Skip to main content

Characterization of Nanoscale Biological Systems: Multimodal Atomic Force Microscopy for Nanoimaging, Nanomechanics, and Biomolecular Interactions

  • Chapter
  • First Online:
Nanotechnology for Biology and Medicine

Part of the book series: Fundamental Biomedical Technologies ((FBMT))

  • 1715 Accesses

Abstract

Complexity in biological systems requires coordinated research efforts using ­techniques and approaches that are amenable to multiscale (from nano to micro and beyond) and multidimensional (including their structure, activity, and function) microsystems (e.g., cell membrane, cell organelles, biomacromolecules, and their individual as well as integrated functioning). Major experimental designs and ­discoveries in biological sciences have usually been preceded by major discoveries in physicochemical sciences and engineering. Our understanding of biological ­systems at the time and length scale of micrometer and above is reasonable. Scaling down those systems at nanometer level is challenging and mostly unexplored as yet. The classic correspondence theory of nanoscale and microscale phenomena in physical systems is not likely to be valid for biological systems given the layers of complexity in the biological systems. Hence, one needs to examine biological ­systems at nanoscale in both structural and temporal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasmundtveit KE, Samuelsen EJ, Pettersson LAA, Inganas O, Johansson T, Feidenhans R (1999) Structure of thin films of poly(3,4-ethylenedioxythiophene). Synthetic Metals 101:561–564.

    Article  CAS  Google Scholar 

  • Almqvist N, Bhatia R, Primbs G, Desai N, Banerjee S, Lal R (2004) Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophysical Journal 86:1753–1762.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner W, Hinterdorfer P, Ness W, Raab A, Vestweber D, Schindler H, Drenckhahn D (2000) Cadherin interaction probed by atomic force microscopy. Proceedings Of The National Academy Of Sciences Of The United States Of America 97:4005–4010.

    Article  PubMed  CAS  Google Scholar 

  • Bhatia R, Lin H, Lal R (2000) Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: evidence for A beta P channel-mediated cellular toxicity. Faseb Journal 14:1233–1243.

    PubMed  CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic Force Microscope. Physical Review Letters 56:930–933.

    Article  PubMed  Google Scholar 

  • Brady AJ (1991) Mechanical-Properties Of Isolated Cardiac Myocytes. Physiological Reviews 71:413–428.

    PubMed  CAS  Google Scholar 

  • Braidotti P, Branca FP, Stagni L (1997) Scanning electron microscopy of human cortical bone failure surfaces. Journal Of Biomechanics 30:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Butt HJ, Downing KH, Hansma PK (1990) Imaging The Membrane-Protein Bacteriorhodopsin With The Atomic Force Microscope. Biophysical Journal 58:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  • Carter SA, Angelopoulos M, Karg S, Brock PJ, Scott JC (1997) Polymeric anodes for improved polymer light-emitting diode performance. Applied Physics Letters 70:2067–2069.

    Article  CAS  Google Scholar 

  • Chen A, Moy VT (2000) Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophysical Journal 78:2814–2820.

    Article  PubMed  CAS  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging Crystals, Polymers, And Processes In Water With The Atomic Force Microscope. Science 243:1586–1589.

    Article  PubMed  CAS  Google Scholar 

  • Fan YW, Cui FZ, Hou SP, Xu QY, Chen LN, Lee IS (2002) Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Methods 120:17–23.

    Article  PubMed  CAS  Google Scholar 

  • Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Materials 4:612–616.

    Article  PubMed  CAS  Google Scholar 

  • Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, Bosma BL, Bawazer L, Finch MM, Cidade GAG, Morse DE, Stucky GD, Hansma PK (2004) Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone. Bone 35:1013–1022.

    Article  PubMed  CAS  Google Scholar 

  • Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)–(7´7) surface observed by atomic force microscopy. Science 289:422–425.

    Article  PubMed  CAS  Google Scholar 

  • Goodman FO, Garcia N (1991) Roles Of The Attractive And Repulsive Forces In Atomic-Force Microscopy. Physical Review B 43:4728–4731.

    Article  Google Scholar 

  • Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296.

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann P, Lucklum R, Puttmer A, Henning B (1998) Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends. Sensors And Actuators A-Physical 67:32–48.

    Article  Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proceedings Of The National Academy Of Sciences Of The United States Of America 93:3477–3481.

    Article  PubMed  CAS  Google Scholar 

  • Hoh JH, Lal R, John SA, Revel JP, Arnsdorf MF (1991) Atomic Force Microscopy And Dissection Of Gap-Junctions. Science 253:1405–1408.

    Article  PubMed  CAS  Google Scholar 

  • Horton M, Charras G, Lehenkari P (2002) Analysis of ligand-receptor interactions in cells by atomic force microscopy. Journal Of Receptor And Signal Transduction Research 22:169–190.

    Article  PubMed  CAS  Google Scholar 

  • Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2005) The Effects of Three Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells. Stem Cells:113–123.

    Google Scholar 

  • Ionescu-Zanetti C, Mechler A, Carter SA, Lal R (2004) Semiconductive polymer blends: Correlating structure with transport properties at the nanoscale. Advanced Materials 16:385-  +  .

    Google Scholar 

  • Jager EWH, Smela E, Inganas O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545.

    Article  PubMed  CAS  Google Scholar 

  • Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A (2000) A microcantilever-based alcohol vapor sensor-application and response model. Applied Physics Letters 76:2615–2617.

    Article  CAS  Google Scholar 

  • John SA, Saner D, Pitts JD, Holzenburg A, Finbow ME, Lal R (1997) Atomic force microscopy of arthropod gap junctions. Journal Of Structural Biology 120:22–31.

    Article  PubMed  CAS  Google Scholar 

  • Kienberger F, Kada G, Mueller H, Hinterdorfer P (2005) Single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability. Journal Of Molecular Biology 347:597–606.

    Article  PubMed  CAS  Google Scholar 

  • Kodera N, Yamashita H, Ando T (2005) Active damping of the scanner for high-speed atomic force microscopy. Review Of Scientific Instruments 76.

    Google Scholar 

  • Lal R, Lin H (2001) Imaging molecular structure and physiological function of gap junctions and hemijunctions by multimodal atomic force microscopy. Microscopy Research And Technique 52:273–288.

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Kim H, Garavito RM, Arnsdorf MF (1993) Imaging Of Reconstituted Biological Channels At Molecular Resolution By Atomic-Force Microscopy. American Journal Of Physiology 265:C851-C856.

    PubMed  CAS  Google Scholar 

  • Lal R, Drake B, Blumberg D, Saner DR, Hansma PK, Feinstein SC (1995) Imaging Real-Time Neurite Outgrowth And Cytoskeletal Reorganization With An Atomic-Force Microscope. American Journal Of Physiology-Cell Physiology 38:C275-C285.

    Google Scholar 

  • Lim JH, Mirkin CA (2002) Electrostatically driven dip-pen nanolithography of conducting polymers. Advanced Materials 14:1474-+.

    Google Scholar 

  • Lin H, Clegg DO, Lal R (1999) Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope. Biochemistry 38:9956–9963.

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. Faseb Journal 15:2433–2444.

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Arce FT, Ramachandran S, Lal R (2006) Nanomechanics of Hemichannel Conformations: connexin flexibility underlying channel opening and closing. J Biol Chem 281:23207–23217.

    Article  PubMed  CAS  Google Scholar 

  • Mechler A, Kokavecz J, Heszler P, Lal R (2003) Surface energy maps of nanostructures: Atomic force microscopy and numerical simulation study. Appl Phys Lett 82:3740–3742.

    Article  CAS  Google Scholar 

  • Mechler A, Piorek B, Lal R, Banerjee S (2004) Nanoscale velocity-drag force relationship in thin liquid layers measured by atomic force microscopy. Applied Physics Letters 85:3881–3883.

    Article  CAS  Google Scholar 

  • Meyer G, Amer NM (1990) Simultaneous Measurement Of Lateral And Normal Forces With An Optical-Beam-Deflection Atomic Force Microscope. Applied Physics Letters 57:2089–2091.

    Article  CAS  Google Scholar 

  • Ohnesorge F, Binnig G (1993) True Atomic-Resolution By Atomic Force Microscopy Through Repulsive And Attractive Forces. Science 260:1451–1456.

    Article  PubMed  CAS  Google Scholar 

  • Parbhu AN, Bryson WG, Lal R (1999) Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: Correlative nano-indentation and elasticity measurement with an AFM. Biochemistry 38:11755–11761.

    Article  PubMed  CAS  Google Scholar 

  • Pavlovic E, Oscarsson S, Quist AP (2003) Nanoscale site-specific immobilization of proteins through electroactivated disulfide exchange. Nano Letters 3:779–781.

    Article  CAS  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663.

    Article  PubMed  CAS  Google Scholar 

  • Quist A, Doudevski L, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005a) Amyloid ion channels: A common structural link for protein-misfolding disease. Proceedings Of The National Academy Of Sciences Of The United States Of America 102:10427–10432.

    Article  PubMed  CAS  Google Scholar 

  • Quist AP, Pavlovic E, Oscarsson S (2005b) Recent advances in microcontact printing. Analytical And Bioanalytical Chemistry 381:591–600.

    Article  PubMed  CAS  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels: Extracellular calcium-dependent isosmotic volume regulation. Journal Of Cell Biology 148:1063–1074.

    Article  PubMed  CAS  Google Scholar 

  • Quist AP, Chand A, Ramachandran S, Daraio C, Jin S, Lal R (2007) Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: Lab-on-a-chip system for lipid membranes and ion channels. Langmuir 23:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran S, Quist AP, Kumar S, Lal R (2006) Cisplatin nanoliposomes for cancer therapy: AFM and fluorescence Imaging of cisplatin encapsulation, stability, cellular uptake, and toxicity. 22:8156–8162.

    Google Scholar 

  • Ramachandran S, Cohen D, Quist AP, Lal R (2008) New LED-based TIRF Microscopy To Study Molecular Permeability, Cell Membrane And Associated Cytoplasmic Dynamics. Biophys J 94:836.

    Google Scholar 

  • Ramachandran S, Xie L-H, John SA, Subramaniam S, Lal R (2007) A Novel Role for Connexin Hemichannel in Oxidative Stress and Smoking-Induced Cell Injury. PLoS ONE 2:e712.

    Article  PubMed  Google Scholar 

  • Sakmann B, Neher E (1983) Single Channel Recording. New York: Plenum.

    Google Scholar 

  • Seo J, Ionescu-Zanetti C, Diamond J, Lal R, Lee LP (2004) Integrated multiple patch-clamp array chip via lateral cell trapping junctions. Applied Physics Letters 84:1973–1975.

    Article  CAS  Google Scholar 

  • Shroff SG, Saner DR, Lal R (1995) Dynamic Micromechanical Properties Of Cultured Rat Atrial Myocytes Measured By Atomic-Force Microscopy. American Journal Of Physiology-Cell Physiology 38:C286-C292.

    Google Scholar 

  • Sulchek T, Yaralioglu GG, Quate CF, Minne SC (2002) Characterization and optimization of scan speed for tapping-mode atomic force microscopy. Review Of Scientific Instruments 73:2928–2936.

    Article  CAS  Google Scholar 

  • Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. Journal Of Biological Chemistry 280:10646–10654.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414:773–776.

    Article  PubMed  CAS  Google Scholar 

  • Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Park JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosensors & Bioelectronics 20:1932–1938.

    Article  CAS  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annual Review Of Materials Science 28:271–298.

    Article  CAS  Google Scholar 

  • Worcester DL, Kim HS, Miller RG, Bryant PJ (1990) Imaging Bacteriorhodopsin Lattices In Purple Membranes With Atomic Force Microscopy. Journal Of Vacuum Science & Technology A-Vacuum Surfaces And Films 8:403–405.

    Article  CAS  Google Scholar 

  • Xu J, Wang XB, Ensign B, Li M, Wu L, Guia A, Xu JQ (2001) Ion-channel assay technologies: quo vadis? Drug Discovery Today 6:1278–1287.

    Article  PubMed  CAS  Google Scholar 

  • Yuan CB, Chen A, Kolb P, Moy VT (2000) Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 39:10219–10223.

    Article  PubMed  CAS  Google Scholar 

  • Zhang XH, Wojcikiewicz E, Moy VT (2002) Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophysical Journal 83:2270–2279.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnesh Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Quist, A.P., Lal, R. (2012). Characterization of Nanoscale Biological Systems: Multimodal Atomic Force Microscopy for Nanoimaging, Nanomechanics, and Biomolecular Interactions. In: Silva, G., Parpura, V. (eds) Nanotechnology for Biology and Medicine. Fundamental Biomedical Technologies. Springer, New York, NY. https://doi.org/10.1007/978-0-387-31296-5_3

Download citation

Publish with us

Policies and ethics