Skip to main content

Beyond Traditional Sampling Synthesis: Real-Time Timbre Morphing Using Additive Synthesis

  • Chapter

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Because of its theoretical advantage for making timbral manipulations, sine wave additive synthesis is an attractive alternative to sampling synthesis, which is currently the most popular method for real-time synthesizers. Nevertheless, until recently performers have seldom used additive synthesis because of the practical difficulty of accomplishing these timbral manipulations, which inherently require modification of large numbers of time-varying amplitude and frequency control functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auger, F., and Flandrin, P. (1995). “Improving the readability of time-frequency and time-scale representations by the reassignment method,” IEEE Trans. Signal Processing 43, 1068–1089.

    Article  ADS  Google Scholar 

  • Berger, K. W. (1964). “Some factors in the recognition of timbre,” J. Acoust. Soc. Am. 36, 1888–1891.

    Article  ADS  Google Scholar 

  • Depalle, P., and Poirot, G. (1991). “SVP: A modular system for analysis, processing and synthesis of sound signals,” Proc. 1991 Int. Computer Music Conf., (Int. Computer Music Assoc., San Francisco), pp. 161–164.

    Google Scholar 

  • Fitz, K. and Haken, L. (1995). “Bandwidth Enhanced Sinusoidal Modeling in Lemur,” Proc. 1995 Int. Computer Music Conf. (Int. Computer Music Assoc., San Francisco), pp. 154–156.

    Google Scholar 

  • Fitz, K. and Haken, L. (2002). “On the Use of Time-Frequency Reassignment in Additive Modeling,” J. Audio Eng. Soc. 50 (11), 879–893.

    Google Scholar 

  • Fitz, K., Haken, L., and Christensen, P. (2000). “A new algorithm for bandwidth association in bandwidth-enhanced additive sound modeling,” Proc. 2000 Int. Computer Music Conf, (Int. Computer Music Assoc., San Francisco), pp. 384–387.

    Google Scholar 

  • Fortuin, H. (1995). “The clavette: A generalized microtonal MIDI keyboard controller,” Proc. 1995 Int. Computer Music Conf., Banff, Canada (Int. Computer Music Assoc., San Francisco), p. 223.

    Google Scholar 

  • Grey, J. M. (1975). “An exploration of musical timbre,” doctoral dissertation, Stanford University, Stanford, CA. Also available as Dept. of Music Report STAN-M-2, Stanford University, Stanford, CA.

    Google Scholar 

  • Haken, L. (1992). “Computational methods for real-time Fourier synthesis,” IEEE Trans. Signal Processing 40(9), 2327–2329.

    Article  ADS  Google Scholar 

  • Haken, L. (1995). “Real-time timbre modifications using sinusoidal parameter streams,” Proc. 1995 Int. Computer Music Conf. (Int. Computer Music Assoc., San Francisco), pp. 162–163.

    Google Scholar 

  • Haken, L., Abdullah, R., and Smart, M. (1992). “The continuum: A continuous music keyboard,” Proc. 1992 Int. Computer Music Conf., (Int. Computer Music Assoc., San Francisco), pp. 81–84.

    Google Scholar 

  • Haken, L., Tellman, E., and Wolfe, P. (1998). “An indiscrete music keyboard,” Computer Music J. 22(1), 30–48.

    Article  Google Scholar 

  • Hebel, K. J., and Scaletti, C. (1994). “A framework for the design, development, and delivery of real-time software-based sound synthesis and processing algorithms,” Audio Eng. Soc. Preprint 3874.

    Google Scholar 

  • Horner, A., Beauchamp, J., and Haken, L. (1993). “Methods for multiple wavetable synthesis of musical instrument tones,” J. Audio Eng. Soc. 41(5), 336–356.

    Google Scholar 

  • Johnstone, E. (1985). “The rolky: A poly-touch controller for electronic music,” Proc 1985 Int. Computer Music Conf. (Computer Music Assoc., San Francisco), pp. 291–295.

