Fluorescence Dequenching Assays of Coronavirus Fusion

  • Victor C. Chu
  • Lisa J. McElroy
  • Beverley E. Bauman
  • Gary R. Whittaker
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)


Influenza Virus Cell Fusion Membrane Fusion Infectious Bronchitis Virus Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Earp, S. E. Delos, H. E. Park, and J. M. White, The many mechanisms of viral membrane fusion proteins, Curr. Top. Microbiol. Immunol. 285, 25–66 (2004).CrossRefGoogle Scholar
  2. 2.
    S. B. Sieczkarski and G. R. Whittaker, Viral entry. Curr. Top. Microbiol. Immunol. 285, 1–23 (2005).CrossRefPubMedGoogle Scholar
  3. 3.
    J. J. Skehel and D. C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69, 531–69 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    J. S. Peiris, Y. Guan, and K. Y. Yuen, Severe acute respiratory syndrome, Nat. Med. 10, S88–97 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    D. Cavanagh, in: The Coronaviridae, edited by S. G. Siddell (Plenum Press, New York, 1995), pp. 73–113.Google Scholar
  6. 6.
    T. M. Gallagher and M. J. Buchmeier, Coronavirus spike proteins in viral entry and pathogenesis, Virology 279, 371–374 (2001).CrossRefPubMedGoogle Scholar
  7. 7.
    P. Chambers, C. R. Pringle, and A. J. Easton, Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins, J. Gen. Virol. 71, 3075–3080 (1990).CrossRefPubMedGoogle Scholar
  8. 8.
    B. J. Bosch, R. van der Zee, C. A. de Haan, and P. J. Rottier, The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex, J. Virol. 77, 8801–8811 (2003).CrossRefPubMedGoogle Scholar
  9. 9.
    Y. Kliger and E. Y. Levanon, Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy, BMC Microbiol. 3, 20 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    P. M. Colman and M. C. Lawrence, The structural biology of type I viral membrane fusion, Nat. Rev. Mol. Cell. Biol. 4, 309–319 (2003).CrossRefPubMedGoogle Scholar
  11. 11.
    H. Hofmann and S. Pohlmann, Cellular entry of the SARS coronavirus, Trends Microbiol. 12, 466–472 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    R. Blumenthal, S. A. Gallo, M. Viard, Y. Raviv, and A. Puri, Fluorescent lipid probes in the study of viral membrane fusion, Chem. Phys. Lipids 116, 39–55 (2002).CrossRefPubMedGoogle Scholar
  13. 13.
    T. Stegmann, H. W. M. Morselt, J. Scholma, and J. Wilschut, Fusion of influenza virus in an intracellular acidic compartment measured by fluorescence dequenching, Biochem. Biophys. Acta 904, 165–170 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    D. Hoekstra, T. de Boer, K. Klappe, and J. Wilschut, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry 23, 5675–5681 (1984).CrossRefPubMedGoogle Scholar
  15. 15.
    A. Puri, M. J. Clague, C. Schoch, and R. Blumenthal, in: Methods in Enzymology, Vol. 220: Membrane Fusion Techniques Part A, edited by N. Duzgunes (Academic Press, San Diego, 1993), pp. 277–287.CrossRefGoogle Scholar
  16. 16.
    M. Lakadamyali, M. J. Rust, H. P. Babcock, and X. Zhuang, Visualizing infection of individual influenza viruses, Proc. Natl. Acad. Sci. USA 100, 9280–9285 (2003).CrossRefPubMedGoogle Scholar
  17. 17.
    J. M. Gilbert, D. Mason, and J. M. White, Fusion of Rous sarcoma virus with host cells does not require exposure to low pH, J. Virol. 64, 5106–5113 (1990).PubMedGoogle Scholar
  18. 18.
    D. Hoekstra and K. Klappe, in: Methods in Enzymology, Vol. 220: Membrane Fusion Techniques Part A, edited by N. Duzgunes (Academic Press, San Diego, 1993), pp. 261–276.CrossRefGoogle Scholar
  19. 19.
    Y. Gaudin, Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion, Subcell. Biochem. 34, 379–408 (2000).CrossRefPubMedGoogle Scholar
  20. 20.
    P. C. Roberts, T. Kipperman, and R. W. Compans, Vesicular stomatitis virus G protein acquires pH-independent fusion activity during transport in a polarized endometrial cell line, J. Virol. 73, 10447–10457 (1999).PubMedGoogle Scholar
  21. 21.
    M. M. Wu, M. Grabe, S. Adams, R. Y. Tsien, H. P. Moore, and T. E. Machen. Mechanisms of pH regulation in the regulated secretory pathway, J. Biol. Chem. 276, 33027–33035 (2001).CrossRefPubMedGoogle Scholar
  22. 22.
    S. Ohki, T. D. Flanagan, and D. Hoekstra, Probe transfer with and without membrane fusion in a fluorescence fusion assay, Biochemistry 37, 7496–7503 (1998).CrossRefPubMedGoogle Scholar
  23. 23.
    K. V. Holmes and S. R. Compton, in: The Coronaviridae, edited by S. G. Siddell (Plenum Press, New York, 1995), pp. 55–71.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Victor C. Chu
    • 1
  • Lisa J. McElroy
    • 2
  • Beverley E. Bauman
    • 3
  • Gary R. Whittaker
    • 4
  1. 1.Cornell UniversityIthacaUSA
  2. 2.Cornell UniversityIthacaUSA
  3. 3.Cornell UniversityIthacaUSA
  4. 4.Cornell UniversityIthacaUSA

Personalised recommendations