Skip to main content

Extraction of Intercellular Components by Pulsed Electric Fields

  • Chapter
Pulsed Electric Fields Technology for the Food Industry

Part of the book series: Food Engineering Series ((FSES))

Abstract

During the last decades there was observed a growing interest in electric field application for treatment of food and agricultural raw materials. In early studies of Russian researchers the electrical treatment was applied for intensification of the process of juice extraction from fruits and vegetables (Flaumenbaum, 1949), for sugar diffusion from beet (Zagorulko, 1958), and as a promising method of processing vegetable raw materials, meat, and fish (Kogan, 1968; Matov and Reshetko, 1968; Rogov and Gorbatov, 1974). The evident advantages of electrical treatment applications in the food industry are as follows: the method is simple and does not require any complex and expensive equipment; this is an express process and it can be finished within a short period of time; application of the AC electrical fields with industrial parameters is quite possible; the method allows material processing without any food quality deterioration, in particular, as compared with traditional thermal processing methods; the method can be easily applied in a combined mode, as supplementary to any pressing, thermal or microwave treatment, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albagnac, G., Varoquaux, P., and Montigaux, J. C., 2002, Technologies de transformation des fruits, Lavoisier, Paris.

    Google Scholar 

  • Alekseev, O. L., and Ovcharenko, F. D., 1992, Electrosurface Phenomena and Hydrophylity of Disperse Systems, Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Angersbach, A., Heinz, V., and Knorr, D., 1999, Electrophysiological model of intact and processed plant tissues: Cell disintegration criteria, Biotechnol. Prog. 15(4): 753–762.

    Article  CAS  Google Scholar 

  • Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146: 54–62.

    Google Scholar 

  • Bajgai, T. R., and Hashinaga, F., 2001, High electric field drying of Japanese radish, Drying Technol 19: 2291–2302.

    Article  Google Scholar 

  • Banerjee, S., and Law, S. E., 1998, Electroosmotically enhanced drying of biomass, IEEE Trans. Ind. Appl. 34: 992–999.

    Article  Google Scholar 

  • Barbosa-Cánovas, G. V., Góngora-Nieto, M. M., Pothakamury, U. R., and Swanson, B. G., 1998, Preservation of Foods with Pulsed Electric Fields, Academic Press, London.

    Google Scholar 

  • Barsotti, L., and Cheftel, J. C., 1998, Traitement des aliments par champs electriques pulses. Sci. Aliment. 18: 584–601.

    Google Scholar 

  • Bazhal, I. G., and Gulyi, I. S., 1983, Extraction of sugar from sugar-beet in a direct-current electric field, Pishchevaya Tekhnol. 5: 49–51 (in Russian).

    Google Scholar 

  • Bazhal, M., 2001, Etude du mécanisme d’électroperméabilisation des tissus végétaux. Application à l’extraction du jus des pommes, Thèse de Doctorat, Université de Technologie de Compiègne, France.

    Google Scholar 

  • Bazhal, M., and Vorobiev, E., 2000, Electrical treatment of apple cossettes for intensifying juice pressing, J. Sci. Food Agric. 80: 1668–1674.

    Article  CAS  Google Scholar 

  • Bazhal, M. I., Lebovka, N. I., and Vorobiev, E. I., 2001, Pulsed electric field treatment of apple tissue during compression for juice extraction, J. Food Eng. 50: 129–139.

    Article  Google Scholar 

  • Bazhal, M. I., Lebovka, N. I., and Vorobiev, E., 2003, Optimisation of pulsed electric field strength for electroplasmolysis of vegetable tissues, Biosyst. Eng. 86: 339–345.

    Article  Google Scholar 

  • Botoshan, N. I., Papchenko, A. Y., and Berzoi, S. E., 1990, Intensification of sugar extraction process using electrical pretreatment of sugar beet cossettes, Electron. Obrabotka Mater. 6: 66–72 (in Russian).

    Google Scholar 

  • Bouzrara, H., 2001, Amélioration du pressage de produits végétaux par Champ Electrique Puisé. Cas de la betterave à sucre, Thèse de Doctorat, Université de Technologie de Compiègne, France.

    Google Scholar 

  • Bouzrara, H., and Vorobiev, E., 2000, Beet juice extraction by pressing and pulsed electric fields, Int. Sugar J. CII(1216): 194–200.

    Google Scholar 

  • Bouzrara, H., and Vorobiev, E., 2001, Non-thermal pressing and washing of fresh sugarbeet cossettes combined with a pulsed electrical field, Zucker 126: 463–466.

    CAS  Google Scholar 

  • Bouzrara, H., and Vorobiev, E., 2003, Solid/liquid expression of cellular materials enhanced by pulsed electric field, Chem. Eng. Process. 42: 249–257.

    Article  CAS  Google Scholar 

  • Chalermchat, Y., Finkan, M., and Dejmek, P., 2004, Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment: Mathematical modelling of mass transfer, J. Food Eng. 64: 229–236.

    Article  Google Scholar 

  • DeBruin, K. A., and Krassowska, W., 1999, Modeling electroporation in a single cell. I. Effects of field strength and rest potential, Biophys. J. 79: 670–679.

    Google Scholar 

  • Dimitrov, D. S., and Sowers, A. E., 1990, Membrane electroporation—fast molecular exchange by electroosmosis, Biochim. Biophys. Acta 1022: 381–392.

    Article  CAS  Google Scholar 

  • El-Belghiti, K., and Vorobiev, E., 2004, Mass transfer of sugar from beets enhanced by pulsed electric field, Trans. IChemE 82: 226–230.

    CAS  Google Scholar 

  • El-Belghiti, K., and Vorobiev, E., 2005a, Kinetic model of sugar diffusion from sugar beet tissue treated by pulsed electric field, J. Sci. Food Agric., 85: 213–218.

    Article  CAS  Google Scholar 

  • El-Belghiti, K., and Vorobiev, E., 2005b, Modelling of solute aqueous extraction from carrots subjected to a pulsed electric field pre-treatment, Biosyst. Eng., 90: 289–294.

    Google Scholar 

  • El-Belghiti, K., Kamal, R., and Vorobiev, E., 2005c, Effect of centrifugal force on the aqueous extraction of solute from sugar beet tissue pretreated by pulsed electric field, J. Food Proc. Eng., 28: 346–358.

    Article  Google Scholar 

  • Estiaghi, M. N., and Knorr, D., 1999, Method for treating sugar beet, International Patent Nr WO 99/6434.

    Google Scholar 

  • Exerova, D., and Nikolova, A., 1992, Phase transitions in phospholipid foam bilayers, Langmuir 8: 3102–3108.

    Article  Google Scholar 

  • Fincan, M., and Dejmek, P., 2002, In situ visualization of the effect of a pulsed electric field on plant tissue, J. Food Eng. 55: 223–230.

    Article  Google Scholar 

  • Fincan, M., and Dejmek, P., 2003, Effect of osmotic pretreatment and pulsed electric field on the viscoelastic properties of potato tissue, J. Food Eng. 59: 169–175.

    Article  Google Scholar 

  • Fincan, M., De Vito, F., and Dejmek, P., 2004, Pulsed electric field treatment for solid-liquid extraction of red beetroot pigment, J. Food Eng. 64: 381–388.

    Article  Google Scholar 

  • Flaumenbaum, B. L., 1949, Electrical treatment of fruits and vegetables before extraction of juice, Trudy OTIKP 3:15–20 (in Russian).

    Google Scholar 

  • Gabriel, B., and Teissie, J., 1995, Control by electric parameters of short-and long-term cell death resulting from electropermeabilization of Chinese hamster ovary cells, Biochim. Biophys. Acta 1266: 171–178.

    Article  CAS  Google Scholar 

  • Gabriel, B., and Teissie, J., 1999, Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse. Biophys. J. 76: 2158–2165.

    Article  CAS  Google Scholar 

  • Glover, P. W. J., Hole, M. J., and Pous, J., 2000, A modified Archie’s law for two conducting phases, Earth Planet. Sci. Lett. 180: 369–383.

    Article  CAS  Google Scholar 

  • Gulyi, I. S., Lebovka, N. I., Mank, V. V., Kupchik, M. P., Bazhal, M. I., Matvienko, A. B., and Papchenko, A. Y., 1994, Scientific and Practical Principles of Electrical Treatment of Food Products and Materials, UkrlNTEI, Kiev (in Russian).

    Google Scholar 

  • Heimburg, T., 1998, Mechanical aspects of membrane thermodynamics. Estimation of the mechanical properties of lipid membranes close to the chain melting transition from calorimetry, Biochim. Biophys. Acta 1415: 147–162.

    Article  CAS  Google Scholar 

  • Ho, S. Y., and Mittal, G. S., 1996, Electroporation of cell membranes: A review. Crit. Rev. Biotechnol. 16: 349–362.

    Article  CAS  Google Scholar 

  • Hunter, R. J., 1981, Zeta Potential in Colloid Science, Principles and Applications, Academic Press, New York.

    Google Scholar 

  • Jemai, A. B., 1997, Contribution a l’etude de l’effet d’un traitement electrique sur les cossettes de betterave a sucre. Incidence sur le procede d’extraction, Thèse de Doctorat, Université de Technologie de Compiègne, France.

    Google Scholar 

  • Jemai, A. B., and Vorobiev, E., 2001, Enhancement of the diffusion characteristics of apple slices due to moderate electric field pulses (MEFP), In: Proceedings of the 8th International Congress on Engineering and Food (J. Welti-Chanes, G. V. Barbosa-Canovas, and J. M. Aguilera, eds.), Vol. 2, pp. 1504–1508.

    Google Scholar 

  • Jemai, A. B., and Vorobiev, E., 2002a, Effect of moderate electric field pulse (MEFP) on the diffusion coefficient of soluble substances from apple slices, Int. J. Food Sci. Technol. 37: 73–86.

    Article  CAS  Google Scholar 

  • Jemai, A. B., and Vorobiev, E., 2002b, Pulsed Electric Field Assisted Pressing of Sugar Beet Cossettes: A Process of Cold Juice Extraction, GC-TAI, Compiègne University of Technology, Compiègne.

    Google Scholar 

  • Jemai, A. B., and Vorobiev, E., 2003. Enhancing leaching from sugar beet cossettes by pulsed electric field, J. Food Eng. 59:405–112.

    Article  Google Scholar 

  • Jeyamkondan, S., Jayas, D. S., and Holley, R. A., 1999, Pulsed electric field processing of foods: A review, J. Food Prot. 62:1088–1096.

    CAS  Google Scholar 

  • Karathanos, V. T., Kanellopoulos, N. K., and Belessiotis, V. G., 1996, Development of porous structure during air drying of agricultural plant products, J. Food Eng. 29: 167–183.

    Article  Google Scholar 

  • Katrokha, I. M., and Kupchik, M. P., 1984, Intensification of sugar extraction from sugar-beet cossettes in an electric field, Sakharnaya Promyshlennost 7: 28–31 (in Russian).

    Google Scholar 

  • Knorr, D., 1999, Novel approaches in food-processing technology: New technologies for preserving foods and modifying function, Curr. Opin. Biotechnol. 10: 485–491.

    Article  CAS  Google Scholar 

  • Knorr, D., Angersbach, A., Eshtiaghi, M. N., Heinz, V., and Lee, D.-U., 2001, Processing concepts based on high intensity electric field pulses, Trends Food Sci. Technol. 12: 129–135.

    Article  CAS  Google Scholar 

  • Knorr, D., Geulen, M., Grahl, T., and Sitzmann, W., 1994, Food application of high electric field pulses, Trends Food Sci. Technol. 5: 71–75.

    Article  CAS  Google Scholar 

  • Kogan, F. I., 1968, Electrophysical Methods in Canning Technologies of Foodstuff, Tehnika, Kiev (in Russian).

    Google Scholar 

  • Kotnik, T., and Miklavcic, D., 2000, Analytical description of transmembrane voltage induced by electric fields on spheroidal cells, Biophys. J. 79: 670–679.

    Article  CAS  Google Scholar 

  • Kotnik, T., Miklavcic, D., and Slivnik, T., 1998, Time course of transmembrane voltage induced by time-varying electric fields: A method for theoretical analysis and its application, Bioelectrochem. Bioenerg. 45: 3–16.

    Article  CAS  Google Scholar 

  • Kovacik, J., 1998, Electrical conductivity of two-phase composite material, Scr. Mater. 39: 153–157.

    Article  CAS  Google Scholar 

  • Labuza, T. P., and Hyman, C. R., 1998, Moisture migration and control in multi-domain foods, Trends Food Sci. Technol. 9:47–55.

    Article  CAS  Google Scholar 

  • Lanoisellé, J.-L., Vorobyov, E., and Bouvier, J.-M., 1996, Modelling of solid/liquid expression for cellular materials, AIChE J. 42: 2057–2067.

    Article  Google Scholar 

  • Lebedeva, N. E., 1987, Electric breakdown of bilayer lipid membranes at short times of voltage effect, Biol. Membr. 4:994–998 (in Russian).

    CAS  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., and Vorobiev, E., 2000a, Simulation and experimental investigation of food material breakage using pulsed electric field treatment, J. Food Eng. 44: 213–223.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., and Vorobiev, E., 2001, Pulsed electric field breakage of cellular tissues: Visualization of percolative properties, Innov. Food Sci. Emerg. Technol. 2: 113–125.

    Article  Google Scholar 

  • Lebovka, N. I., Bazhal, M. I., and Vorobiev, E., 2002, Estimation of characteristic damage time of food materials in pulsed-electric fields, J. Food Eng. 54: 337–346.

    Article  Google Scholar 

  • Lebovka, N. I., Melnyk, R. M., Kupchik, M. P., Bazhal, M. I., and Serebrjakov, R. A., 2000b, Local generation of ohmic heat on cellular membranes during the electrical treatment of biological tissues, Sci. Pap. Kiev Mogyla Acad. 18: 51–56.

    Google Scholar 

  • Lebovka, N. I., Praporscic, I., Ghnimi, S., and Vorobiev, E., 2005, Temperature enhanced electroporation under the pulsed electric field treatment of food tissue, J. Food Eng., 69: 177–184.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., and Vorobiev, E., 2003, Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: Consolidation stages analysis, J. Food Eng. 59: 309–317.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., and Vorobiev, E., 2004a, Combined treatment of apples by pulsed electric fields and by heating at moderate temperature, J. Food Eng. 65: 211–217.

    Article  Google Scholar 

  • Lebovka, N. I., Praporscic, I., and Vorobiev, E., 2004b, Effect of moderate thermal and pulsed electric field treatments on textural properties of carrots, potatoes and apples, Innov. Food Sci. Emerg. Technol. 5: 9–16.

    Article  Google Scholar 

  • Lebovka, N. I., and Vorobiev, E., 2004, On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields, Int. J. Food Microbiol. 91: 83–89.

    Article  CAS  Google Scholar 

  • Mank, V. V., and Lebovka, N. I., 1987, Spectroscopy of Nuclear Magnetic Resonance of Water in Heterogeneous Systems, Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Matov, B. I., and Reshetko, E. V., 1968, Electrophysical Methods in Food Industry, Kartja Moldavenjaske, Kishinev (in Russian).

    Google Scholar 

  • Mavroudis, N. E., Gekas, V., and Sjoholm, I., 1998, Osmotic dehydration of apples. Shrinkage phenomena and the significance of initial structure on mass transfer rates, J. Food Eng. 38: 101–123.

    Article  Google Scholar 

  • McLachlan, D. S., 1989, The complex permittivity of emulsions: An effective media-percolation equation, Solid State Commun. 72(8): 831–834.

    Article  CAS  Google Scholar 

  • Mouritsen, O. G., and Jørgensen, K., 1997, Small-scale lipid-membrane structure: Simulation versus experiment. Curr. Opin. Struct. Biol. 7: 518–527.

    Article  CAS  Google Scholar 

  • Nagy, S., Chen, C. S., and Shaw, P. E., 1993, Fruit Juice Processing Technology, Agscience Ink., Florida.

    Google Scholar 

  • Neumann, E., Kakorin, S., and Toensing, K., 1999, Fundamentals of electroporative delivery of drugs and genes. Mini-review, Bioelectrochem. Bioenerg. 48: 3–16.

    Article  CAS  Google Scholar 

  • Orsat, V., Raghavan, G. S. V., and Norris, E. R., 1996, Food processing waste dewatering by electro-osmosis, Can. Agric. Eng. 38: 063–067.

    Google Scholar 

  • Peters, M. J., Hendriks, M., and Stinstra, J. G., 2001, The passive DC conductivity of human tissues described by cells in solution, Bioelectrochemistry 53: 155–160.

    Article  CAS  Google Scholar 

  • Praporscic, I., Ghnimi, S., and Vorobiev, E., 2005, Enhancement of pressing of sugar beet cuts by combined pulsed electric field and ohmic heating, J. Food Proc. Preserv., 29: 378–389.

    Article  Google Scholar 

  • Praporscic, I., Lebovka, N., Ghnimi, S., and Vorobiev, E., 2006, Ohmically heated enhanced expression of juice from soft vegetable tissues, Biosyst. Eng., 93: 199–204.

    Article  Google Scholar 

  • Praporscic, I., Muravetchi, V., and Vorobiev, E., 2004, Constant rate expressing of juice from biological tissue enhanced by pulsed electric field, Drying Technol. 22: 1–14.

    Article  Google Scholar 

  • Rogov, I. A., and Gorbatov, A. V., 1974, Physical Methods of Foods Processing, Pischevaja Promyshlennost, Moscow (in Russian).

    Google Scholar 

  • Rols, M.-P., and Teissie, J., 1998, Electropermeabilization of mammalian cells to macromolecules: Control by pulse duration. Biophys. J. 75: 1415–1423.

    Article  CAS  Google Scholar 

  • Sahimi, M., 1994, Applications of Percolation Theory, Taylor and Francis, London.

    Google Scholar 

  • Schwan, H. P., 1957, Electrical properties of tissue and cell suspensions, In: Advances in Biological and Medical Physics (J. H. Lawrence and A. Tobias, eds.), Academic Press, New York, Vol. 5, pp. 147–209.

    Google Scholar 

  • Schwartzberg, H. G., 1997, Expression of fluid from biological solids, Sep. Purif. Methods 26: 1–213.

    Google Scholar 

  • Schwartzberg, H. G., and Chao, R. Y., 1982, Solute diffusivities in leaching processes, Food Technol. 36: 73–86.

    CAS  Google Scholar 

  • Shirato, M., Murase, T., Iwata, M., and Nakatsuka, S., 1986, The Terzaghi-Voight combined model for constant-pressure consolidation of filter cakes and homogeneous semi-solid materials, Chem. Eng. Sci. 41(12): 3213–3218.

    Article  CAS  Google Scholar 

  • Stauffer, D., and Aharony, A., 1992, Introduction to Percolation Theory, Taylor and Francis, London.

    Google Scholar 

  • Taiwo, K. A., Angersbach, A., and Knorr, D., 2002, Influence of high intensity electric field pulses and osmotic dehydration on the rehydration characteristics of apple slices at different temperatures. J. Food Eng. 52: 185–192.

    Article  Google Scholar 

  • Teissie, J., Eynard, N., Gabriel, B., and Rols, M. P., 1999, Electropermeabilization of cell membranes, Adv. Drug Deliv. Rev. 35: 3–19.

    Article  CAS  Google Scholar 

  • Tikhomolova, K. P., 1993, Electro-Osmosis, Ellis Horwood Limited, Chichester.

    Google Scholar 

  • Van der Poel, P. W., Schiweck, H., and Schwartz, T., 1998, Sugar Technology Beet and Cane Sugar Manufacture, Beet Sugar Development Foundation, Denver, USA.

    Google Scholar 

  • Vorobiev, E., Andre, A., Bouzrara, H., and Bazhal, M., 2000. Procede d’extraction de liquide d’un materiau cellulaire, et dispositifs de mise en ouvre du dit procede, Demande de brevet en France, No 0002159 du 22.02.00.

    Google Scholar 

  • Vorobiev, E., Jemai, A. B., Bouzrara, H., Lebovka, N. I., and Bazhal, M. I., 2004, Pulsed electric field assisted extraction of juice from food plants, In: Novel Food Processing Technologies (G. V. Barbosa-Canovas and M. P. Cano, eds.), Marcel Dekker, New York, pp. 105–130.

    Google Scholar 

  • Wang, W. C., and Sastry, S. K., 2002, Effects of moderate electrothermal treatments on juice yield from cellular tissue, Innov. Food Sci. Emerg. Technol. 3: 371–377.

    Article  Google Scholar 

  • Weaver, J. C., and Chizmadzhev, Y. A., 1996, Theory of electroporation: A review, Bioelectrochem. Bioenerg. 41: 135–160.

    Article  CAS  Google Scholar 

  • Zagorulko, A. Ja., 1958, Technological parameters of beet desugaring process by the selective electroplasmolysis, In: New Physical Methods of Foods Processing, Izdatelstvo GosINTI, Moscow, Vol. 1, pp. 21–27 (in Russian).

    Google Scholar 

  • Zimmermann, U., 1975, Electrical breakdown: Electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol 105: 176–256.

    Google Scholar 

  • Zimmermann, U., 1986, Electrical breakdown, electropermeabilization and electrofusion, Rev. Physiol. Biochem. Pharmacol. 105: 175–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vorobiev, E., Lebovka, N.I. (2006). Extraction of Intercellular Components by Pulsed Electric Fields. In: Raso, J., Heinz, V. (eds) Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31122-7_6

Download citation

Publish with us

Policies and ethics