Skip to main content

Abstract

Magnification is an indispensable technique in pediatric nuclear medicine that is used to improve the overall spatial resolution characteristics of gamma cameras. Magnification scintigraphy is useful in the assessment of diseases of the thyroid, kidney, heart, small bones, and scrotum.17 To achieve magnification, a pinhole collimator or a converging collimator can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sty JR, Wells RG, Conway JJ. Spine pain in children. Semin Nucl Med 1993;23(4):296–320.

    Article  PubMed  CAS  Google Scholar 

  2. Parker JA, Lebowitz R, Mascatello V, et al. Magnification renal scintigraphy in the differential diagnosis of septa of Bertin. Pediatr Radiol 1976;4(3):157–60.

    Article  PubMed  CAS  Google Scholar 

  3. Mandell GA, Harcke HT, Hugh J, et al. Detection of talocalcaneal coalitions by magnification bone scintigraphy. J Nucl Med 1990;31(11): 1797–801.

    PubMed  CAS  Google Scholar 

  4. Sorenson JA, Phelps ME. Physics in Nuclear Medicine, 2nd ed. Orlando: Grune & Stratton, 1987.

    Google Scholar 

  5. Rollo FD. Nuclear Medicine Physics, Instrumentation, and Agents. St. Louis: CV Mosby, 1977.

    Google Scholar 

  6. Harcke HT, Mandell GA. Scintigraphic evaluation of the growth plate. Semin Nucl Med 1993;23(4):266–73.

    Article  PubMed  CAS  Google Scholar 

  7. Connolly LP, Treves ST, Davis RT, et al. Pediatric applications of pinhole magnification imaging. J Nucl Med 1999;40(11):1896–901.

    PubMed  CAS  Google Scholar 

  8. Bernier DR. Nuclear Medicine Technology and Techniques, 2nd ed. St. Louis: Mosby, 1989.

    Google Scholar 

  9. Early PJ, Sodee DB. Principles and Practice of Nuclear Medicine. St. Louis: Mosby, 1985.

    Google Scholar 

  10. Conway JJ. A scintigraphic classification of Legg-Calve-Perthes disease. Semin Nucl Med 1993;23(4):274–95.

    Article  PubMed  CAS  Google Scholar 

  11. Gilday DL, Ash JM. Benign bone tumors. Semin Nucl Med 1976;6(1):33–46.

    Article  PubMed  CAS  Google Scholar 

  12. Treves ST. Pediatric Nuclear Medicine. New York: Springer-Verlag, 1985.

    Google Scholar 

  13. Bahk YW, Chung SK, Park YH, et al. Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 1998;39(1):130–9.

    PubMed  CAS  Google Scholar 

  14. Bahk YW, Kim SH, Chung SK, et al. Dual-head pinhole bone scintigraphy. J Nucl Med 1998; 39(8):1444–8.

    PubMed  CAS  Google Scholar 

  15. Kim SH, Chung SK, Bahk YW, et al. Whole-body and pinhole bone scintigraphic manifestations of Reiter’s syndrome: distribution patterns and early and characteristic signs. Eur J Nucl Med 1999;26(2):163–70.

    Article  PubMed  CAS  Google Scholar 

  16. Jaszczak RJ, Li J, Wang H, et al. Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT. Phys Med Biol 1994;39(3): 425–37.

    Article  PubMed  CAS  Google Scholar 

  17. Tornai MP, Bowsher JE, Jaszczak RJ, et al. Mammotomography with pinhole incomplete circular orbit SPECT. J Nucl Med 2003;44(4): 583–93.

    PubMed  Google Scholar 

  18. Smith MF, Gilland DR, Coleman RE, et al. Quantitative imaging of iodine-131 distributions in brain tumors with pinhole SPECT: a phantom study. J Nucl Med 1998;39(5):856–64.

    PubMed  CAS  Google Scholar 

  19. Smith MF, Jaszczak RJ. An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction. Phys Med Biol 1998;43(4):761–75.

    Article  PubMed  CAS  Google Scholar 

  20. Scarfone C, Jaszczak RJ, Li J, et al. Breast tumour imaging using incomplete circular orbit pinhole SPET: a phantom study. Nucl Med Commun 1997;18(11):1077–86.

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Jaszczak RJ, Greer KL, et al. A filtered back-projection algorithm for pinhole SPECT with a displaced centre of rotation. Phys Med Biol 1994;39(1):165–76.

    Article  PubMed  CAS  Google Scholar 

  22. Rowe RK, Aarsvold JN, Barrett HH, et al. A stationary hemispherical SPECT imager for three-dimensional brain imaging. J Nucl Med 1993; 34(3):474–80.

    PubMed  CAS  Google Scholar 

  23. Liu Z, Kastis GA, Stevenson GD, et al. Quantitative analysis of acute myocardial infarct in rat hearts with ischemia-reperfusion using a high-resolution stationary SPECT system. J Nucl Med 2002;43(7):933–9.

    PubMed  Google Scholar 

  24. Profanter C, Gabriel M, Wetscher GJ, et al. Accuracy of preoperative pinhole subtraction single photon emission computed tomography for patients with primary and recurrent hyperparathyroidism in an endemic goiter area. Surg Today 2004;34(6):493–7.

    Article  PubMed  Google Scholar 

  25. Profanter C, Prommegger R, Gabriel M, et al. Comparison of planar scintiscanning and pinhole subtraction SPECT in preoperative imaging of primary hyperparathyroidism in an endemic goiter area. Endocrinologist 2003;13(2):112–5.

    Google Scholar 

  26. Weber DA, Ivanovic M, Franceschi D, et al. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994;35(2):342–8.

    PubMed  CAS  Google Scholar 

  27. Beekman FJ, Vastenhouw B. Design and simulation of a high-resolution stationary SPECT system for small animals. Phys Med Biol 2004;49(19):4579–92.

    Article  PubMed  Google Scholar 

  28. Moore SC, Zimmerman RE, Mahmood A, et al. A triple-detector, multiple-pinhole system for SPECT imaging of rodents. J Nucl Med 2004; 45(5):97P.

    Google Scholar 

  29. Schramm NU, Ebel G, Engeland U, et al. High-resolution SPECT using multipinhole collimation. IEEE Trans Nucl Sci 2003;50(3): 315–20.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Davis, R.T., Zimmerman, R.E., Treves, S.T. (2007). Magnification. In: Treves, S.T. (eds) Pediatric Nuclear Medicine/PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32322-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32322-0_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-32321-3

  • Online ISBN: 978-0-387-32322-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics