Advertisement

Adp-Ribose-1”-Phosphatase Activities of the Human Coronavirus 229E and Sars Coronavirus X Domains

  • Ákos Putics
  • Jutta Slaby
  • Witold Filipowicz
  • Alexander E. Gorbalenya
  • John Ziebuhr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 581)

Keywords

Pase Activity Cellular Homolog AF1521 Protein Domain Code Sequence tRNA Splice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ziebuhr, J., 2005, The coronavirus replicase, Curr. Top. Microbiol. Immunol. 287:57-94.CrossRefPubMedGoogle Scholar
  2. 2.
    Ziebuhr, J., Thiel, V., and Gorbalenya, A. E., 2001, The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond, J. Biol. Chem. 276:33220-33232.CrossRefPubMedGoogle Scholar
  3. 3.
    Snijder, E. J., Bredenbeek, P. J., et al., 2003, Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J. Mol. Biol. 331:991-1004.CrossRefPubMedGoogle Scholar
  4. 4.
    Genschik, P., Hall, J., and Filipowicz, W., 1997, Cloning and characterization of the Arabidopsis cyclic phosphodiesterase which hydrolyzes ADP-ribose 1″,2″-cyclic phosphate and nucleoside 2′,3′-cyclic phosphates, J. Biol. Chem. 272:13211-13219.CrossRefPubMedGoogle Scholar
  5. 5.
    Kumaran, D., Eswaramoorthy, S., Studier, F. W., and Swaminathan, S., 2005, Structure and mechanism of ADP-ribose-1″-monophosphatase (Appr-1″-pase), a ubiquitous cellular processing enzyme, Protein Sci. 14:719-726.CrossRefPubMedGoogle Scholar
  6. 6.
    Gorbalenya, A. E., Koonin, E. V., and Lai, M. M., 1991, Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses, FEBS Lett. 288:201-205.CrossRefPubMedGoogle Scholar
  7. 7.
    Allen, M. D., Buckle, A. M., et al., 2003, The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A, J. Mol. Biol. 330:503-511.CrossRefPubMedGoogle Scholar
  8. 8.
    Shull, N. P., Spinelli, S. L., and Phizicky, E. M., 2005, A highly specific phosphatase that acts on ADP-ribose 1″-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae, Nucleic Acids Res. 33: 650-660.CrossRefPubMedGoogle Scholar
  9. 9.
    Martzen, M.R., McCraith, S. M., et al., 1999, A biochemical genomics approach for identifying genes by the activity of their products, Science 286: 1153-1155.CrossRefPubMedGoogle Scholar
  10. 10.
    Thiel, V., Ivanov, K. A., et al., 2003, Mechanisms and enzymes involved in SARS coronavirus genome expression, J. Gen. Virol. 84:2305-2315.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ákos Putics
    • 1
  • Jutta Slaby
    • 2
  • Witold Filipowicz
    • 3
  • Alexander E. Gorbalenya
    • 4
  • John Ziebuhr
    • 5
  1. 1.University of WürzburgGermany
  2. 2.University of WürzburgGermany
  3. 3.Friedrich Miescher Institute for Biomedical ResearchSwitzerland
  4. 4.Leiden University Medical CenterThe Netherlands
  5. 5.University of WürzburgGermany

Personalised recommendations