Advertisement

Insights from the Association of SARS-CoV S-Protein with its Receptor, ACE2

  • Wenhui Li
  • Hyeryun Choe
  • Michael Farzan
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)

Keywords

Severe Acute Respiratory Syndrome Porcine Epidemic Diarrhea Virus Severe Acute Respiratory Syndrome Mouse Hepatitis Virus Human Coronavirus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Peiris, S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang, R. W. Yung, T. K. Ng, and K. Y. Yuen, Coronavirus as a possible cause of severe acute respiratory syndrome, Lancet 361, 1319–1325 (2003).CrossRefPubMedGoogle Scholar
  2. 2.
    I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, and T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med. 350, 1731–1739 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    N. Zhong, Y. Ding, Y. Mao, Q. Wang, G. Wang, D. Wang, Y. Cong, Q. Li, Y. Liu, L. Ruan, B. Chen, X. Du, Y. Yang, Z. Zhang, X. Zhang, J. Lin, J. Zheng, Q. Zhu, D. Ni, X. Xi, G. Zeng, D. Ma, C. Wang, W. Wang, B. Wang, J. Wang, D. Liu, X. Li, X. Liu, J. Chen, R. Chen, F. Min, P. Yang, Y. Zhang, H. Luo, Z. Lang, Y. Hu, A. Ni, W. Cao, J. Lei, S. Wang, Y. Wang, X. Tong, W. Liu, M. Zhu, W. Chen, X. Xhen, L. Lin, Y. Luo, J. Zhong, W. Weng, S. Peng, Z. Pan, R. Wang, J. Zuo, B. Liu, N. Zhang, J. Zhang, B. Zhang, L. Chen, P. Zhou, L. Jiang, E. Chao, L. Guo, X. Tan, and J. Pan, Consensus for the management of severe acute respiratory syndrome, Chin. Med. J. (Engl.) 116, 1603–1635 (2003).Google Scholar
  4. 4.
    N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, G. M. Joynt, A. Ahuja, M. Y. Yung, C. B. Leung, K. F. To, S. F. Lui, C. C. Szeto, S. Chung, and J. J. Sung, A major outbreak of severe acute respiratory syndrome in Hong Kong, N. Engl. J. Med. 348, 1986–1994 (2003).CrossRefPubMedGoogle Scholar
  5. 5.
    J. D. Cherry, The chronology of the 2002-2003 SARS mini pandemic, Paediatr. Respir. Rev. 5, 262–269 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    C. Drosten, S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr, Identification of a novel coronavirus in patients with severe acute respiratory syndrome, N. Engl. J. Med. 348, 1967–1976 (2003).CrossRefPubMedGoogle Scholar
  7. 7.
    R. A. Fouchier, T. Kuiken, M. Schutten, G. van Amerongen, G. J. van Doornum, B. G. van den Hoogen, M. Peiris, W. Lim, K. Stohr, and A. D. Osterhaus, Aetiology: Koch's postulates fulfilled for SARS virus, Nature 423, 240 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    T. G. Ksiazek, D. Erdman, C. S. Goldsmith, S. R. Zaki, T. Peret, S. Emery, S. Tong, C. Urbani, J. A. Comer, W. Lim, P. E. Rollin, S. F. Dowell, A. E. Ling, C. D. Humphrey, W. J. Shieh, J. Guarner, C. D. Paddock, P. Rota, B. Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. Bellini, and L. J. Anderson, A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med. 348, 1953–1966 (2003).CrossRefPubMedGoogle Scholar
  9. 9.
    T. Kuiken, R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim, A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris, and A. D. Osterhaus, Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome, Lancet 362, 263–270 (2003).CrossRefPubMedGoogle Scholar
  10. 10.
    N. S. Zhong, B. J. Zheng, Y. M. Li, Poon, Z. H. Xie, K. H. Chan, P. H. Li, S. Y. Tan, Q. Chang, J. P. Xie, X. Q. Liu, J. Xu, D. X. Li, K. Y. Yuen, Peiris, and Y. Guan, Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003, Lancet 362, 1353–1358 (2003).CrossRefPubMedGoogle Scholar
  11. 11.
