Advertisement

Genetic and Molecular Biological Analysis of Protein-Protein Interactions in Coronavirus Assembly

  • Paul S. Masters
  • Lili Kuo
  • Rong Ye
  • Kelley R. Hurst
  • Cheri A. Koetzner
  • Bilan Hsue
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)

Keywords

Infectious Bronchitis Virus Nucleocapsid Protein Mouse Hepatitis Virus Spike Protein Spike Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. M. Rottier, in: The Coronaviridae, edited by S. G. Siddell (Plenum Press, New York, 1995), pp. 115-139.Google Scholar
  2. 2.
    J. Armstrong, H. Niemann, S. Smeekens, P. Rottier, and G. Warren, Sequence and topology of a model intracellular membrane protein, E1 glycoprotein, from a coronavirus, Nature 308, 751-752 (1984).CrossRefPubMedGoogle Scholar
  3. 3.
    P. Rottier, D. Brandenburg, J. Armstrong, B. van der Zeijst, and G. Warren, Assembly in vitro of a spanning membrane protein of the endoplasmic reticulum: the E1 glycoprotein of coronavirus mouse hepatitis virus A59, Proc. Natl. Acad. Sci. USA 81, 1421-1425 (1984).CrossRefPubMedGoogle Scholar
  4. 4.
    P. J. M. Rottier, G. W. Welling, S. Welling-Wester, H. G. M. Niesters, J. A. Lenstra, and B. A. M. Van der Zeijst, Predicted membrane topology of the coronavirus protein E1, Biochemistry 25, 1335-1339 (1986).CrossRefPubMedGoogle Scholar
  5. 5.
    C. Risco, I. M. Anton, C. Sune, A. M. Pedregosa, J. M. Martin-Alonso, F. Parra, J. L. Carrascosa, and L. Enjuanes, Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion, J. Virol. 69, 5269-5277 (1995).PubMedGoogle Scholar
  6. 6.
    K. V. Holmes, E. W. Dollar, and L. S. Sturman, Tunicamycin resistant glycosylation of a coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein, Virology 115, 334-344 (1981).CrossRefPubMedGoogle Scholar
  7. 7.
    P. J. M. Rottier, M. C. Horzinek, and B. A. M. van der Zeijst, Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effects of tunicamycin, J. Virol. 40, 350-357 (1981).PubMedGoogle Scholar
  8. 8.
    C. S. Ricard, C. A. Koetzner, L. S. Sturman, and P. S. Masters, A conditional-lethal murine coronavirus mutant that fails to incorporate the spike glycoprotein into assembled virions, Virus Research 39, 261-276 (1995).CrossRefPubMedGoogle Scholar
  9. 9.
    D.-J. E. Opstelten, M. J. B. Raamsman, K. Wolfs, M. C. Horzinek, and P. J. M. Rottier, Envelope glycoprotein interactions in coronavirus assembly, J. Cell Biol. 131, 339-349 (1995).CrossRefPubMedGoogle Scholar
  10. 10.
    V.-P. Nguyen and B. Hogue, Protein interactions during coronavirus assembly, J. Virol. 71, 9278-9284 (1997).PubMedGoogle Scholar
  11. 11.
    J. Tooze, S. A. Tooze, and G. Warren, Replication of coronavirus MHV-A59 in Sac- cells: determination of the first site of budding of progeny virions, Eur. J. Cell Biol. 33, 281-293 (1984).PubMedGoogle Scholar
  12. 12.
    P. J. M. Rottier and J. K. Rose, Coronavirus E1 protein expressed from cloned cDNA localizes in the Golgi region, J. Virol. 61, 2042-2045 (1987).PubMedGoogle Scholar
  13. 13.
    C. E. Machamer and J. K. Rose, A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region, J. Cell Biol. 105, 1205-1214 (1987).CrossRefPubMedGoogle Scholar
  14. 14.
    C. E. Machamer, S. A. Mentone, J. K. Rose, and M. G. Farquhar, The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex, Proc. Natl. Acad. Sci. USA 87, 6944-6948 (1990).CrossRefPubMedGoogle Scholar
  15. 15.
    J. Klumperman, J. Krijnse Locker, A. Meijer, M. C. Horzinek, H. J. Geuze, and P. J. M. Rottier, Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding, J. Virol. 68, 6523-6534 (1994).PubMedGoogle Scholar
  16. 16.
    H. Vennema, G.-J. Godeke, J. W. A. Rossen, W. F. Voorhout, M. C. Horzinek, D.-J. E. Opstelten, and P. J. M. Rottier, Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes, EMBO J. 15, 2020-2028 (1996).PubMedGoogle Scholar