    Google Scholar 

  • Keislar, D. (1987). “History and principles of microtonal keyboards,” Computer Music J. 11(1), 18–28.

    Article  Google Scholar 

  • Maher, R. C. (1989). “An approach for the separation of voices in composite musical signals,” doctoral dissertation, Univ. Illinois at Urbana-Champaign, Urbana, IL. Dissertation Abstracts International-B, 50/07, 3074.

    Google Scholar 

  • McAulay, R. J., and Quatieri, T. F. (1986). “Speech analysis/synthesis based on a sinusoidal representation,” IEEE Trans. Acoustics, Speech, and Signal Processing 34 (4), 744–754.

    Article  Google Scholar 

  • Moog, R. A. (1982). “A multiply touch-sensitive clavier for computer music systems,” Proc. Int. Computer Music Conf., Venice, Italy (Int. Computer Music Assoc., San Francisco), p. 275.

    Google Scholar 

  • Peterson, T. L. (1975). “Vocal tract modulation of instrumental sounds by digital filtering,” Proc. Second Annual Music Computation Conf., Urbana, IL (Int. Computer Music Assoc., San Francisco), pp. 33–41.

    Google Scholar 

  • Plante, F., Meyer, G., and Ainsworth, W. A. (1998). “Improvement of speech spectrogram accuracy by the method of reassignment,” IEEE Trans. Speech and Audio Processing 6(3), 282–287.

    Article  Google Scholar 

  • Risset, J.-C., and Wessel, D. (1982). “Exploration of timbre by analysis and synthesis,” in The Psychology of Music, ed. Diana Deutsch (Academic Press, New York), pp. 25–58.

    Google Scholar 

  • Saldanha, E. L., and Corso, J. F. (1964). “Timbre cues and the recognition of musical instruments,” J. Acoust. Soc. Am. 36, 2021–2026.

    Article  ADS  Google Scholar 

  • Scaletti, C. (1987). “Kyma: An object-oriented language for music composition,” Proc. Int. Computer Music Conf., Urbana, IL (Int. Computer Music Assoc., San Francisco), pp. 49–56.

    Google Scholar 

  • Schindler, K. W. (1984). “Dynamic timbre control for real-time digital synthesis,” Computer Music J. 8, 28–42.

    Article  Google Scholar 

  • Serra, X., and Smith, J. O. (1990). “Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition,” Computer Music J. 14(4), 12–24.

    Article  Google Scholar 

  • Smith, J. O., and Serra, X. (1987). “PARSHL: An analysis/synthesis program for non-harmonic sounds based on a sinusoidal representation,” Proc. Int. Computer Music Conf., Urbana, IL (Int. Computer Music Assoc., San Francisco), pp. 290–297.

    Google Scholar 

  • Snell, J. M. (1983). “Sensors for playing computer music with expression,” Proceedings of the Rochester 1983 Int. Computer Music Conf., Eastman School of Music, Rochester, NY (Int. Computer Music Assoc., San Francisco), pp. 113–126.

    Google Scholar 

  • Tellman, E., Haken, L., and Holloway, B. (1995). “Timbre morphing of sounds with unequal numbers of features,” J. Audio Engineering Soc. 43(9), 678–689.

    Google Scholar 

  • Verma, T. S., Levine, S. N., and Meng, T. H. Y. (1997). “Transient modeling synthesis: A flexible analysis/synthesis tool for transient signals,” Proc. Int. Computer Music Conf., Thessaloniki (Int. Computer Music Assoc., San Francisco), pp. 164–167.

    Google Scholar 

  • Wessel, D. (1979). “Timbre space as a musical control structure,” Computer Music J. 3(2), 45–52.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

HAKEN, L., FITZ, K., CHRISTENSEN, P. (2007). Beyond Traditional Sampling Synthesis: Real-Time Timbre Morphing Using Additive Synthesis. In: Beauchamp, J.W. (eds) Analysis, Synthesis, and Perception of Musical Sounds. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32576-7_3

Download citation

Publish with us

Policies and ethics