    J. S. Peiris, Y. Guan, and K. Y. Yuen, Severe acute respiratory syndrome, Nat. Med. 10, S88–97 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    N. Zhong, Management and prevention of SARS in China, Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 1115–1116 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    G. Liang, Q. Chen, J. Xu, Y. Liu, W. Lim, J. S. Peiris, L. J. Anderson, L. Ruan, H. Li, B. Kan, B. Di, P. Cheng, K. H. Chan, D. D. Erdman, S. Gu, X. Yan, W. Liang, D. Zhou, L. Haynes, S. Duan, X. Zhang, H. Zheng, Y. Gao, S. Tong, D. Li, L. Fang, P. Qin, and W. Xu, Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China, Emerg. Infect. Dis. 10, 1774–1781 (2004).PubMedGoogle Scholar
  14. 14.
    H. D. Song, C. C. Tu, G. W. Zhang, S. Y. Wang, K. Zheng, L. C. Lei, Q. X. Chen, Y. W. Gao, H. Q. Zhou, H. Xiang, H. J. Zheng, S. W. Chern, F. Cheng, C. M. Pan, H. Xuan, S. J. Chen, H. M. Luo, D. H. Zhou, Y. F. Liu, J. F. He, P. Z. Qin, L. H. Li, Y. Q. Ren, W. J. Liang, Y. D. Yu, L. Anderson, M. Wang, R. H. Xu, X. W. Wu, H. Y. Zheng, J. D. Chen, G. Liang, Y. Gao, M. Liao, L. Fang, L. Y. Jiang, H. Li, F. Chen, B. Di, L. J. He, J. Y. Lin, S. Tong, X. Kong, L. Du, P. Hao, H. Tang, A. Bernini, X. J. Yu, O. Spiga, Z. M. Guo, H. Y. Pan, W. Z. He, J. C. Manuguerra, A. Fontanet, A. Danchin, N. Niccolai, Y. X. Li, C. I. Wu, and G. P. Zhao, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human, Proc. Natl. Acad. Sci. USA 102, 2430–2435 (2005).CrossRefPubMedGoogle Scholar
  15. 15.
    F. Fleck, SARS virus returns to China as scientists race to find effective vaccine, Bull. World Health Organ. 82, 152–153 (2004).PubMedGoogle Scholar
  16. 16.
    B. J. Zheng, K. H. Wong, J. Zhou, K. L. Wong, B. W. Young, L. W. Lu, and S. S. Lee, SARS-related virus predating SARS outbreak, Hong Kong, Emerg. Infect. Dis. 10, 176–178 (2004).PubMedGoogle Scholar
  17. 17.
    D. Normile, Infectious diseases. Mounting lab accidents raise SARS fears, Science 304, 659–661 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    P. L. Lim, A. Kurup, G. Gopalakrishna, K. P. Chan, C. W. Wong, L. C. Ng, S. Y. Se-Thoe, L. Oon, X. Bai, L. W. Stanton, Y. Ruan, L. D. Miller, V. B. Vega, L. James, P. L. Ooi, C. S. Kai, S. J. Olsen, B. Ang, and Y. S. Leo, Laboratory-acquired severe acute respiratory syndrome, N. Engl. J. Med. 350, 1740–1745 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    Y. Guan, B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo, P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F. Shortridge, K. Y. Yuen, J. S. Peiris, and L. L. Poon, Isolation and characterization of viruses related to the SARS Coronavirus from animals in Southern China, Science 302, 276–278 (2003).CrossRefPubMedGoogle Scholar
  20. 20.
    D. Wu, C. Tu, C. Xin, H. Xuan, Q. Meng, Y. Liu, Y. Yu, Y. Guan, Y. Jiang, X. Yin, G. Crameri, M. Wang, C. Li, S. Liu, M. Liao, L. Feng, H. Xiang, J. Sun, J. Chen, Y. Sun, S. Gu, N. Liu, D. Fu, B. T. Eaton, L. F. Wang, and X. Kong, Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates, J. Virol. 79, 2620–2625 (2005).CrossRefPubMedGoogle Scholar
  21. 21.