  17. 17.
    E. C. W. Bos, W. Luytjes, H. van der Meulen, H. K. Koerten, and W. J. M. Spaan, The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus, Virology 218, 52-60 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    P. Baudoux, C. Carrat, L. Besnardeau, B. Charley, and H. Laude, Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes, J. Virol. 72, 8636-8643 (1998).PubMedGoogle Scholar
  19. 19.
    E. Mortola and P. Roy, Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system, FEBS Lett. 576, 174-178 (2004).CrossRefPubMedGoogle Scholar
  20. 20.
    E. Corse and C. E. Machamer, Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles, J. Virol. 74, 4319-4326 (2000).CrossRefPubMedGoogle Scholar
  21. 21.
    E. Corse and C. E. Machamer, The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction, Virology 312, 25-34 (2003).CrossRefPubMedGoogle Scholar
  22. 22.
    Y. Huang, Z. Y. Yang, W. P. Kong, and G. J. Nabel, Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production, J. Virol. 78, 12557-12565 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    C. A. M. de Haan, H. Vennema, and P. J. M. Rottier, Assembly of the coronavirus envelope: homotypic interactions between the M proteins, J. Virol. 74, 4967-4978 (2000).CrossRefPubMedGoogle Scholar
  24. 24.
    G.-J. Godeke, C. A. de Haan, J. W. Rossen, H. Vennema, and P. J. M. Rottier, Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein, J. Virol. 74, 1566-1571 (2000).CrossRefPubMedGoogle Scholar
  25. 25.
    L. Kuo, G.-J. Godeke, M. J. B. Raamsman, P. S. Masters, and P. J. M. Rottier, Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier, J. Virol. 74, 1393-1406 (2000).CrossRefPubMedGoogle Scholar
  26. 26.
    P. S. Masters and P. J. M. Rottier, Coronavirus reverse genetics by targeted RNA recombination, Curr. Topics Microbiol. Immunol. 287, 133-159 (2005).CrossRefGoogle Scholar
  27. 27.
    L. Kuo and P. S. Masters, Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus, J. Virol. 76, 4987-4999 (2002).CrossRefPubMedGoogle Scholar
  28. 28.
    S. J. Goebel, B. Hsue, T. F. Dombrowski, and P. S. Masters, Characterization of the RNA components of a putative molecular switch in the 3' untranslated region of the murine coronavirus genome, J. Virol. 78, 669-682 (2004).CrossRefPubMedGoogle Scholar
  29. 29.
    R. Ye, C. Montalto-Morrison, and P. S. Masters, Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain, J. Virol. 78, 9904-9917 (2004).CrossRefPubMedGoogle Scholar
  30. 30.
    E. C. W. Bos, W. Luytjes, and W. J. M. Spaan, The function of the spike protein of mouse hepatitis virus strain A59 can be studied on virus-like particles: cleavage is not required for infectivity, J. Virol. 71, 9427-9433 (1997).PubMedGoogle Scholar
  31. 31.
    K. W. Chang, Y. W. Sheng, and J. L. Gombold, Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein, Virology 269, 212-224 (2000).CrossRefPubMedGoogle Scholar
  32. 32.
    B. J. Bosch, C. A. M. de Haan, S. L. Smits, and P. J. M. Rottier, Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements, Virology 334, 306-318 (2005).CrossRefPubMedGoogle Scholar
  33. 33.
    M. M. Parker and P. S. Masters, Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein, Virology 179, 463-468 (1990).CrossRefPubMedGoogle Scholar
  34. 34.
    P. S. Masters, Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus, Arch. Virol. 125, 141-160 (1992).CrossRefPubMedGoogle Scholar
  35. 35.
    G. W. Nelson and S. A. Stohlman, Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein, J. Gen. Virol. 74, 1975-1979 (1993).CrossRefPubMedGoogle Scholar
  36. 36.
    K. R. Hurst, L. Kuo, C. A. Koetzner, R. Ye, B. Hsue, and P. S. Masters, A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein, J. Virol. 79, in press (2005).Google Scholar
  37. 37.
    D. Escors, J. Ortego, H. Laude, and L. Enjuanes, The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability, J. Virol. 75, 1312-1324 (2001).CrossRefPubMedGoogle Scholar
  38. 38.
    L. S. Sturman, K. V. Holmes, and J. Behnke, Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid, J. Virol. 33, 449-462 (1980).PubMedGoogle Scholar
  39. 39.
    R. S. Baric, G. W. Nelson, J. O. Fleming, R. J. Deans, J. G. Keck, N. Casteel, and S. A. Stohlman, Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription, J. Virol. 62, 4280-4287 (1988).PubMedGoogle Scholar
  40. 40.
    R. Cologna, J. F. Spagnolo, and B. G. Hogue, Identification of nucleocapsid binding sites within coronavirus-defective genomes, Virology 277, 235-249 (2000).CrossRefPubMedGoogle Scholar
  41. 41.
    K. Narayanan, A. Maeda, J. Maeda, and S. Makino, Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells, J. Virol. 74, 8127-8134 (2000).CrossRefPubMedGoogle Scholar
  42. 42.
    K. Narayanan and S. Makino, Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging, J. Virol. 75, 9059-9067 (2001).CrossRefPubMedGoogle Scholar
  43. 43.
    K. Narayanan, C. J. Chen, J. Maeda, and S. Makino, Nucleocapsid-independent specific viral RNA packaging via viral envelope protein and viral RNA signal, J. Virol. 77, 2922-2927 (2003).CrossRefPubMedGoogle Scholar
  44. 44.
    M. J. B. Raamsman, J. Krijnse Locker, A. de Hooge, A. A. F. de Vries, G. Griffiths, H. Vennema, and P. J. M. Rottier, Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E, J. Virol. 74, 2333-2342 (2000).CrossRefPubMedGoogle Scholar
  45. 45.
    E. Corse and C. E. Machamer, The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting, J. Virol. 76, 1273-1284 (2002).PubMedGoogle Scholar
  46. 46.
    J. Torres, J. Wang, K. Parthasarathy, and D. X. Liu, The transmembrane oligomers of coronavirus protein E, Biophys. J. 88, 1283-1290 (2005).CrossRefPubMedGoogle Scholar
  47. 47.
    J. Maeda, J. F. Repass, A. Maeda, and S. Makino, Membrane topology of coronavirus E protein, Virology 281, 163-169 (2001).CrossRefPubMedGoogle Scholar
  48. 48.
    E. Arbely, Z. Khattari, G. Brotons, M. Akkawi, T. Salditt, and I. T. Arkin, A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein, J. Mol. Biol. 341, 769-779 (2004).CrossRefPubMedGoogle Scholar
  49. 49.
    F. Fischer, C. F. Stegen, P. S. Masters, and W. A. Samsonoff, Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly, J. Virol. 72, 7885-7894 (1998).PubMedGoogle Scholar
  50. 50.
    L. Kuo and P. S. Masters, The small envelope protein E is not essential for murine coronavirus replication, J. Virol. 77, 4597-4608 (2003).CrossRefPubMedGoogle Scholar
  51. 51.
    J. Ortego, D. Escors, H. Laude, and L. Enjuanes, Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome, J. Virol. 76, 11518-11529 (2002).CrossRefPubMedGoogle Scholar
  52. 52.
    K. M. Curtis, B. Yount, and R. S. Baric, Heterologous gene expression from transmissible gastroenteritis virus replicon particles, J. Virol. 76, 1422-1434 (2002).PubMedGoogle Scholar
  53. 53.
    J. Maeda, A. Maeda, and S. Makino, Release of E protein in membrane vesicles from virus-infected cells and E protein-expressing cells, Virology 263, 265-272 (1999).CrossRefPubMedGoogle Scholar
  54. 54.
    L. Wilson, C. McKinlay, P. Gage, and G. Ewart, SARS coronavirus E protein forms cation-selective ion channels, Virology 330, 322-331 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Paul S. Masters
    • 1
  • Lili Kuo
    • 2
  • Rong Ye
    • 3
  • Kelley R. Hurst
    • 4
  • Cheri A. Koetzner
    • 5
  • Bilan Hsue
    • 6
  1. 1.New York State Department of HealthAlbanyUSA
  2. 2.New York State Department of HealthAlbanyUSA
  3. 3.New York State Department of HealthAlbanyUSA
  4. 4.New York State Department of HealthAlbanyUSA
  5. 5.New York State Department of HealthAlbanyUSA
  6. 6.StratageneLa JollaUSA

Personalised recommendations