Skip to main content

Fundamental Frequency Tracking and Applications to Musical Signal Analysis

  • Chapter
Analysis, Synthesis, and Perception of Musical Sounds

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

The constant-Q spectral transform (Brown, 1991) can be used to analyze musical signals and can be effectively employed as a front end for measurements of fundamental frequency. This transform also has advantages for the analysis of musical signals over the conventional discrete Fourier transform, or FFT in its fast-Fouriertransform implementation. Because the FFT computes frequency components on a linear scale with a particular fixed resolution or bandwidth (frequency spacing between components), it frequently results in too little resolution for low musical frequencies and better resolution than needed at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amuedo, J. (1985). “Periodicity estimation by hypothesis-directed search,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-85), Tampa, FL (IEEE, New York), pp. 395–398.

    Chapter  Google Scholar 

  • Ando, S., and Yamaguchi, K. (1993). “Statistical study of spectral parameters in musical instrument tones,” J. Acoust. Soc. Am. 94(1), 37–45.

    Article  ADS  Google Scholar 

  • Beauchamp, J. W. (1974). “Time-variant spectra of violin tones,” J. Acoust. Soc. Am. 56(3), 995–1004.

    Article  ADS  Google Scholar 

  • Benade, A. H. (1976). Fundamentals of Musical Acoustics (Oxford University Press, New York).

    Google Scholar 

  • Boulanger, R. C. (2000). The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal Processing, and Programming (MIT Press, Cambridge, MA).

    Google Scholar 

  • Braccini, C., and Oppenheim, A. V. (1974). “Unequal bandwidth spectral analysis using digital frequency warping,” IEEE Trans. on Acoustics, Speech, and Signal Processing ASSP–22, 236–244.

    Article  Google Scholar 

  • Brown, J. C. (1991). “Calculation of a constant Q spectral transform,” J. Acoust. Soc. Am. 89(1), 425–434.

    Article  ADS  Google Scholar 

  • Brown, J. C., and Zhang, B. (1991). “Musical frequency tracking using the methods of conventional and ‘narrowed’ autocorrelation,” J. Acoust. Soc. Am. 89(5), 2346–2354.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1992). “Musical fundamental frequency tracking using a pattern recognition method,” J. Acoust. Soc. Am. 92(3), 1394–1402.

    Article  ADS  Google Scholar 

  • Brown, J. C., and Puckette, M. S. (1992). “An efficient algorithm for the calculation of a constant Q transform,” J. Acoust. Soc. Am. 92(5), 2698–2701.

    Article  ADS  Google Scholar 

  • Brown, J. C. (1996). “Frequency ratios of spectral components of musical sounds,” J. Acoust. Soc. Am. 99(2), 1210–1218.

    Article  ADS  Google Scholar 

  • Chafe, C., and Jaffe, D. (1986). “Source separation and note identification in polyphonic music,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-86), Tokyo (IEEE, New York), pp. 1289–1292.

    Chapter  Google Scholar 

  • Chafe, C., Jaffe, D., Kashima, K., Mont-Reynaud, B., and Smith, J. (1985). “Techniques for note identification in polyphonic music,” Proc. 1985 Int. Computer Music Conf., Burnaby, B. C., Canada (Computer Music Assoc., San Francisco), pp. 399–405.

    Google Scholar 

  • Charpentier, F. J. (1986). “Pitch detection using the short-term phase spectrum,” Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-86), Tokyo (IEEE, New York), pp. 113–116.

    Chapter  Google Scholar 

  • Duda, R. O., and Hart, P. E. (1973). Pattern Classification and Scene Analysis (John Wiley & Sons, NY).

    MATH  Google Scholar 

  • Duifhuis, H., Willems, L. F., and Sluyter, R. J. (1982). “Measurement of pitch in speech: An implementation of Goldstein's theory of pitch perception,” J. Acoust. Soc. Am. 71, 1568–1580.

    Article  ADS  Google Scholar 

  • Flanagan, J. L., and Golden, R. M. (1966). “Phase vocoder,” Bell Syst. Tech. J. 45, 1493–1509.

    Google Scholar 

  • Fletcher, H. (1964). “Normal vibration frequencies of a stiff piano string,” J. Acoust. Soc. Am. 36, 203–209.

    Article  ADS  Google Scholar 

  • Fletcher, H., Blackham, E. D., and Geertsen, O. N. (1965). “Quality of violin, viola, cello and bass-viol tones,” J. Acoust. Soc. Am. 37, 851–863.

    Article  ADS  Google Scholar 

  • Fletcher, H., Blackham, E. D., and Stratton, R. (1962). “Quality of piano tones,” J. Acoust. Soc. Am. 34, 749–761.

    Article  ADS  Google Scholar 

  • Fletcher, H., and Sanders, L. C. (1967). “Quality of violin vibrato tones,” J. Acoust. Soc. Am 41, 1534–1544.

    Article  ADS  Google Scholar 

  • Gambardella, G. (1971). “A contribution to the theory of short-time spectral analysis with nonuniform bandwidth filters,” IEEE Transactions on Circuit Theory 18, 455–460.

    Article  Google Scholar 

  • Gambardella, G. (1979). “The Mellin transforms and constant-Q spectral analysis,” J. Acoust. Soc. Am. 66, 913–915.

    Article  MATH  ADS  Google Scholar 

  • Gerson, A., and Goldstein, J. L. (1978). “Evidence for a general template in central optimal processing for pitch of complex tones,” J. Acoust. Soc. Am. 63, 498–510.

    Article  ADS  Google Scholar 

  • Hake, H. W., and Rodwan, A. S. (1966). “Perception and recognition,” in Experimental Methods and Instrumentation in Psychology edited by J. B. Sidowski (McGraw Hill, New York), pp. 331–381.

    Google Scholar 

  • Harris, F. J. (1976). “High-resolution spectral analysis with arbitrary spectral centers and arbitrary spectral resolutions,” Computer Electr. Eng. 3, 171–191.

    Article  MATH  Google Scholar 

  • Harris, F. J. (1978). “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE 66(1), 51–83.

    Article  ADS  Google Scholar 

  • Helms, H. D. (1976). “Power spectra obtained from exponentially increasing spacings of sampling positions and frequencies,” IEEE Trans. on Acoustics, Speech, and Signal Processing ASSP-24, 63–71.

    Article  Google Scholar 

  • Higgins, R. J. (1976). “Fast Fourier transform: An introduction with some minicomputer experiments,” Am. J. Physics 44(8), 766–773.

    Article  ADS  Google Scholar 

  • Iwamiya, S., Kosugi, K., and Kitamura, O. (1983). “Perceived principal pitch of vibrato tones,” J. Acoust. Soc. Japan (E) 4(2), 73–82.

    Google Scholar 

  • Kashima, K. L., and Mont-Reynaud, B. (1985). “The bounded-Q approach to time-varying spectral analysis,” Stanford Department of Music Technical Report, STAN-M-23.

    Google Scholar 

  • Kronland-Martinet, R. (1988). “The wavelet transform for analysis, synthesis, and processing of speech and music sounds,” Computer Music J. 12(4), 11–20.

    Article  Google Scholar 

  • Lim, J. S., and Oppenheim, A. V. (1988). Advanced Topics in Signal Processing (Prentice-Hall, Englewood Cliffs, NJ).

    MATH  Google Scholar 

  • Maher, R. C., and Beauchamp, J. W. (1994). “Fundamental frequency estimation of musical signals using a two-way mismatch procedure,” J. Acoust. Soc. Am. 95(4), 2254–2263.

    Article  ADS  Google Scholar 

  • McIntyre, M. E., and Woodhouse, J. (1978). “The acoustics of stringed musical instruments,” Interdisciplinary Science Reviews 3(2), 157–173.

    Google Scholar 

  • McIntyre, M. E., Schumacher, R. T., and Woodhouse, J. (1981). “Aperiodicity in bowed-string motion,” Acustica 49, 13–32.

    Google Scholar 

  • Moore, B. C. J. (1989). An Introduction to the Psychology of Hearing (Academic Press, San Diego).

    Google Scholar 

  • Moore, B. C. J., and Glasberg, B. R. (1990). “Frequency discrimination of complex tones with overlapping and non-overlapping harmonics,” J. Acoust. Soc. Am. 87, 2163–2177.

    Article  ADS  Google Scholar 

  • Nawob, S. H., Quatieri, T. F., and Lim, J. S. (1983). “Signal reconstruction from short-term Fourier transform magnitude,” IEEE Transactions on Acoustics, Speech and Signal Processing ASSP-31, 986–998.

    Article  Google Scholar 

  • Oppenheim, A., Johnson, D., and Steiglitz, K. (1971). “Computation of spectra with unequal resolution using the fast Fourier transform,” Proc. IEEE 59, 299–301.

    Article  Google Scholar 

  • Oppenheim, A. V., and Schafer, R. W. (1975). Digital Signal Processing (Prentice-Hall, Englewood Cliffs, NJ).

    MATH  Google Scholar 

  • Petersen, T. L. (1980). “Acoustic Signal Processing in the Context of a Perceptual Model,” Doctoral dissertation, University of Utah. Dissertation Abstracts International 41/05, 1831.

    Google Scholar 

  • Piszczalski, M., and Galler, B.A. (1979). “Predicting musical pitch from component frequency ratios,” J. Acoust. Soc. Am. 66(3), 710–720.

    Article  ADS  Google Scholar 

  • Scheffers, M. T. M. (1983). “Simulation of auditory analysis of pitch: An elaboration on the DWS pitch meter,” J. Acoust. Soc. Am. 74, 1716–1725.

    Article  ADS  Google Scholar 

  • Schroeder, M. R., and Atal, B. S. (1962). “Generalized short-time power spectra and autocorrelation functions,” J. Acoust. Soc Am. 34, 1679–168.

    Article  ADS  Google Scholar 

  • Schroeder, M. R. (1968). “Period histogram and product spectrum: New methods for fundamental-frequency measurements,” J. Acoust. Soc. Am. 43, 829–834.

    Article  ADS  Google Scholar 

  • Schumacher, R. T. (1992). “Analysis of aperiodicities in nearly periodic waveforms,” J. Acoust. Soc. Am. 91, 438–451.

    Article  ADS  Google Scholar 

  • Seneff, S. (1985). “Pitch and Spectral Analysis of Speech Based on an Auditory Synchrony Model,” Doctoral dissertation, Massacusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Shonle, J. I., and Horan, K. E. (1980). “The pitch of vibrato tones,” J. Acoust. Soc. Am. 67, 246–252.

    Article  ADS  Google Scholar 

  • Smith, J. O., and Serra, X. (1987). “PARSHL: An analysis/synthesis program for non-harmonic sounds based on a sinusoidal representation,” Proc. 1987 Int. Computer Music Conf., Urbana, IL (Computer Music Association, San Francisco), pp. 290–297. Also available as Stanford Dept. of Music Technical Report STAN-M-43.

    Google Scholar 

  • Spiegel, M. F., and Watson, C. S. (1984). “Performance on frequency-discrimination tasks by musicians and nonmusicians,” J. Acoust. Soc. Am. 76, 1690–1695.

    Article  ADS  Google Scholar 

  • Stautner, J. P. (1983). “Analysis and Synthesis of Music Using the Auditory Transform,” unpublished masters thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Sundberg, J. (1978). “Effects of the vibrato and the singing formant on pitch,” Musicologica Slovatca 6, 51–69.

    Google Scholar 

  • Terhardt, E. (1979). “Calculating virtual pitch,” Hearing Research 1, 155–182.

    Article  Google Scholar 

  • Terhardt, E., Stoll, G., and Seewann, M. (1982). “Algorithm for extraction of pitch and pitch saliance from complex tonal signals,” J. Acoust. Soc. Am. 71, 679–688.

    Article  ADS  Google Scholar 

  • Vercoe, B. (1986). Csound: A Manual for the Audio Processing System and Supporting Programs (MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA).

    Google Scholar 

  • Youngberg, J. E., and Boll, S. F. (1978). “Constant-Q signal analysis and synthesis,” Record of the 1978 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Tulsa, OK (IEEE, New York), pp. 375–378.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

BROWN, J.C. (2007). Fundamental Frequency Tracking and Applications to Musical Signal Analysis. In: Beauchamp, J.W. (eds) Analysis, Synthesis, and Perception of Musical Sounds. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32576-7_2

Download citation

Publish with us

Policies and ethics