Skip to main content

Infection and Inflammation

  • Chapter
Pediatric Nuclear Medicine/PET

Abstract

Despite dramatic advances in its prevention and treatment, infection remains a major cause of morbidity in children, accounting for approximately 30% of childhood deaths worldwide.1 The development of powerful antimicrobial agents has improved patient survival, but timely diagnosis is equally, if not more, important. In adults, most infections can be diagnosed with a thorough history, a complete physical examination, and appropriate laboratory tests. In the pediatric population, unfortunately, this is a difficult task. Children do not, or will not, verbalize their feelings, and the history is often little more than secondhand information obtained from a parent. The physical examination of an ailing child can be difficult, if not impossible. Further complicating matters is the fact that inflammatory conditions such as vasculitis and inflammatory disease may mimic infection. Consequently, empiric treatment with antibiotics, which may be neither appropriate nor effective, is often instituted. Imaging procedures are usually reserved for those patients in whom symptomatology or physical findings point to a specific region of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scientific Report Number 38, 2005, St. Jude. Children’s Research Hospital, Memphis, TN.

    Google Scholar 

  2. Donohoe KJ, Henkin RE, Royal HD, et al. Society of Nuclear Medicine procedure guideline for bone scintigraphy. In: Society of Nuclear Medicine Procedure Guidelines Manual. Reston, VA: Society of Nuclear Medicine, 1997: 149–53.

    Google Scholar 

  3. Love C, Din AS, Tomas MB, Kalapparambath TP, et al. Radionuclide bone imaging: an illustrative review. RadioGraphics 2003;23:341–58.

    Article  PubMed  Google Scholar 

  4. Palestro CJ. The current role of gallium imaging in infection. Semin Nucl Med 1994;24:128–41.

    Article  PubMed  CAS  Google Scholar 

  5. Palestro CJ, Malat J, Collica CJ, et al. Incidental diagnosis of pregnancy on bone and gallium scintigraphy. J Nucl Med 1986;27:370–2.

    PubMed  CAS  Google Scholar 

  6. Lopez OL, Maisano ER. Ga-67 uptake post cesarean section. Clin Nucl Med 1984;9:103–4.

    Article  PubMed  CAS  Google Scholar 

  7. Desai AG, Intenzo C, Park C, et al. Drug-induced gallium uptake in the breasts. Clin Nucl Med 1987;12:703–4.

    Article  PubMed  CAS  Google Scholar 

  8. Vasquez R, Oates E, Sarno RC, et al. Gallium-67 breast uptake in a patient with hypothalamic granuloma (sarcoid). J Nucl Med 1998;19: 118–21.

    Google Scholar 

  9. Engelstad B, Luks S, Hattner RS. Altered 67Ga citrate distribution in patients with multiple red blood cell transfusions. AJR 1982;139:755–9.

    PubMed  CAS  Google Scholar 

  10. Hattner RS, White DL. Gallium-67/stable gadolinium antagonism. MRI contrast agent markedly alters the normal biodistribution of Gallium-67. J Nucl Med 1990;31:1844–46.

    PubMed  CAS  Google Scholar 

  11. Seabold JE, Palestro CJ, Brown ML, et al. Society of Nuclear Medicine procedure guideline for gallium scintigraphy in inflammation. In: Society of Nuclear Medicine Procedure Guidelines Manual. Reston, VA: Society of Nuclear Medicine, 1997:75–80.

    Google Scholar 

  12. Love C, Palestro CJ. Radionuclide imaging of infection. J Nucl Med Tech 2004;32:47–57.

    Google Scholar 

  13. Seabold JE, Forstrom LA, Schauwecker DS, et al. Society of Nuclear Medicine procedure guideline for In-111 leukocyte scintigraphy for suspected infection/inflammation. In: Society of Nuclear Medicine Procedure Guidelines Manual. Reston, VA: Society of Nuclear Medicine, 1997:81–86.

    Google Scholar 

  14. Datz FL, Seabold JE, Brown ML, et al. Society of Nuclear Medicine procedure guideline for Tc-99m Exametazime (HMPAO) labeled leukocyte scintigraphy for suspected infection/inflammation. In: Society of Nuclear Medicine Procedure Guidelines Manual. Reston, VA: Society of Nuclear Medicine, 1997:87–92.

    Google Scholar 

  15. Palestro CJ, Torres MA. Radionuclide imaging of nonosseous infection. Q J Nucl Med 1999;43: 46–60.

    PubMed  CAS  Google Scholar 

  16. Ingbar DH. Mechanisms of lung injury. In: Bone RC, ed. Pulmonary and Critical Care Medicine. St. Louis: Mosby, 1998:17–21.

    Google Scholar 

  17. Love C, Opoku-Agyemang P, Tomas MB, et al. Pulmonary activity on labeled leukocyte images: physiologic, pathologic, and imaging correlation. RadioGraphics 2002;22:1385–93.

    Article  PubMed  Google Scholar 

  18. Saverymuttu SH, Peters AM, Danpure HJ, et al. Lung transit of 111Indium-labelled granulocytes: Relationship to labelling techniques. Scand J Haematol 1983;30:151–60.

    Article  PubMed  CAS  Google Scholar 

  19. Roddie ME, Peters AM, Danpure HJ, et al. Inflammation: imaging with Tc-99m HMPAO-labeled leukocytes. Radiology 1988;166:767–72.

    PubMed  CAS  Google Scholar 

  20. McAfee JG, Samin A. In-111 labeled leukocytes: a review of problems in image interpretation. Radiology 1985;155:221–9.

    PubMed  CAS  Google Scholar 

  21. Crass JR, L’Heureux P, Loken M. False-positive 111In-labeled leukocyte scan in cystic fibrosis. Clin Nucl Med 1979;4:291–3.

    Article  PubMed  CAS  Google Scholar 

  22. Fineman DS, Palestro CJ, Kim CK, et al. Detection of abnormalities in febrile AIDS patients with In-111-labeled leukocyte and Ga-67 scintigraphy. Radiology 1989;170:677–80.

    PubMed  CAS  Google Scholar 

  23. Palestro CJ, Padilla ML, Swyer AJ, et al. Diffuse pulmonary uptake of indium-111 labeled leukocytes in drug-induced pneumonitis. J Nucl Med 1992;33:1175–7.

    PubMed  CAS  Google Scholar 

  24. Powe JE, Short A, Sibbald WJ, et al. Pulmonary accumulation of polymorphonuclear leukocytes in the adult respiratory distress syndrome. Crit Care Med 1982;10:712–8.

    Article  PubMed  CAS  Google Scholar 

  25. Love C, Tomas MB, Palestro CJ. Pulmonary activity on labeled leukocyte images: patterns of uptake and their significance. Nucl Med Commun 2002;23:559–63.

    Article  PubMed  CAS  Google Scholar 

  26. Hangen DH, Segall GM, Harney EW, et al. Kinetics of leukocyte sequestration in the lungs of acutely septic primates: a study using 111Inlabeled autologous leukocytes. J Surg Res 1990;48:196.

    Article  PubMed  CAS  Google Scholar 

  27. Malmros C, Holst E, Hansson L, et al. Dynamic accumulation of neutrophils in lungs and visceral organs during early abdominal sepsis in the pig. World J Surg 1994;18:811–6.

    Article  PubMed  CAS  Google Scholar 

  28. Blomquist S, Malmros C, Martensson L, et al. Absence of lung reactions after complement depletion during dialysis: an experimental study in pigs. Artif Organs 1991;15:397–401.

    Article  PubMed  CAS  Google Scholar 

  29. Palestro CJ, Love C, Tronco GG, et al. Fever in the postoperative patient: role of radionuclide imaging in its diagnosis. RadioGraphics 2000;20: 1649–60.

    PubMed  CAS  Google Scholar 

  30. Love C, Palestro CJ. 99mTc-fanolesomab. IDrugs 2003;6:1079–85.

    PubMed  CAS  Google Scholar 

  31. Love C, Tomas MB, Tronco GG, et al. Imaging infection and inflammation with 18F-FDG-PET. Radiographics 2005;25:1357–68.

    Article  PubMed  Google Scholar 

  32. Bell GI, Burant CF, Takeda J, et al. Structure and function of mammalian facilitative sugar transporters. J Biol Chem 1993;268:19161–4.

    PubMed  CAS  Google Scholar 

  33. Pauwels EKJ, Ribeiro MJ, Stoot JHMB, et al. FDG accumulation and tumor biology. Nucl Med Biol 1998;25:317–22.

    Article  PubMed  CAS  Google Scholar 

  34. Zhuang H, Alavi A. 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 2002;32:47–59.

    Article  PubMed  Google Scholar 

  35. Mochizuki T, Tsukamoto E, Kuge Y, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001;42:1551–5.

    PubMed  CAS  Google Scholar 

  36. Kubota R, Yamada S, Kubota K, et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992;33: 1972–80.

    PubMed  CAS  Google Scholar 

  37. Paik JY, Lee KH, Choe YS, et al. Augmented 18FFDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C. J Nucl Med 2004;45:124–8.