    M. Wang, H. Q. Jing, H. F. Xu, X. G. Jiang, B. Kan, Q. Y. Liu, K. L. Wan, B. Y. Cui, H. Zheng, Z. G. Cui, M. Y. Yan, W. L. Liang, H. X. Wang, X. B. Qi, Z. J. Li, M. C. Li, K. Chen, E. M. Zhang, S. Y. Zhang, R. Hai, D. Z. Yu, and J. G. Xu, Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004, Zhonghua Liu Xing Bing Xue Za Zhi 26, 84–87 (2005).PubMedGoogle Scholar
  22. 22.
    W. Li, C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan, Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2, EMBO J. 24, 1634 (2005).CrossRefPubMedGoogle Scholar
  23. 23.
    B. Kan, M. Wang, H. Jing, H. Xu, X. Jiang, M. Yan, W. Liang, H. Zheng, K. Wan, Q. Liu, B. Cui, Y. Xu, E. Zhang, H. Wang, J. Ye, G. Li, M. Li, Z. Cui, X. Qi, K. Chen, L. Du, K. Gao, Y.-T. Zhao, X.-Z. Zou, Y.-J. Feng, Y.-F. Gao, R. Hai, D. Yu, Y. Guan, and J. Xu, Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms, J. Virol. 79, 11892–11900 (2005).CrossRefPubMedGoogle Scholar
  24. 24.
    C. Tu, G. Crameri, X. Kong, J. Chen, Y. Sun, M. Yu, H. Xiang, X. Xia, S. Liu, T. Ren, Y. Yu, B. T. Eaton, H. Xuan, and L. F. Wang, Antibodies to SARS coronavirus in civets, Emerg. Infect. Dis. 10, 2244–2248 (2004).PubMedGoogle Scholar
  25. 25.
    L. L. Poon, D. K. Chu, K. H. Chan, O. K. Wong, T. M. Ellis, Y. H. Leung, S. K. Lau, P. C. Woo, K. Y. Suen, K. Y. Yuen, Y. Guan, and J. S. Peiris, Identification of a novel coronavirus in bats, J. Virol. 79, 2001–2009 (2005).CrossRefPubMedGoogle Scholar
  26. 26.
    W. Li, Z. Shi, M. Yu, W. Ren, C. Smith, J. H. Epstein, H. Wang, G. Crameri, Z. Hu, H. Zhang, J. Zhang, J. McEachern, H. Field, P. Daszak, B. T. Eaton, S. Zhang, and L. F. Wang, Bats are natural reservoirs of SARS-like coronaviruses, Science 310, 676–679 (2005).CrossRefPubMedGoogle Scholar
  27. 27.
    S. K. Lau, P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, S. S. Wong, S. Y. Leung, K. H. Chan, and K. Y. Yuen, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats, Proc. Natl. Acad. Sci. USA 102, 14040–14045 (2005).CrossRefPubMedGoogle Scholar
  28. 28.
    J. M. Gonzalez, P. Gomez-Puertas, D. Cavanagh, A. E. Gorbalenya, and L. Enjuanes, A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae, Arch. Virol. 148, 2207–2235 (2003).CrossRefPubMedGoogle Scholar
  29. 29.
    D. A. Brian and R. S. Baric, Coronavirus genome structure and replication, Curr. Top. Microbiol. Immunol. 287, 1–30 (2005).CrossRefPubMedGoogle Scholar
  30. 30.
    K. McIntosh, Coronaviruses in the limelight, J. Infect. Dis. 191, 489–491 (2005).CrossRefPubMedGoogle Scholar
  31. 31.
    F. Esper, C. Weibel, D. Ferguson, M. L. Landry, and J. S. Kahn, Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children, J. Infect. Dis. 191, 492–498 (2005).CrossRefPubMedGoogle Scholar
  32. 32.
    R. A. Fouchier, N. G. Hartwig, T. M. Bestebroer, B. Niemeyer, J. C. de Jong, J. H. Simon, and A. D. Osterhaus, A previously undescribed coronavirus associated with respiratory disease in humans, Proc. Natl. Acad. Sci. USA 101, 6212–6216 (2004).CrossRefPubMedGoogle Scholar
  33. 33.
    L. van der Hoek, K. Pyrc, M. F. Jebbink, W. Vermeulen-Oost, R. J. Berkhout, K. C. Wolthers, P. M. Wertheim-van Dillen, J. Kaandorp, J. Spaargaren, and B. Berkhout, Identification of a new human coronavirus, Nat. Med. 10, 368–373 (2004).CrossRefPubMedGoogle Scholar
  34. 34.
    H. Hofmann, K. Pyrc, L. van der Hoek, M. Geier, B. Berkhout, and S. Pohlmann, Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry, Proc. Natl. Acad. Sci. USA 102, 7988–7983 (2005).CrossRefPubMedGoogle Scholar
  35. 35.
    P. C. Woo, S. K. Lau, C. M. Chu, K. H. Chan, H. W. Tsoi, Y. Huang, B. H. Wong, R. W. Poon, J. J. Cai, W. K. Luk, L. L. Poon, S. S. Wong, Y. Guan, J. S. Peiris, and K. Y. Yuen, Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia, J. Virol. 79, 884–895 (2005).CrossRefPubMedGoogle Scholar
  36. 36.
    A. E. Gorbalenya, E. J. Snijder, and W. J. Spaan, Severe acute respiratory syndrome coronavirus phylogeny: toward consensus, J. Virol. 78, 7863–7866 (2004).CrossRefPubMedGoogle Scholar
  37. 37.
    E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus Group 2 lineage, J. Mol. Biol. 331, 991–1004 (2003).CrossRefPubMedGoogle Scholar
  38. 38.
    A. J. Gibbs, M. J. Gibbs, and J. S. Armstrong, The phylogeny of SARS coronavirus, Arch. Virol. 149, 621-624 (2004).CrossRefPubMedGoogle Scholar
  39. 39.
    B. Delmas, J. Gelfi, R. L'Haridon, L. K. Vogel, H. Sjostrom, O. Noren, and H. Laude, Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV, Nature 357, 417–420 (1992).CrossRefPubMedGoogle Scholar
  40. 40.
    C. L. Yeager, R. A. Ashmun, R. K. Williams, C. B. Cardellichio, L. H. Shapiro, A. T. Look, and K. V. Holmes, Human aminopeptidase N is a receptor for human coronavirus 229E, Nature 357, 420–422 (1992).CrossRefPubMedGoogle Scholar
  41. 41.
    G. S. Dveksler, C. W. Dieffenbach, C. B. Cardellichio, K. McCuaig, M. N. Pensiero, G. S. Jiang, N. Beauchemin, and K. V. Holmes, Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59, J. Virol. 67, 1–8 (1993).PubMedGoogle Scholar
  42. 42.
    G. S. Dveksler, M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes, and C. W. Dieffenbach, Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV, J. Virol. 65, 6881–6891 (1991).PubMedGoogle Scholar
  43. 43.
    R. K. Williams, G. S. Jiang, and K. V. Holmes, Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins, Proc. Natl. Acad. Sci. USA 88, 5533–5536 (1991).CrossRefPubMedGoogle Scholar
  44. 44.
    B. Schultze and G. Herrler, Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells, J. Gen. Virol. 73, 901–906 (1992).CrossRefPubMedGoogle Scholar
  45. 45.
    W. Li, M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, C. Luzeriaga, T. C. Greenough, H. Choe, and M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426, 450–454 (2003).CrossRefPubMedGoogle Scholar
  46. 46.
    M. J. Moore, T. Dorfman, W. Li, S. K. Wong, Y. Li, J. H. Kuhn, J. Coderre, N. Vasilieva, Z. Han, T. C. Greenough, M. Farzan, and H. Choe, Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2, J. Virol. 78, 10628–10635 (2004).CrossRefPubMedGoogle Scholar
  47. 47.
    P. K. Chan, K. F. To, A. W. Lo, J. L. Cheung, I. Chu, F. W. Au, J. H. Tong, J. S. Tam, J. J. Sung, and H. K. Ng, Persistent infection of SARS coronavirus in colonic cells in vitro, J. Med. Virol. 74, 1–7 (2004).CrossRefPubMedGoogle Scholar
  48. 48.
    Y. Ding, L. He, Q. Zhang, Z. Huang, X. Che, J. Hou, H. Wang, H. Shen, L. Qiu, Z. Li, J. Geng, J. Cai, H. Han, X. Li, W. Kang, D. Weng, P. Liang, and S. Jiang, Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways, J. Pathol. 203, 622–630 (2004).CrossRefPubMedGoogle Scholar
  49. 49.
    I. Hamming, W. Timens, M. L. Bulthuis, A. T. Lely, G. J. Navis, and H. van Goor, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, J. Pathol. 203, 631–637 (2004).CrossRefPubMedGoogle Scholar
  50. 50.
    D. Harmer, M. Gilbert, R. Borman, and K. L. Clark, Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme, FEBS Lett. 532, 107–110 (2002).CrossRefPubMedGoogle Scholar
  51. 51.
    W. Li, T. C. Greenough, M. J. Moore, N. Vasilieva, M. Somasundaran, J. L. Sullivan, M. Farzan, and H. Choe, Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine Angiotensin-converting enzyme 2, J. Virol. 78, 11429–11433 (2004).CrossRefPubMedGoogle Scholar
  52. 52.
    K. Subbarao, J. McAuliffe, L. Vogel, G. Fahle, S. Fischer, K. Tatti, M. Packard, W. J. Shieh, S. Zaki, and B. Murphy, Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice, J. Virol. 78, 3572–3577 (2004).CrossRefPubMedGoogle Scholar
  53. 53.
    D. E. Wentworth, L. Gillim-Ross, N. Espina, and K. A. Bernard, Mice susceptible to SARS coronavirus, Emerg. Infect. Dis. 10, 1293–1296 (2004).PubMedGoogle Scholar
  54. 54.
    J. Sui, W. Li, A. Murakami, A. Tamin, L. J. Matthews, S. K. Wong, M. J. Moore, A. St Clair Tallarico, M. Olurinde, H. Choe, L. J. Anderson, W. J. Bellini, M. Farzan, and W. A. Marasco, Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association, Proc. Natl. Acad. Sci. USA 101, 2536–2541 (2004).CrossRefPubMedGoogle Scholar
  55. 55.
    H. Hofmann, M. Geier, A. Marzi, M. Krumbiegel, M. Peipp, G. H. Fey, T. Gramberg, and S. Pohlmann, Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor, Biochem. Biophys. Res. Commun. 319, 1216–1221 (2004).CrossRefPubMedGoogle Scholar
  56. 56.
    Y. Nie, P. Wang, X. Shi, G. Wang, J. Chen, A. Zheng, W. Wang, Z. Wang, X. Qu, M. Luo, L. Tan, X. Song, X. Yin, M. Ding, and H. Deng, Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression, Biochem. Biophys. Res. Commun. 321, 994–1000 (2004).CrossRefPubMedGoogle Scholar
  57. 57.
    T. C. Greenough, G. J. Babcock, A. Roberts, H. J. Hernandez, W. D. Thomas, Jr., J. A. Coccia, R. F. Graziano, M. Srinivasan, I. Lowy, R. W. Finberg, K. Subbarao, L. Vogel, M. Somasundaran, K. Luzuriaga, J. L. Sullivan, and D. M. Ambrosino, Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice, J. Infect. Dis. 191, 507–514 (2005).CrossRefPubMedGoogle Scholar
  58. 58.
    J. Sui, W. Li, A. Roberts, L. J. Matthews, A. Murakami, L. Vogel, S. K. Wong, K. Subbarao, M. Farzan, and W. A. Marasco, Evaluation of human mAb 80R in immunoprophylaxis of SARS by an animal study, epitope mapping and analysis of spike variants, J. Virol. in press, 2005.Google Scholar
  59. 59.
    Y. He, H. Lu, P. Siddiqui, Y. Zhou, and S. Jiang, Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies, J. Immunol. 174, 4908–4915 (2005).PubMedGoogle Scholar
  60. 60.
    Y. He, Y. Zhou, H. Wu, B. Luo, J. Chen, W. Li, and S. Jiang, Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines, J. Immunol. 173, 4050–4057 (2004).PubMedGoogle Scholar
  61. 61.
    K. Kuba, Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, L. Bao, B. Zhang, G. Liu, Z. Wang, M. Chappell, Y. Liu, D. Zheng, A. Leibbrandt, T. Wada, A. S. Slutsky, D. Liu, C. Qin, C. Jiang, and J. M. Penninger, A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury, Nat. Med. 11, 875–879 (2005).CrossRefPubMedGoogle Scholar
  62. 62.
    T. Gramberg, H. Hofmann, P. Moller, P. F. Lalor, A. Marzi, M. Geier, M. Krumbiegel, T. Winkler, F. Kirchhoff, D. H. Adams, S. Becker, J. Munch, and S. Pohlmann, LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus, Virology 340, 224–236 2005.CrossRefPubMedGoogle Scholar
  63. 63.
    S. A. Jeffers, S. M. Tusell, L. Gillim-Ross, E. M. Hemmila, J. E. Achenbach, G. J. Babcock, W. D. Thomas, Jr., L. B. Thackray, M. D. Young, R. J. Mason, D. M. Ambrosino, D. E. Wentworth, J. C. Demartini, and K. V. Holmes, CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus, Proc. Natl. Acad. Sci. USA 101, 15748–15753 (2004).CrossRefPubMedGoogle Scholar
  64. 64.
    A. Marzi, T. Gramberg, G. Simmons, P. Moller, A. J. Rennekamp, M. Krumbiegel, M. Geier, J. Eisemann, N. Turza, B. Saunier, A. Steinkasserer, S. Becker, P. Bates, H. Hofmann, and S. Pohlmann, DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus, J. Virol. 78, 12090–12095 (2004).CrossRefPubMedGoogle Scholar
  65. 65.
    Z. Y. Yang, Y. Huang, L. Ganesh, K. Leung, W. P. Kong, O. Schwartz, K. Subbarao, and G. J. Nabel, pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN, J. Virol. 78, 5642–5650 (2004).CrossRefPubMedGoogle Scholar
  66. 66.
    M. Donoghue, F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, R. E. Breitbart, and S. Acton, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9, Circ. Res. 87, E1–9 (2000).PubMedGoogle Scholar
  67. 67.
    S. R. Tipnis, N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner, A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase, J. Biol. Chem. 275, 33238–33243 (2000).CrossRefPubMedGoogle Scholar
  68. 68.
    C. Vickers, P. Hales, V. Kaushik, L. Dick, J. Gavin, J. Tang, K. Godbout, T. Parsons, E. Baronas, F. Hsieh, S. Acton, M. Patane, A. Nichols, and P. Tummino, Hydrolysis of biological peptides by human angiotensinconverting enzyme-related carboxypeptidase, J. Biol. Chem. 277, 14838–14843 (2002).CrossRefPubMedGoogle Scholar
  69. 69.
    Y. Yagil and C. Yagil, Hypothesis: ACE2 modulates blood pressure in the mammalian organism, Hypertension 41, 871–873 (2003).CrossRefPubMedGoogle Scholar
  70. 70.
    M. A. Crackower, R. Sarao, G. Y. Oudit, C. Yagil, I. Kozieradzki, S. E. Scanga, A. J. Oliveira-dos-Santos, J. da Costa, L. Zhang, Y. Pei, J. Scholey, C. M. Ferrario, A. S. Manoukian, M. C. Chappell, P. H. Backx, Y. Yagil, and J. M. Penninger, Angiotensin-converting enzyme 2 is an essential regulator of heart function, Nature 417, 822–828 (2002).CrossRefPubMedGoogle Scholar
  71. 71.
