Skip to main content

Single Positron Emission Computed Tomography

  • Chapter

Abstract

Single photon emission computed tomography (SPECT) allows the user to obtain a threedimensional (3D) representation of the patient’s in vivo radiopharmaceutical distribution. Planar nuclear imaging leads to a twodimensional (2D) image of a 3D object. In some cases, it can be difficult to detect or localize a certain feature due to the ambiguity introduced by background activity in the overlying and underlying tissue. Conversely, SPECT allows the 3D object to be represented as a series of thin, tomographic slices. This can lead to a substantial increase in image contrast that can greatly improve the ability to detect small features. Due to the 3D nature of SPECT, it can also greatly improve one’s ability to localize these features. In addition, improved contrast can lead to an enhanced quantitative capability that can be of great value for both clinical and research purposes. For all of these reasons, SPECT has become an essential medical imaging modality over the past 30 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhl DE, Edwards RQ. Image separation radioisotope scanning. Radiology 1963;80:653–61.

    Google Scholar 

  2. Hounsfield GN. Computerized transverse axial scanning (tomography). Br J Radiol 1973;46: 1016.

    Article  PubMed  CAS  Google Scholar 

  3. Keyes JW Jr, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL. The Humongotron—a scintillation-camera transaxial tomograph. J Nucl Med 1977;18:381–7.

    PubMed  Google Scholar 

  4. Jaszczak RJ, Murphy PH, Huard D, et al. Radionuclide emission computed tomography of the head with Tc-99m and a scintillation camera. J Nucl Med 1977;18:373–80.

    PubMed  CAS  Google Scholar 

  5. Muehllehner G. Effect of resolution improvement on required count density in ECT imaging: a computed simulation. Phys Med Biol 1985;30: 163–73.

    Article  PubMed  CAS  Google Scholar 

  6. Fahey FH, Harkness BA, Keyes JW Jr, et al. Sensitivity, resolution and image quality with a multi-head SPECT camera. J Nucl Med 1992;33: 1859–63.

    PubMed  CAS  Google Scholar 

  7. Mueller SP, Polak JF, Kijewski MF, Holman BL. Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med 1986;27:1729–38.

    PubMed  CAS  Google Scholar 

  8. Tsui BM, Gullberg GT, Edgerton ER, Gilland DR, Perry JR, McCartney WH. Design and clinical utility of a fan beam collimator for SPECT imaging of the head. J Nucl Med 1986;27: 810–19, Figure 2.

    PubMed  CAS  Google Scholar 

  9. Jaszczak RJ, Greer KL, Coleman RE. SPECT using a specially designed cone beam collimator. J Nucl Med 1988;29:1398–405.

    PubMed  CAS  Google Scholar 

  10. Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984;8:306–16.

    PubMed  CAS  Google Scholar 

  11. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13: 601–9.

    Article  PubMed  CAS  Google Scholar 

  12. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638–43.

    Article  Google Scholar 

  13. Bailey DL. Transmission scanning in emission tomography. Eur J Nucl Med 1998;25:774–87.

    Article  PubMed  CAS  Google Scholar 

  14. Paul AK, Nabi HA. Gated myocardial perfusion SPECT: basic principles, technical aspects, and clinical applications. J Nucl Med Tech 2004;32: 179–87.

    Google Scholar 

  15. Graham LS. A rational quality assurance program for SPECT instrumentation. In: Nuclear Medicine Annual 1989. New York: Raven Press, 1989.

    Google Scholar 

  16. Greer KL, Coleman RE, Jaszczak RJ. SPECT: a practical guide for users. J Nucl Med Tech 1983;11:61–5.

    Google Scholar 

  17. Harkness BA, Rogers WL, Clinthorne NH, Keyes JW Jr. SPECT quality control procedures and artifact identification. J Nucl Med Tech 1983;11:55–60.

    Google Scholar 

  18. Rogers WL, Clinthorne NH, Harkness BA, et al. Field-flood requirements for emission computed tomography with an Anger camera. J Nucl Med 1982;23:162–8.

    PubMed  CAS  Google Scholar 

  19. American Institute of Physics. American Association of Physicists in Medicine (AAPM) report number 6: scintillation camera acceptance testing and performance evaluation. New York: AIP, 1980.

    Google Scholar 

  20. American Institute of Physics. American Association of Physicists in Medicine (AAPM) report number 9: computer-aided scintillation camera acceptance testing. New York: AIP, 1981.

    Google Scholar 

  21. American Institute of Physics. American Association of Physicists in Medicine (AAPM) report number 22: rotating scintillation camera SPECT acceptance testing and quality control. New York: AIP, 1988.

    Google Scholar 

  22. Mould RF, ed. Quality Control of Nuclear Medicine Instrumentation. London: Hospital Physicists Association, 1983.

    Google Scholar 

  23. National Electrical Manufacturers Association. Performance Measurements of Scintillation Cameras: Standards Publication NU1. Washington, DC: NEMA, 2001.

    Google Scholar 

  24. Harkness BA, Fahey FH, Keyes JW Jr. Comparison of resolution changes when performing continuous versus step-and-shoot rotation for SPECT data acquisition. Radiology 1988;169(P): 392.

    Google Scholar 

  25. Bieszk JA, Hawman EG. Evaluation of SPECT angular sampling effects: Continuous versus step-and-shoot acquisition. J Nucl Med 1987;28: 1308–14.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fahey, F.H., Harkness, B.A. (2007). Single Positron Emission Computed Tomography. In: Treves, S.T. (eds) Pediatric Nuclear Medicine/PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32322-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32322-0_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-32321-3

  • Online ISBN: 978-0-387-32322-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics