Skip to main content

Molecular Motors and Machines

  • Chapter
  • First Online:
Nanotechnology for Biology and Medicine

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

Abstract

Movement is one of life’s central attributes. Nature provides living systems with complex molecules called motor proteins, which work inside a cell like ordinary machines built for everyday needs. The development of civilization has always been strictly related to the design and construction of devices, from wheel to jet engine, capable of facilitating man movement and traveling. Nowadays, the miniaturization race leads scientists to investigate the possibility of designing and constructing motors and machines at the nanometer scale, i.e., at the molecular level. Chemists, by the nature of their discipline, are able to manipulate atoms and molecules and are therefore in the ideal position to develop bottom-up strategies for the construction of nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2001a) Molecular Machines Special Issue. Acc Chem Res 34:409.

    Google Scholar 

  • (2001b) Special Volume on Molecular Machines and Motors. Struct Bond 99:1.

    Google Scholar 

  • (2003) Molecular Motors. Weinheim: Wiley-VCH.

    Google Scholar 

  • Abraham W, Grubert L, Grummt U, Buck K (2004) A Photoswitchable Rotaxane with a Folded Molecular Thread. Chem Eur J 10:3562–3568.

    Article  CAS  Google Scholar 

  • Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024.

    Article  PubMed  CAS  Google Scholar 

  • Akkerman O, Coops J (1967) Rec Trav Chim Pays-Bas 86:755.

    Article  CAS  Google Scholar 

  • Altieri A, Gatti F, Kay E, Leigh D, Martel D, Paolucci F, Slawin A, Wong J (2003) Electrochemically Switchable Hydrogen-Bonded Molecular Shuttles. J Am Chem Soc 125:8644–8654.

    Article  CAS  Google Scholar 

  • Álvaro M, Ferrer B, García H, Palomares E, Balzani V, Credi A, Venturi M, Stoddart J, Wenger S (2003) Photochemistry of a dumbbell-shaped multicomponent system hosted inside the ­mesopores or Al/MCM-41 Aluminosilicate. Generation of long-lived viologen radicals. J Phys Chem B 107:14319–14325.

    Article  CAS  Google Scholar 

  • Anelli P, Spencer N, Stoddart J (1991) A Molecular Shuttle. J Am Chem Soc 113:5131–5133.

    Article  CAS  Google Scholar 

  • Asakawa M, Ashton P, Balzani V, Credi A, Hamers C, Mattersteig G, Montalti M, Shipway A, Spencer N, Stoddart J, Tolley M, Venturi M, White A, Williams D (1998) A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. Angew Chem Int Ed Engl 37:333–337.

    Article  CAS  Google Scholar 

  • Ashton P, Ballardini R, Balzani V, Credi A, Dress R, Ishow E, Kleverlann C, Kocian O, Preece J, Spencer N, Stoddart J, Venturi M, Wenger S (2000) A Photochemically-driven Molecular-level Abacus. Chem Eur J 6:3558–3574.

    Article  CAS  Google Scholar 

  • Ashton P, Ballardini R, Balzani V, Baxter I, Credi A, Fyfe M, Gandolfi M, Gomez-Lopez M, Martinez-Diaz M, Piersanti A, Spencer N, Stoddart J, Venturi M, White A, Williams D (1998) Acid-base controllable molecular shuttles. J Am Chem Soc 120:11932–11942.

    Article  CAS  Google Scholar 

  • Astumian R, Hänggi P (2002) Phys Today 55:33.

    Article  Google Scholar 

  • Aviram A, Ratner MA (1974) Molecular Rectifiers. Chem Phys Lett 29:277.

    Article  CAS  Google Scholar 

  • Bachand G, Soong R, Neves H, Olkhovets A, Craighead H, Montemagno C (2001) Precision Attachment of Individual F1-ATPase Biomolecular Motors on Nanofabricated Substrates. Nano Lett 1:42.

    Article  CAS  Google Scholar 

  • Badjic J, Balzani V, Credi A, Silvi S, Stoddart J (2004) A molecular elevator. Science 303:1845–1849.

    Article  PubMed  CAS  Google Scholar 

  • Ballardini R, Balzani V, Credi A, Gandolfi M, Venturi M (2001a) Acc Chem Res 34:445.

    Article  PubMed  CAS  Google Scholar 

  • Ballardini R, Balzani V, Credi A, Gandolfi M, Venturi M (2001b) Int J Photoenergy 3:63.

    Article  CAS  Google Scholar 

  • Balzani V (2003) Photochem Photobiol Sci 2:479.

    Article  CAS  Google Scholar 

  • Balzani V, Credi A, Venturi M (2003) Molecular Devices and Machines – A Journey into the Nano World. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Balzani V, Credi A, Raymo FM, Stoddart JF (2000a) Artificial Molecular Machines. Angew Chem Int Ed Engl 39:3348.

    Article  PubMed  CAS  Google Scholar 

  • Balzani V, Mattersteig G, Matthews OA, Raymo FM, Stoddart JF, Venturi M, White AJP, Williams DJ J Org Chem 2000;65:1924 (2000b) Switching of Pseudorotaxanes and Catenanes Incorporating a Tetrathiafulvalene Unit by Redox and Chemical Inputs. J Org Chem 65:1924–1936.

    Google Scholar 

  • Balzani V, Clemente-León M, Credi A, Ferrer B, Venturi M, Flood A, Stoddart J (2006) Autonomous Artifical Nanomotor Powered by Sunlight. Proc Natl Acad Sci USA 103:1178–1183.

    Article  PubMed  CAS  Google Scholar 

  • Balzani V, Scandola F (1991) Supramolecular Photochemistry. Chichester: Horwood.

    Google Scholar 

  • Bedard T, Moore J (1995) J Am Chem Soc 117:10662.

    Article  CAS  Google Scholar 

  • Bissell A, Córdova E, Kaifer A, Stoddart J (1994) A chemically and electrochemically switchable molecular shuttle. Nature 369:133.

    Article  CAS  Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase—Some probabilities and possibilities. Bioch Biophys Acta 1140:215–250.

    Article  CAS  Google Scholar 

  • Brouwer A, Frochot C, Gatti F, Leigh D, Mottier L, Paolucci F, Roffia S, Wurpel G (2001) Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle. Science 291:2124–2128.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Acc Chem Res 34:412–420.

    Article  PubMed  CAS  Google Scholar 

  • Carter F (1982) Molecular Electronic Devices. New York: Dekker.

    Google Scholar 

  • Cavallini M, Biscarini F, Leon S, Zerbetto F, Bottari G, Leigh D (2003) Information Storage using Supramolecular Surface Patterns. Science 299:531

    Google Scholar 

  • Cecchet F, Rudolf P, Rapino S, Margotti M, Paolucci F, Baggerman J, Brouwer A, Kay E, Wong J, Leigh D (2004) Structural, Electrochemical, and Photophysical Properties of a Molecular Shuttle Attached to an Acid- Terminated Self-Assembled Monolayer. J Phys Chem B 108:15192–15199.

    Article  CAS  Google Scholar 

  • Chen Y, Mao C (2004) Putting a brake on an autonomous DNA nanomotor. J Am Chem Soc 126:8626–8627.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Wang M, Mao C (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43:3554–3557.

    Article  PubMed  CAS  Google Scholar 

  • Christ T, Kulzer F, Bordat P, Basché T (2001) Watching the photo-oxidation of a single aromatic hydrocarbon molecule Angew Chem Int Ed 40:4192.

    Article  CAS  Google Scholar 

  • Collier CP MG, Wong EW, Luo Y, Beverly K, Sampaio J, Raymo FM, Stoddart JF, Heath JR Science 2000;289:1172 (2000).

    Google Scholar 

  • Cozzi F, Guenzi A, Johnson C, Mislow K, Hounshell W, Blount J (1981) J Am Chem Soc 103:957.

    Article  CAS  Google Scholar 

  • Dietrich-Buchecker C, Jimenez-Molero M, Sartor V, Sauvage J (2003) Rotaxanes and Catenanes as Prototypes of Molecular Machines and Motors. Pure Appl Chem 75:1383–1393.

    Article  CAS  Google Scholar 

  • Dominguez Z, Khuong T, Dang H, Sanrame C, Nunez J, Garcia-Garibay M (2003) J Am Chem Soc 125:8827.

    Article  PubMed  CAS  Google Scholar 

  • Drexler E (1986) Engines of Creation The Coming Era of Nanotechnology. New York: Anchor Books.

    Google Scholar 

  • Drexler E (1992) Molecular Machinery, Manufacturing, and Computation. New York: Wiley.

    Google Scholar 

  • Elizarov A, Chiu S, Stoddart J (2002) An Acid–Base Switchable [2]Rotaxane. J Org Chem 67:9175–9181.

    Article  PubMed  CAS  Google Scholar 

  • Endow S, Higuchi H (2000) A mutant of the motor protein kinesin that moves in both directions on microtubules. Nature 406:913–916.

    Article  PubMed  CAS  Google Scholar 

  • Feynman R (1960a) The Wonders that Await a Micro-Microscope. Sat Rev 43:45–47.

    Google Scholar 

  • Feynman R (1960b) There’s plenty of room at the bottom. Eng Sci Feb 23:22–36.

    Google Scholar 

  • Finer J, Simmons R, Spudich J (1994) Single myosin molecule mechanics: Piconewton forces and nanometre steps. Nature 368:113–119.

    Article  PubMed  CAS  Google Scholar 

  • Flood A, Peters A, Vignon S, Steuerman D, Tseng H, Kang S, Heath J, Stoddart J (2004) The Role of Physical Environment on Molecular Electromechanical Switching. Chem Eur J 10:6558–6561.

    Article  CAS  Google Scholar 

  • Forkey J, Quinlan M, Alexander Shaw M, Corrie J, Goldman Y (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404.

    Article  PubMed  CAS  Google Scholar 

  • Frey E (2002) Physics in cell biology: on the physics of biopolymers and molecular motors. ChemPhysChem 3:270.

    Article  PubMed  CAS  Google Scholar 

  • Garaudée S, Silvi S, Venturi M, Credi A, Flood AH, Stoddart JF (2005) Shuttling Dynamics in an Acid-base Switchable [2]Rotaxane. ChemPhysChem 6:2145-2152.

    Google Scholar 

  • Gimzewski JK, Joachim C (1999) Nanoscale Science of Single Molecules Using Local Probes. Science 283:1683–1688.

    Article  PubMed  CAS  Google Scholar 

  • Goodsell D (2004) Bionanotechnology: Lessons from Nature. Hoboken: Wiley.

    Google Scholar 

  • Gust D, Moore T, Moore A (2001) Mimicking Photosynthetic Solar Energy Transduction. Acc Chem Res 34:40–48.

    Article  PubMed  CAS  Google Scholar 

  • Hernández J, Kay E, Leigh D (2004) A reversible synthetic rotary molecular motor. Science 306:1532–1537.

    Article  PubMed  Google Scholar 

  • Hernandez R, Tseng H, Wong J, Stoddart J, Zink J (2004) An operational supramolecular nanovalve. J Am Chem Soc 126:3370–3371.

    Article  PubMed  CAS  Google Scholar 

  • Hess H, Bachand G, Vogel V (2004) Powering nanodevices with biomolecular motors. Chem Eur J 10:2110–2116.

    Article  CAS  Google Scholar 

  • Hess H, Clemmens J, Howard J, Vogel V (2002) Surface imaging by self-propelled nanoscale probes. Nano Lett 2:113–116.

    Article  CAS  Google Scholar 

  • Hess H, Clemmens J, Quin D, Howard J, Vogel V (2001) Light-Controlled Molecular Shuttles Made from Motor Proteins Carrying Cargo on Engineered Surfaces. Nano Lett 1:235–239.

    Article  CAS  Google Scholar 

  • Hlavina S, Meyer G, Rieder KH (2001) Inducing single-molecule chemical reactions with a UHV-STM: A new dimension for nanoscience and technology. ChemPhysChem 2:361.

    Article  Google Scholar 

  • Hua W, Chung J, Gelles J (2002) Distinguishing inchworm and hand-over-hand processive kinesin movement by neck rotation measurements. Science 295:844–848.

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Tseng H, Sha L, Lu W, Brough B, Flood A, Yu B, Celestre P, Chang J, Stoddart J, Ho C (2004) Mechanical Shuttling of Linear Motor-Molecules in Condensed Phases on Solid Substrates. Nano Lett 4:2065–2071.

    Article  CAS  Google Scholar 

  • Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida Y, Kinoshita K (2004) Jr Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468.

    Google Scholar 

  • Jiménez-Molero M, Dietrich-Buchecker C, Sauvage JP (2000) Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer. Angew Chem Int Ed 39:3284–3287.

    Article  Google Scholar 

  • Jiménez-Molero M, Dietrich-Buchecker C, Sauvage JP (2002) Chemically induced contraction and stretching of a linear rotaxane dimer. Chem Eur J 8:1456–1466.

    Article  PubMed  Google Scholar 

  • Joachim C, Launay JP (1984) Rotaxane- and catenane-based molecular machines and motors. Nouv J Chem 8:723.

    CAS  Google Scholar 

  • Kaifer A, Gómez-Kaifer M (1999) Supramolecular Electrochemistry. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Katz E, Lioubashevsky O, Willner I (2004) Electromechanics of a redox-active rotaxane in a monolayer assembly on an electrode. J Am Chem Soc 126:15520–15532.

    Article  PubMed  CAS  Google Scholar 

  • Keaveney C, Leigh D (2004) Shuttling through Anion Recognition. Angew Chem Int Ed 43:1222–1224.

    Article  PubMed  CAS  Google Scholar 

  • Kelly TR, De Silva H, Silva R (1999) Unidirectional rotary motion in a molecular system. Nature 401:150–152.

    Article  PubMed  CAS  Google Scholar 

  • Kelly TR, Silva R, De Silva H, Jasmin S, Zhao Y (2000) A Rationally Designed Prototype of a Molecular Motor. J Am Chem Soc 122:6935–6949.

    Article  CAS  Google Scholar 

  • Kern JM, Raehm L, Sauvage JP, Divisia-Blohorn B, Vidal P (2000) Controlled Molecular Motions in Copper-Complexed Rotaxanes: An XAS Study. Inorg Chem 39:1555–1560.

    Article  PubMed  CAS  Google Scholar 

  • Keyes RW (2001) Fundamental Limits of Silicon Technology. Proc IEEE 89:227.

    Article  Google Scholar 

  • Kikkawa M, Sablin E, Okada Y, Yajima H, Fletterick R, Hirokawa N (2001) Switch-based mechanism of kinesin motors. Nature 411:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Koumura N, Geertsema E, Meetsma A, Feringa BL (2000). Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Center. J Am Chem Soc 122:12005-12006

    Google Scholar 

  • Koumura N, Zijlstra R, van Delden R, Harada N, Feringa B (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155.

    Article  PubMed  CAS  Google Scholar 

  • Lehn J (1990) Perspectives in supramolecular chemistry. Angew Chem Int Ed Engl 29:1304.

    Article  Google Scholar 

  • Lehn J (1995) Supramolecular Chemistry: Concepts and Perspectives. Weinheim: Wiley-VCH.

    Google Scholar 

  • Lehn J (1996) Comprehensive Supramolecular Chemistry. Oxford: Pergamon Press.

    Google Scholar 

  • Leigh D, Perez E (2004) Shuttling through reversible covalent chemistry. Chem Commun 20:2262–2263.

    Article  CAS  Google Scholar 

  • Leigh D, Wong J, Dehez F, Zerbetto F (2003) Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424:174–179.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Tan W (2002) A single DNA molecule nanomotor. Nano Lett 2:315–318.

    Article  CAS  Google Scholar 

  • Limberis L, Stewart R (2000) Toward kinesin-powered microdevices. Nanotechnology 11:47–51.

    Article  CAS  Google Scholar 

  • Long B, Nikitin K, Fitzmaurice D (2003) Self-assembly of a tripodal pseudorotaxane on the surface of a titanium dioxide nanoparticle. J Am Chem Soc 125:5152–5160.

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Collier C, Jeppesen J, Nielsen K, Delonno E, Ho G, Perkins J, Tseng H, Yamamoto T, Stoddart J, Heath JC (2002) Two-dimensional molecular electronics circuits. ChemPhysChem 3:519–525.

    Article  PubMed  CAS  Google Scholar 

  • Mao C, Sun W, Shen Z, Seeman N (1999) A nanomechanical device based on the B-Z transition of DNA. Nature 397:144–146.

    Article  PubMed  CAS  Google Scholar 

  • Marcaccio M, Paolucci F, Roffia S (2004) Trends in Molecular Electrochemistry. New York: Dekker.

    Google Scholar 

  • Mehta AD, Rief M, Spudich J, Smith D, Simmons R (1999) Single-molecule biomechanics with optical methods. Science 283:1689–1695.

    Article  PubMed  CAS  Google Scholar 

  • Metzger R (2003) Unimolecular electrical rectifiers. Chem Rev 103:3803–3834.

    Article  PubMed  CAS  Google Scholar 

  • Mobian P, Kern J, Sauvage J (2004) Light-Driven Machine Prototypes Based on Dissociative Excited States: Photoinduced

    Google Scholar 

  • Decoordination and Thermal Recoordination of a Ring in a Ruthenium(ii)-Containing [2]Catenane. Angew Chem Int Ed 43:2392–2395.

    Google Scholar 

  • Moerner W (2002) A Dozen Years of Single-Molecule Spectroscopy in Physics, Chemistry, and Biophysics. J Phys Chem B 106:910.

    Article  CAS  Google Scholar 

  • Molloy J, Veigel C (2003) Myosin motors walk the walk. Science 300:2045–2046.

    Article  PubMed  CAS  Google Scholar 

  • Montemagno C, Bachand G (1999) Constructing nanomechanical devices powered by biomolecular motors. Nanotechnology 10:225.

    Article  CAS  Google Scholar 

  • Niemeyer C (1997) DNA as a Material for Nanotechnology. Angew Chem Int Ed 36:585–587.

    Article  CAS  Google Scholar 

  • Niemeyer C (2000) Self-assembled nanostructures based on DNA: Towards the development of nanobiotechnology. Curr Opin Chem Biol, 4:609–618.

    Article  PubMed  CAS  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita KJ (1997) Direct observation of the rotation of the F1 -ATPase. Nature 386:299–302.

    Article  PubMed  CAS  Google Scholar 

  • Oster G, Wang H (2000) Reverse engineering a protein: the. • mechanochemistry of ATP synthase. Bioch Biophys Acta 1458:482.

    Google Scholar 

  • Parisi G (2005) Nature 433:221.

    Article  PubMed  CAS  Google Scholar 

  • Poleschak I, Kern JM, Sauvage JP (2004) A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. Chem Commun:474.

    Google Scholar 

  • Raehm L, Kern JM, Sauvage JP (1999) A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell. Chem Eur J 5:3310.

    Article  CAS  Google Scholar 

  • Rastogi V, Girvin M (1999) Structural changes linked to proton translocation by subunit c of the ATP Synthase. Nature 402:263.

    Article  PubMed  CAS  Google Scholar 

  • Reconditi M, Linari M, Lucii L, Stewart A, Sun Y-B, Boesecke P, Narayanan T, Fischetti RF, Irving T, Piazzesi G, Irving M, Lombardi V (2004) The myosin motor in muscle generates a smaller and slower working stroke at higher loads. Nature 428:578–581.

    Article  PubMed  CAS  Google Scholar 

  • Ren H, Allison W (2000) On what makes the gamma subunit spin during ATP hydrolysis by F(1). Bioch Biophys Acta 1458:221.

    Article  CAS  Google Scholar 

  • Rigler R, Orrit M, Talence I, Basché T (2001) Single Molecule Spectroscopy. Berlin: Springer Verlag.

    Book  Google Scholar 

  • Rondelez Y, Tresset G, Nakashima T, Kato-Yamada Y, Fujita H, Takeuchi S, Noji H (2005) Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433:773.

    Article  PubMed  CAS  Google Scholar 

  • Sambongi Y, Iko Y, Tanabe M, Omote H, Iwamoto-Kihara A, Ueda I, Yanagida T, Wada Y, Futai M (1999) Rotation of a Complex of the γ Subunit and c Ring of Escherichia coli ATP Synthase. Science 286:1722.

    Article  PubMed  CAS  Google Scholar 

  • Samori B, Zuccheri G, Baschieri P (2004) Protein Unfolding and Refolding Under Force: Methodologies for Nanomechanics. ChemPhysChem 6:29–34.

    Article  CAS  Google Scholar 

  • Sauvage JP, Dietrich-Buchecker C (1999) Molecular Catenanes, Rotaxanes and Knots. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Schliwa M, Woehlke G (2003) Molecular Motors. Nature 422:759–765.

    Article  PubMed  CAS  Google Scholar 

  • Seelert H, Poetsch A, Dencher N, Engel A, Stahlberg H, Müller D (2000) Structural biology: Proton-powered turbine of a plant motor. Nature 405:418–419.

    Article  PubMed  CAS  Google Scholar 

  • Sherman W, Seeman N (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207.

    Article  CAS  Google Scholar 

  • Shima T, Hampel F, Gladysz J (2004) Molecular Gyroscopes: {Fe(CO)3} and {Fe(CO)2(NO)}+ Rotators Encased in Three-Spoke Stators; Facile Assembly by Alkene Metatheses. Angew Chem Int Ed 43:5537.

    Article  PubMed  CAS  Google Scholar 

  • Shinkai S, Ikeda M, Sugasaki A, Takeuchi M (2001) Positive Allosteric Systems Designed on Dynamic Supramolecular Scaffolds: Toward Switching and Amplification of Guest Affinity and Selectivity. Acc Chem Res 34:494–503.

    Article  PubMed  CAS  Google Scholar 

  • Smalley R (2001) “Of chemistry, love and nanobots - How soon will we see the nanometer-scale robots envisaged by K. Eric Drexler and other molecular nanotechologists? The simple answer is never”. Sci Am 285:76–77.

    Article  PubMed  CAS  Google Scholar 

  • Soong R, Bachand G, Neves H, Olkhovets A, Craighead H, Montemagno C (2000) Powering an inorganic nanodevice with a biomolecular motor. Science 290:1555.

    Google Scholar 

  • Steed J, Atwood J (2000) Supramolecular Chemistry. New York: Wiley.

    Google Scholar 

  • Steed J, Atwood J (2004) Enclyclopedia of Supramolecular Chemistry. New York: Dekker.

    Google Scholar 

  • Steinberg-Yfrach G, Liddell P, Hung S, Moore A, Gust D, Moore T (1997) Conversion of light enery to proton potential in liposomes by artificial photosynthetic reaction centers. Nature 385:239–241.

    Article  CAS  Google Scholar 

  • Steinberg-Yfrach G, Rigaud J, Durantini E, Moore A, Gust D, Moore T (1998) Lightdriven production of ATP catalysed by F0F1- ATP synthase in an artificial photosynthetic membrane. Nature 392:479.

    Article  PubMed  CAS  Google Scholar 

  • Stock D, Leslie A, Walker J (1999) Molecular Architecture of the Rotary Motor in ATP Synthase. Science 286:700.

    Article  Google Scholar 

  • Svoboda K, Schmidt C, Schnapp B, Block S (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365.

    Google Scholar 

  • Ter Wiel MKJ, Van Delden RA, Meetsma A, Feringa BL (2003) Increased Speed of Rotation for the Smallest Light-Driven Molecular Motor. J Am Chem Soc 125:15076–15086.

    Article  PubMed  CAS  Google Scholar 

  • Tseng H, Vignon S, Stoddart J (2003) Toward Chemically Controlled Nanoscale Molecular Machinery. Angew Chem Int Ed 42:1491–1495.

    Article  PubMed  CAS  Google Scholar 

  • Tseng H, Vignon S, Celestre P, Perkins J, Jeppesen J, Di Fabio A, Ballardini R, Gandolfi M, Venturi M, Balzani V, Stoddart J (2004) Redox-Controllable Amphiphilic [2]Rotaxanes. Chem Eur J 10:155-172.

    Google Scholar 

  • Vale R, Milligan R (2000) The way things move: Looking under the hood of molecular motor proteins. Science 288:89–95.

    Article  Google Scholar 

  • Van Delden R, Koumura N, Schoevaars A, Meetsma A, Feringa B (2003) A donor–acceptor substituted molecular motor: Unidirectional rotation driven by visible light. Org Biomol Chem 1:33–35.

    Google Scholar 

  • Visscher K, Schnitzer M, Block SN (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Walker J (1998) ATP Synthesis by Rotary Catalysis (Nobel lecture). Angew Chem Int Ed Engl 37:2308.

    Article  CAS  Google Scholar 

  • Wang Q, Qu D, Ren J, Chen K, Tian H (2004) A lockable light-driven molecular shuttle with a flourescent signal. Angew Chem Int Ed 43:2661.

    Article  PubMed  CAS  Google Scholar 

  • Willner I, Pardo-Yssar V, Katz E, Ranjit K (2001) A photoactivated ‘molecular train’ for optoelectronic applications: light-stimulated translocation of a beta.-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode. J Electroanal Chem 497:172–177.

    Article  CAS  Google Scholar 

  • Xi J, Schmidt J, Montemagno C (2005) Self-assembled microdevices driven by muscle. Nature Mater 4:180–184.

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Zhang X, Shen Z, Seeman N (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda R, Noji H, Kinosita KJ, Yoshida M (1998) F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps. Cell 93:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda R, Noji H, Yoshida M, Kinosita K, Itoh HN (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 210:898–904.

    Article  Google Scholar 

  • Yidiz A, Tomishige M, Vale R, Selvin P (2004) Kinesin walks hand-over-hand. Science 303:676–678.

    Article  CAS  Google Scholar 

  • Yildiz A, Forkey J, McKinney S, Ha T, Goldman Y, Selvin P (2003) Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065.

    Article  PubMed  CAS  Google Scholar 

  • Yin P, Yan H, Daniell X, Turberfield A, Reif J (2004) A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Ed 43:4906–4911.

    Article  PubMed  CAS  Google Scholar 

  • Yurke B, Turberfield A, Mills Jr A, Simmel F, Neumann J (2000) A DNA- fuelled molecular machine made of DNA. Nature 406:605.

    Article  PubMed  CAS  Google Scholar 

  • Zander C, Enderlein J, Keller R (2002) Single Molecule Detection in Solution. Weinheim Wiley-VCH.

    Book  Google Scholar 

  • Zheng X, Mulcahy M, Horinek D, Galeotti F, Magnera T, Michl J (2004) Dipolar and Nonpolar Altitudinal Molecular Rotors Mounted on an Au(111) Surface. J Am Chem Soc 126:4540–0215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank professors Vincenzo Balzani and Margherita Venturi for stimulating discussions. Financial support from EU (STREP “Biomach” NMP2-CT-2003-505487), Ministero dell’Istruzione, dell’Università e della Ricerca (PRIN “Supramolecular Devices” and FIRB RBNE019H9K), and Università di Bologna (Funds for Selected Research Topics) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Credi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silvi, S., Credi, A. (2012). Molecular Motors and Machines. In: Silva, G., Parpura, V. (eds) Nanotechnology for Biology and Medicine. Fundamental Biomedical Technologies. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31296-5_4

Download citation

Publish with us

Policies and ethics