    Y. Imai, K. Kuba, S. Rao, Y. Huan, F. Guo, B. Guan, P. Yang, R. Sarao, T. Wada, H. Leong-Poi, M. A. Crackower, A. Fukamizu, C. C. Hui, L. Hein, S. Uhlig, A. S. Slutsky, C. Jiang, and J. M. Penninger, Angiotensin-converting enzyme 2 protects from severe acute lung failure, Nature 436, 112–116 (2005).CrossRefPubMedGoogle Scholar
  72. 72.
    H. Kubo, Y. K. Yamada, and F. Taguchi, Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein, J. Virol. 68, 5403–5410 (1994).PubMedGoogle Scholar
  73. 73.
    A. Bonavia, B. D. Zelus, D. E. Wentworth, P. J. Talbot, and K. V. Holmes, Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E, J. Virol. 77, 2530–2538, (2003).CrossRefPubMedGoogle Scholar
  74. 74.
    J. J. Breslin, I. Mork, M. K. Smith, L. K. Vogel, E. M. Hemmila, A. Bonavia, P. J. Talbot, H. Sjostrom, O. Noren, and K. V. Holmes, Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37 degrees C, J. Virol. 77, 4435–4438 (2003).CrossRefPubMedGoogle Scholar
  75. 75.
    G. J. Babcock, D. J. Esshaki, W. D. Thomas, Jr., and D. M. Ambrosino, Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor, J. Virol. 78, 4552–4560 (2004).CrossRefPubMedGoogle Scholar
  76. 76.
    S. K. Wong, W. Li, M. J. Moore, H. Choe, and M. Farzan, A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem. 279, 3197–3201 (2004).CrossRefPubMedGoogle Scholar
  77. 77.
    X. Xiao, S. Chakraborti, A. S. Dimitrov, K. Gramatikoff, and D. S. Dimitrov, The SARS-CoV S glycoprotein: expression and functional characterization, Biochem. Biophys. Res. Commun. 312, 1159–1164 (2003).CrossRefPubMedGoogle Scholar
  78. 78.
    F. Li, W. Li, M. Farzan, and S. C. Harrison, Structure of SARS coronavirus spike receptor-binding domain complexed with receptor, Science 309, 1864–1868 (2005).CrossRefPubMedGoogle Scholar
  79. 79.
    X. X. Qu, P. Hao, X. J. Song, S. M. Jiang, Y. X. Liu, P. G. Wang, X. Rao, H. D. Song, S. Y. Wang, Y. Zuo, A. H. Zheng, M. Luo, H. L. Wang, F. Deng, H. Z. Wang, Z. H. Hu, M. X. Ding, G. P. Zhao, and H. K. Deng, Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy, J. Biol. Chem. 280, 29588–29595 (2005).CrossRefPubMedGoogle Scholar
  80. 80.
    Z. Y. Yang, H. C. Werner, W. P. Kong, K. Leung, E. Traggiai, A. Lanzavecchia, and G. J. Nabel, Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses, Proc. Natl. Acad. Sci. USA 102, 797–801 (2005).CrossRefPubMedGoogle Scholar
  81. 81.
    M. A. Marra, S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S.R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper, The genome sequence of the SARS-associated coronavirus, Science 300, 1399–1404 (2003).CrossRefPubMedGoogle Scholar
  82. 82.
    J. F. He, G. W. Peng, J. Min, D. W. Yu, W. J. Liang, S. Y. Zhang, R. H. Xu, H. Y. Zheng, X. W. Wu, J. Xu, Z. H. Wang, L. Fang, X. Zhang, H. Li, X. G. Yan, J. H. Lu, Z. H. Hu, J. C. Huang, and X. W. Wan, Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China, Science 303, 1666–1669 (2004). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Wenhui Li
    • 1
  • Hyeryun Choe
    • 2
  • Michael Farzan
    • 3
  1. 1.New England Primate Research CenterSouthboroughUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.New England Primate Research CenterSouthboroughUSA

Personalised recommendations