    PubMed  CAS  Google Scholar 

  38. Schelbert HR, Hoh CK, Royal HD, et al. Society of Nuclear Medicine procedure guideline for tumor imaging using F-18 FDG. In: Society of Nuclear Medicine Procedure Guidelines Manual. Reston, VA: Society of Nuclear Medicine, 1997:105–9.

    Google Scholar 

  39. Palestro CJ, Goldsmith SJ. The use of gallium and labeled leukocyte scintigraphy in the AIDS patient. Q J Nucl Med 1995;39:221–30.

    PubMed  CAS  Google Scholar 

  40. O’Doherty MJ, Barrington SF, Campbell M, et al. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997;38:1575–83.

    PubMed  CAS  Google Scholar 

  41. Hoffman JM, Waskin HA, Schifter T, et al. FDGPET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med 1993;34:567–75.

    PubMed  CAS  Google Scholar 

  42. Lorin MI, Feigin RD. Fever without localizing signs and fever of unknown origin. In: Feigin RD, Cherry JD, eds. Textbook of Pediatric Infectious Diseases, 4th ed. Philadelphia: WB Saunders, 1998:820–30.

    Google Scholar 

  43. Buonomo C, Treves ST. Gallium scanning in children with fever of unknown origin. Pediatr Radiol 1993;23:307–10.

    Article  PubMed  CAS  Google Scholar 

  44. Haentjens M, Piepsz A, Schell-Frederick E, et al. Limitations in the use of indium-111-oxinelabeled leucocytes for the diagnosis of occult infection in children. Pediatr Radiol 1987;17: 139–42.

    Article  PubMed  CAS  Google Scholar 

  45. Williamson SL, Williamson MR, Siebert JJ, et al. Indium 111 white blood cell scanning in the pediatric population. Pediatr Radiol 1986;16:493–7.

    Article  PubMed  CAS  Google Scholar 

  46. Steele RW, Jones SM, Lowe BA, et al. Usefulness of scanning procedures for diagnosis of fever of unknown origin in children. J Pediatr 1991; 119:526–30.

    Article  PubMed  CAS  Google Scholar 

  47. Blockmans D, Knockaert D, Maes A, et al. Clinical value of 18F-fluoro-deoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 2001;32:191–6.

    Article  PubMed  CAS  Google Scholar 

  48. Meller J, Altenvoerde G, Munzel U, et al: Fever of unknown origin: prospective comparison of 18FFDG imaging with a double-head coincidence camera and gallium-67 citrate SPET. Eur J Nucl Med 2000;27:1617–25.

    Article  PubMed  CAS  Google Scholar 

  49. Bleeker-Rovers CP, de Kleijn EMHA, Corstens FHM, et al. Clinical Value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging 2004;31:29–37.

    Article  PubMed  Google Scholar 

  50. Lorenzen J, Buchert R, Bohuslavizki KH. Value of FDG PET in patients with fever of unknown origin. Nucl Med Commun 2001;22:779–83.

    Article  PubMed  CAS  Google Scholar 

  51. Yen RF, Chen YC, Wu YW, et al. Using 18-Fluoro-2-deoxyglucose positron emission tomography in detecting infectious endocarditis/endoarteritis. A preliminary report. Acad Radiol 2004;11:316–21.

    Article  PubMed  Google Scholar 

  52. Bleeker-Rovers CP, Bredie SJH, van der Meer JWM, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the diagnosis and follow-up of three patients with vasculitis. Am J Med 2004;116:50–3.

    Article  PubMed  Google Scholar 

  53. Blockmans D, Stroobants S, Maes A, et al. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med 2000;108:246–9.

    Article  PubMed  CAS  Google Scholar 

  54. Meller J, Strutz F, Siefker U, et al. Early diagnosis and follow-up of aortitis with 18FFDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30:730–6.

    Article  PubMed  CAS  Google Scholar 

  55. Sarosi, Jr GA, Turnage RH. Appendicitis. In: Feldman M, Tschumy WO Jr, Friedman LS, Sleisenger MH, eds. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease, 7th ed. St Louis: WB Saunders, 2002:2089–99.

    Google Scholar 

  56. Kipper SL. The role of radiolabeled leukocyte imaging in the management of patients with acute appendicitis. Q J Nucl Med 1999;43:83–92.

    PubMed  CAS  Google Scholar 

  57. Rypins EB, Kipper SL. 99mTc-hexamethyl-propyleneamine oxime (Tc-WBC) scan for diagnosing acute appendicitis in children. Am Surg 1997;63:878–81.

    PubMed  CAS  Google Scholar 

  58. Kipper SL, Rypins EB, Evans DG, et al. Neutrophil-pecific 99mTc-labeled anti-CD15 monoclonal antibody imaging for diagnosis of equivocal appendicitis. J Nucl Med 2000;41: 449–55.

    PubMed  CAS  Google Scholar 

  59. Rypins EB, Kipper SL, Weiland F, et al. 99mTc anti-CD15 monoclonal antibody (LeuTech) imaging improves diagnostic accuracy and clinical management in patients with equivocal presentation of appendicitis. Ann Surg 2002;235: 232–9.

    Article  PubMed  Google Scholar 

  60. Ulshen M. Inflammatory bowel disease. In: Behrman RE, Kliegman RM, Arvin AM, eds. Nelson Textbook of Pediatrics, 15th ed. Philadelphia: WB Saunders, 1996:1080–4.

    Google Scholar 

  61. Shah DB, Cosgrove M, Rees JIS, et al. The technetium white cell scan as an initial imaging investigation for evaluating suspected childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1997;25:524–8.

    Article  PubMed  CAS  Google Scholar 

  62. Alberini JL, Badran A, Freneau E, et al. Technetium-99m HMPAO-labeled leukocyte imaging compared with endoscopy, ultrasonography, and contrast radiology in children with inflammatory bowel disease. J Pediatr Gastoenterol Nutr 2001;32:278–86.

    Article  CAS  Google Scholar 

  63. Del Rosario MA, Fitzgerald JF, Siddiqui AR, et al. Clinical applications of technetium Tc 99m hexamethyl propylene amine oxime leukocyte scan in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1999;28: 63–70.

    Article  PubMed  Google Scholar 

  64. Charron M, Del Rosario JF, Kocoshis S. Comparison of the sensitivity of early versus delayed imaging with Tc-99m HMPAO WBC in children with inflammatory bowel disease. Clin Nucl Med 1998;23:649–53.

    Article  PubMed  CAS  Google Scholar 

  65. Bhargava SA, Orenstein SR, Charron M. Technetium-99m hexamethylpropyleneamine-oximelabeled leukocyte scintigraphy in inflammatory bowel disease in children. J Pediatr 1994;125: 213–7.

    Article  PubMed  CAS  Google Scholar 

  66. Charron M. Inflammatory bowel disease in pediatric patients. Q J Nucl Med 1997;41:309–20.

    PubMed  CAS  Google Scholar 

  67. Charron M, del Rosario FJ, Kocoshis SA. Pediatric inflammatory bowel disease: assessment with scintigraphy with 99mTc white blood cells. Radiology 1999;212:507–13.

    PubMed  CAS  Google Scholar 

  68. Charron M. Pediatric inflammatory bowel disease imaged with Tc-99m white blood cells: The Nuclear Medicine Atlas. Clin Nucl Med 2000;25:708–15.

    Article  PubMed  CAS  Google Scholar 

  69. Granquist L, Chapman SC, Hvidsten S, et al. Evaluation of 99mTc-HMPAO leukocyte scintigraphy in the investigation of pediatric inflammatory bowel disease. J Pediatr 2003;143:48–53.

    Article  Google Scholar 

  70. Davison SM, Chapman S, Murphy MS. 99mTc-HMPAO leucocyte scintigraphy fails to detect Crohn’s disease in the proximal gastrointestinal tract. Arch Dis Child 2001;85:43–6.

    Article  PubMed  CAS  Google Scholar 

  71. Santiago-Restrepo C, Gimenez CR, McCarthy K. Imaging of osteomyelitis and musculoskeletal soft tissue infections: current concepts. Rheum Dis Clin North Am 2003;29:89–109.

    Article  PubMed  CAS  Google Scholar 

  72. Carek PJ, Dickerson LM, Sack JL. Diagnosis and management of osteomyelitis. Am Fam Physician 2001;63:2413–20.

    PubMed  CAS  Google Scholar 

  73. Kim MK, Karpas A. Orthopedic emergencies: the limping child. Clin Ped Emerg Med 2002;3:129–37.

    Article  Google Scholar 

  74. Krogstad P, Smith AL. Osteomyelitis and septic arthritis. In: Feigin RD, Cherry JD, eds. Textbook of Pediatric Infectious Diseases, 4th ed. Philadelphia: WB Saunders, 1998:683–704.

    Google Scholar 

  75. McCarthy JJ, Dormans JP, Kozin SH, et al. Musculoskeletal infections in children: basic treatment principles and recent advancements. J Bone Joint Surg Am 2004;86:850–63.

    Google Scholar 

  76. Kleinman PK. A regional approach to osteomyelitis of the lower extremities in children. Radiol Clin North Am 2002;40:1033–59.

    Article  PubMed  Google Scholar 

  77. Schauwecker DS. The scintigraphic diagnosis of osteomyelitis. AJR 1992;158:9–18.

    PubMed  CAS  Google Scholar 

  78. Ash JM, Gilday DL. The futility of bone scanning in neonatal osteomyelitis: concise communication. J Nucl Med 1980;21:417–20.

    PubMed  CAS  Google Scholar 

  79. Berkowitz ID, Wenzel W. “Normal” technetium bone scans in patients with acute osteomyelitis. Am J Dis Child 1980;134:828–30.

    PubMed  CAS  Google Scholar 

  80. Sullivan DC, Rosenfield NS, Ogden J, et al. Problems in the scintigraphic detection of osteomyelitis in children. Radiology 1980;135; 731–6.

    PubMed  CAS  Google Scholar 

  81. Bressler EL, Conway JJ, Weiss SC. Neonatal osteomyelitis examined by bone scintigraphy. Radiology 1984;152:685–8.

    PubMed  CAS  Google Scholar 

  82. Nadel HR, Stilwell ME. Nuclear medicine topics in pediatric musculoskeletal disease: techniques and applications. Radiol Clin North Am 2001; 39:619–51.

    Article  PubMed  CAS  Google Scholar 

  83. Palestro CJ. Musculoskeletal infection. In: Freeman LM, ed. Nuclear Medicine Annual. New York: Raven Press, 1994:91–119.

    Google Scholar 

  84. Rosenthall L, Lisbona R, Hernandez M, et al. 99mTc-PP and 67Ga imaging following insertion of orthopedic devices. Radiology 1979;133:717–21.

    PubMed  CAS  Google Scholar 

  85. Lisbona R, Rosenthall L. Observations on the sequential use of 99mTc-phosphate complex and 67Ga imaging in osteomyelitis, cellulitis, and septic arthritis. Radiology 1977;123:123–9.

    Google Scholar 

  86. Palestro CJ, Torres MA. Radionuclide diagnosis of orthopedic infections. Semin Nucl Med 1997;27:334–45.

    Article  PubMed  CAS  Google Scholar 

  87. Palestro CJ, Roumanas P, Swyer AJ, et al. Diagnosis of musculoskeletal infection using combined In-111 labeled leukocyte and Tc-99m SC marrow imaging. Clin Nucl Med 1992;17:269–73.

    Article  PubMed  CAS  Google Scholar 

  88. Palestro CJ, Kim CK, Swyer AJ, et al. Radionuclide diagnosis of vertebral osteomyelitis: indium-111-leukocyte and technetium-99mmethylene diphosphonate bone scintigraphy. J Nucl Med 1991;32:1861–5.

    PubMed  CAS  Google Scholar 

  89. Allwright SJ, Miller JH, Gilsanz V. Subperiosteal abscess in children: scintigraphic appearance. Radiology 1991;179:725–9.

    PubMed  CAS  Google Scholar 

  90. Coleman RE, Samuelson CO, Bain S. Imaging with Tc-99m MDP and Ga-67 citrate in patient with rheumatoid arthritis and suspected septic arthritis. J Nucl Med 1982;23:479–82.

    PubMed  CAS  Google Scholar 

  91. Uno K, Matsui N, Nohira K, et al. Indium-111 leukocyte imaging in patients with rheumatoid arthritis. J Nucl Med 1986;27:339–44.

    PubMed  CAS  Google Scholar 

  92. Palestro CJ, Vega A, Kim CK, et al. Appearance of acute gouty arthritis on indium-111-labeled scintigraphy. J Nucl Med 1990;31: 682–5.

    PubMed  CAS  Google Scholar 

  93. Palestro CJ, Goldsmith SJ. In-111-labeled leukocyte imaging in a case of pseudogout. Clin Nucl Med 1992;17:366–7.

    PubMed  CAS  Google Scholar 

  94. Mortensson W, Edeburn G, Fries M, et al. Chronic recurrent multifocal osteomyelitis in children: a roentgenologic and scintigraphic investigation. Acta Radiol 1988;29:565–70.

    Article  PubMed  CAS  Google Scholar 

  95. Schultz C, Holterhus PM, Seidel A, et al. Chronic recurrent multifocal osteomyelitis in children. Pediatr Infect Dis 1999;18:1008–13.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palestro, C.J., Love, C., Tomas, M.B. (2007). Infection and Inflammation. In: Treves, S.T. (eds) Pediatric Nuclear Medicine/PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32322-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-32322-0_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-32321-3

  • Online ISBN: 978-0-387-32322-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics