed  Google Scholar 

  60. Marano, R., et al. Pictorial review of coronary artery bypass graft at multidetector row CT. Chest, 2005, 127, 1371–7.

    Article  PubMed  Google Scholar 

  61. Schuijf, J.D., et al. Feasibility of assessment of coronary stent patency using 16-slice computed tomography. Am J Cardiol, 2004, 94, 427–30.

    Article  PubMed  Google Scholar 

  62. Maintz, D., et al. Imaging of coronary artery stents using multislice computed tomography: in vitro evaluation. Eur Radiol, 2003, 13, 830–5.

    PubMed  Google Scholar 

  63. Cademartiri, F., et al. Usefulness of multislice computed tomographic coronary angiography to assess in-stent restenosis. Am J Cardiol, 2005, 96, 799–802.

    Article  PubMed  Google Scholar 

  64. Gaspar, T., et al. Diagnosis of coronary instent restenosis with multidetector row spiral computed tomography. J Am Coll Cardiol, 2005, 46, 1573–9.

    Article  PubMed  Google Scholar 

  65. Gilard, M., et al. Noninvasive assessment of left main coronary stent patency with 16-slice computed tomography. Am J Cardiol, 2005, 95, 110–2.

    Article  PubMed  Google Scholar 

  66. Stary, H.C. Natural history and histological classification of atherosclerotic lesions: An update. Arterioscler Thromb Vasc Biol, 2000, 20, 1177–8.

    PubMed  CAS  Google Scholar 

  67. Virmani, R., et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic atherosclerotic lesions. Arterioscler Thromb Vasc Biol, 2000, 20, 1262–75.

    PubMed  CAS  Google Scholar 

  68. Libby, P., and P. Theroux. Pathophysiology of coronary artery disease. Circulation, 2005, 111, 3481–8.

    Article  PubMed  Google Scholar 

  69. Lipiec, P., et al. Right coronary artery-to-right ventricle fistula complicating percutaneoustransluminal angioplasty: case report and review of the literature. J Am Soc Echocardiogr, 2004, 17, 280–3.

    Article  PubMed  Google Scholar 

  70. Darwazah, A.K., I.H. Hussein, and M.H. Hawari. Congenital circumflex coronary arteriovenous fistula with aneurysmal termination in the pulmonary artery. Tex Heart Inst J, 2005, 32, 56–9.

    PubMed  Google Scholar 

  71. Yilmaz, R., R. Demirbag, and M. Gur. Echocardiographic diagnosis of a right coronary artery-coronary sinus fistula. Int J Cardiovasc Imaging, 2005, 21, 649–54.

    Article  PubMed  Google Scholar 

  72. Iida, R., et al. Identification of the site of drainage of left main coronary artery to right atrium fistula with intraoperative transesophageal echocardiography. J Cardiothorac Vasc Anesth, 2005, 19, 777–80.

    Article  PubMed  Google Scholar 

  73. Tan, K.T., R. Chamberlain-Webber, and G. McGann. Characterisation of coronary artery fistula by multi-slice computed tomography. Int J Cardiol, 2005.

    Google Scholar 

  74. Chang, D.S., et al. MDCT of Left Anterior Descending Coronary Artery to Main Pulmonary Artery Fistula. Am J Roentgenol, 2005, 185, 1258–60.

    Article  Google Scholar 

  75. Soon, K.H., et al. Giant single coronary system with coronary cameral fistula diagnosed on MSCT. Int J Cardiol, 2006, 106, 276–8.

    Article  PubMed  Google Scholar 

  76. Mohlenkamp, S., et al. Update on myocardial bridging. Circulation, 2002, 106, 2616–22.

    Article  PubMed  Google Scholar 

  77. Goitein, O., and J.M. Lacomis. Myocardial bridging: noninvasive diagnosis with multidetector CT. J Comput Assist Tomogr, 2005, 29, 238–40.

    Article  PubMed  Google Scholar 

  78. Kosar, F., et al. Effect of ectasia size or the ectasia ratio on the thrombosis in myocardial infarction frame count in patients with isolated coronary artery ectasia. Heart Vessels, 2005, 20, 199–202.

    Article  PubMed  Google Scholar 

  79. Hartnell, G.G., B.M. Parnell, and R.B. Pridie. Coronary artery ectasia. Its prevalence and clinical significance in 4993 patients. Br Heart J, 1985, 54, 392–5.

    PubMed  CAS  Google Scholar 

  80. Braunwald, E., D.P. Zipes, and P. Libby. Heart Disease: a textbook of cardiovascular Medicine, 6th ed. Philadelphia: WB Saunders, 2001.

    Google Scholar 

  81. Tunick, P.A., et al. Discrete atherosclerotic coronary artery aneurysms: A study of 20 patients. J Am Coll Cardiol, 1990, 15, 279–82.

    Article  PubMed  CAS  Google Scholar 

  82. Okmen, E., et al. Left main coronary artery aneurysm associated with extensive coronary arterial calcification: case report and review. Int J Cardiovasc Imaging, 2004, 20, 231–5.

    Article  PubMed  Google Scholar 

  83. Abbate, A., et al. Left main coronary artery aneurysm: a case report and review of the literature. Ital Heart J, 2001, 2, 711–4.

    PubMed  CAS  Google Scholar 

  84. Pineda, G.E., et al. Large atherosclerotic left main coronary aneurysm—a case report and review of the literature. Angiology, 2001, 52, 501–4.

    Article  PubMed  CAS  Google Scholar 

  85. Rozo, J.C., et al. Kawasaki disease in the adult: a case report and review of the literature. Tex Heart Inst J, 2004, 31, 160–4.

    PubMed  Google Scholar 

  86. Kanamaru, H., et al. Assessment of coronary artery abnormalities by multislice spiral computed tomography in adolescents and young adults with Kawasaki disease. Am J Cardiol, 2005, 95, 522–5.

    Article  PubMed  Google Scholar 

  87. Sechtem, U., and M. Vöhringer. The clinical role of “non-invasive” coronary angiography by multidetector spiral computed tomography: yet to be defined. Eur Heart J, 2005, 26, 1942–4.

    Article  PubMed  Google Scholar 

  88. J de Feyter, P., and B.W. Meijboom. Multislice computed tomography coronary angiography: Prime time? Rev Esp Cardiol, 2005, 58, 1253–7.

    Article  Google Scholar 

  89. Frazier, A.A., et al. Coronary artery bypass grafts: assessment with multidetector CT in the early and late postoperative settings. Radiographics, 2005, 25, 881–96.

    PubMed  Google Scholar 

  90. Gasparovic, H., et al. Three-dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J Cardiothorac Surg, 2005, 28, 244–9.

    Article  PubMed  Google Scholar 

  91. Gilkeson, R.C., A.H. Markowitz, and L. Ciancibello. Multisection CT evaluation of the reoperative cardiac surgery patient. Radiographics, 2003, 23, S3–17.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leta-Petracca, R., Pujadas, S., Pons-Lladó, G. (2006). Coronary Artery Stenoses: Detection, Quantitation and Characterization. In: Pons-Lladó, G., Leta-Petracca, R. (eds) Atlas of Non-Invasive Coronary Angiography by Multidetector Computed Tomography. Developments in Cardiovascular Medicine, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-33048-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-33048-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-33044-0

  • Online ISBN: 978-0-387-33048-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics