Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

Foods are contaminated by microorganisms during harvesting, processing, and handling operations. Depending on the food composition and environmental factors some of these microorganisms will grow. Microbial growth and metabolisms will induce quality changes such as pH modification, off-odors, gas, or slime-formation that lead to food spoilage (Huis in’t Veld, 1996). In addition to spoilage microorganisms, pathogenic microorganisms are frequently found in foods. While microbial food spoilage is a huge economical problem, food-borne illnesses are an enormous public health concern worldwide with severe direct and indirect economic consequences (Baird-Parker, 2000). In spite of all efforts conducted by the food industry and the food safety authorities, the number of reported outbreaks of food-borne illnesses caused by pathogenic microorganisms is increasing (Meng and Doyle, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Álvarez, I, Condón, S., Sala, F. J., and Raso, J., 2003a, Resistance variation of Salmonella enterica serovars to pulsed electric fields treatments, J. FoodSci. 68: 2316–2320.

    Google Scholar 

  • Álvarez, I, Pagán, R., Condón, S., and Raso, J., 2003b, The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields, Int. J. Food Microbiol. 87: 87–95.

    Article  Google Scholar 

  • Álvarez, I, Pagán, R., Raso, J., and Condón, S., 2002, Environmental factors influencing the inactivation of Listeria monocytogenes by pulsed electric fields, Lett. Appl. Microbiol. 35: 489–493.

    Article  Google Scholar 

  • Álvarez, I., Raso, J., Palop, A., and Sala, F. J., 2000, Influence of different factors on the inactivation of Salmonella senftenberg by pulsed electric fields, Int. J. Food Microbiol. 55: 143–146.

    Article  Google Scholar 

  • Álvarez, I., Raso, J., Sala, F. J., and Condón, S., 2003c, Inactivation of Yersinia enterocolitica by pulsed electric fields, Food Microbiol. 20: 691–700.

    Article  Google Scholar 

  • Álvarez, I., Virto, R., Raso, J., and Condón, S., 2003d, Comparing predicting models for the Escherichia coli inactivation by pulsed electric fields, Innov. Food Sci. Emerg. Technol. 4: 195–202.

    Article  Google Scholar 

  • Arnoldi, A., 2002, Thermal processing and nutritional quality, In: The Nutrition Handbook for Food Processing (C. J. K. Henry and C. Chapman, eds.), Woodhead, Cambridge, England, pp. 265–286.

    Google Scholar 

  • Aronsson, K., Lindgren, M., Johansson, B. R., and Rönner, U., 2001, Inactivation of microorganisms using pulsed electric fields: The influence of process parameters in Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae, Innov. Food Sci. Emerg. Technol. 2: 41–54.

    Article  Google Scholar 

  • Aronsson, K., and Ronner, U., 2001, Influence of pH, water activity and temperature on the inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields, Innov. Food Sci. Emerg. Technol. 2: 105–112.

    Article  CAS  Google Scholar 

  • Aronsson, K., Rönner, U., and Borch, E., 2005, Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae in relation to membrane permeabilization and subsequent leakage of intracellular compounds due to pulsed electric field processing, Int. J. Food Microbiol, 99(1): 19–32.

    Article  CAS  Google Scholar 

  • Augustin, J. C, Carlier, V., and Rozier, J., 1998, Mathematical modelling of the heat resistance of Listeria monocytogenes, J. Appl. Microbiol. 84: 185–191.

    Article  CAS  Google Scholar 

  • Baird-Parker, T. C, 2000, The production of microbiologically safe and stable foods, In: The Microbiological Safety and Quality of Food (B. M. Lund, T. C. Baird-Parker, and G. W. Gould, eds.), Aspen Publishers, Gaithersburg, MD, pp. 1–16.

    Google Scholar 

  • Barbosa-Cánovas, G. V., Pothakamury, U. R., Palou, E., and Swanson, B. G. (eds.), 1998, Biological effects and applications of pulsed electric fields for the preservation of foods, In: Nonthermal Preservation of Foods, Marcel Dekker, New York, pp. 73–112.

    Google Scholar 

  • Barsotti, L., and Cheftel, J. C, 1999, Food processing by pulsed electric fields: 2. Biological aspects, Food Rev. Int. 15(2): 181–213.

    Article  Google Scholar 

  • Bazhal, M., Lebovka, N., and Vorovieb, E., 2003, Optimisation of pulsed electric fields strength for electroplasmolysis of vegetative tissues, Biosyst. Eng. 86: 339–345.

    Article  Google Scholar 

  • Blackburn C, and McClure, P., 2002, Introduction, In: Foodborne Pathogens: Hazards, Risk Analysis and Control (C. Blackburn and P. McClure, eds.), Woodhead, Cambridge, England, pp. 3–10.

    Chapter  Google Scholar 

  • Bolton, D. J., Catarame, T., Byrne, C., Sheridan, J. J., McDowell, D. A., and Blair, I. S., 2002, The ineffectiveness of organic acids, freezing and pulsed electric fields to control Escherichia coli O157:H7 in beef burgers, Lett. Appl. Microbiol. 34: 139–143.

    Article  CAS  Google Scholar 

  • Calderón-Miranda, M. L., Barbosa-Cânovas, G. V., and Swanson, B. G., 1999a, Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin, Int. J. Food Microbiol. 51: 19–30.

    Article  Google Scholar 

  • Calderón-Miranda, M. L., Barbosa-Cánovas, G. V., and Swanson, B. G., 1999b, Inactivation of Listeria innocua in liquid whole egg by pulsed electric fields and nisin, Int. J. Food Microbiol. 51: 7–17.

    Article  Google Scholar 

  • Calderón-Miranda, M. L., Barbosa-Cánovas, G. V., and Swanson, B. G., 1999c, Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk, Int. J. Food Microbiol. 51: 31–38.

    Article  Google Scholar 

  • Castro, A. J., Barbosa-Cánovas, G. V., and Swanson, B. G., 1993, Microbial inactivation of foods by pulsed electric fields, J. Food Process. Preserv. 17: 47–73.

    Article  Google Scholar 

  • Cerf, O., 1977, A review: Tailing of survival curves of bacterial spores, J. Appl. Bacteriol. 42: 1–19.

    CAS  Google Scholar 

  • Chen, H., and Hoover, D. G., 2003, Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669, Int. J. Food Microbiol. 87: 161–171.

    Article  Google Scholar 

  • Cole, M. B., Davies, K. W., Munro, G., Holyoak, C. D., and Kilsby, D. C, 1993, A vitalistic model to describe the thermal inactivation of Listeria monocytogenes, J. Ind. Microbiol. 12: 232–239.

    Article  Google Scholar 

  • Corry, J. E. L., 1974, The effect of sugars and polyols on the heat resistance of Salmonellae, J. Appl. Bacteriol. 37: 31–43.

    CAS  Google Scholar 

  • Coster, H. G. L., and Zimmermann, U., 1975, The mechanism of electrical breakdown in the membrane of Valonia utricularis, J. Membr. Biol. 22: 73–90.

    Article  CAS  Google Scholar 

  • Cserhalmi, Z., Vidács, L, Beczner, J., and Czukor, B., 2002, Inactivation of Saccharomyces cerevisiae and Bacillus cereus by pulsed electric fields technology, Innov. Food Sci. Emerg. Technol. 3: 41–45.

    Article  CAS  Google Scholar 

  • de Jong, P., and van Heesch, E. J. M., 1998, Review: Effect of pulsed electric fields on the quality of food products, Milchwissenschaft 53: 4–8.

    Google Scholar 

  • Devlieghere, F., Vermeiren, L., and Debevere, J., 2004, New preservation technologies: Possibilities and limitations, Int. Dairy J. 14: 273–285.

    Article  Google Scholar 

  • Dutreux, N., Notermans, S., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., and Swanson, B. G., 2000a, Effects of combined exposure of Micrococcus luteus to nisin and pulsed electric fields, Int. J. Food Microbiol. 60: 147–152.

    Article  CAS  Google Scholar 

  • Dutreux, N., Notermans, S., Wijtzes, T., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., and Swanson, B. G., 2000b, Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions, Int. J. Food Microbiol. 54: 91–98.

    Article  CAS  Google Scholar 

  • Evrendilek, G. A., Li, S., Dantzer, W. R., and Zhang, Q. H., 2004, Pulsed electric field processing of beer: Microbial, sensory, and quality analyses, J. Food Saf. 69(8): 228–232.

    Article  Google Scholar 

  • Evrendilek, G. A., and Zhang, Q. H., 2003, Effects of pH temperature, and pre-pulsed electric field treatment on pulsed electric field and heat inactivation of Escherichia coli O157.H7, J. Food Prot. 66: 755–759.

    Google Scholar 

  • Evrendilek, G. A., and Zhang, Q. H., 2005, Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli O157:H7, J. Food Eng. 68: 271–276.

    Article  Google Scholar 

  • Fernández, A., Salmerón, C, Fernández, P. S., and Martínez, A., 1999, Application of a frequency distribution model to describe the thermal inactivation of two strains of Bacillus cereus, Trends Food Sci. Technol. 10: 158–162.

    Article  Google Scholar 

  • Fiala, A., Wouters, P. C, van den Bosch, E., and Creyghton, Y. L. M., 2001, Coupled electrical-fluid model of pulsed electric field treatment in a model food system, Innov. Food Sci. Emerg. Technol. 2: 229–238.

    Article  Google Scholar 

  • Fleischman, G. J., Ravishankar, S., and Balasubramaniam, V. M., 2004, The inactivation of Listeria monocytogenes by pulsed electric field (PEF) treatment in a static chamber, Food Microbiol. 21: 91–95.

    Article  Google Scholar 

  • García, D., Gómez, N., Condon, S., Raso, J., and Pagan, R., 2003, Pulsed electric fields cause sublethal injury in Escherichia coli, Lett. Appl. Microbiol. 36: 140–144.

    Article  Google Scholar 

  • García, D., Gómez, N., Mañas, P., Condón, S., Raso, J., and Pagán, R., 2005, Occurrence of sublethal injury after pulsed electric fields depending on the microorganism, the treatment medium pH and the intensity of the treatment investigated, J. Appl. Microbiol., 99: 94–104.

    Article  Google Scholar 

  • Gásková, D., Sigler, K., Janderova, B., and Plasek, J., 1996, Effect of high-voltage electric pulses on yeast cell: Factors influencing the killing efficiency, Bioelectrochem. Bioenerg. 39: 195–202.

    Article  Google Scholar 

  • Geveke, D. J., and Kozempel, M. F, 2003, Pulsed electric field effects on bacteria and yeast cells, J. Food Process. Preserv. 27: 65–72.

    Article  Google Scholar 

  • Gómez, N., García, D., Álvarez, I., Condón, S., and Raso, J., 2005a, Modeling inactivation of Listeria monocytogenes by pulsed electric fields, Int. J. Food Microbiol. 103: 199–206.

    Article  CAS  Google Scholar 

  • Gómez, N., García, D., Álvarez, I., Raso, J., and Condón, S., 2005b, A model describing the kinetics of inactivation of Lactobacillus plantarum in a buffer system of different pH and in orange and apple juice, J. Food Eng. 70: 7–14.

    Article  Google Scholar 

  • Góngora-Nieto, M. M., Pedrow, P. D., Swanson, B. G., and Barbosa-Cánovas, G. V., 2003, Impact of air bubbles in a dielectric liquid when subjected to high field strengths, Innov. Food Sci. Emerg. Technol. 4: 57–67.

    Article  Google Scholar 

  • Grahl, T., and Märkl, H., 1996, Killing of microorganisms by pulsed electric fields, Appl. Microbiol. Biotechnol. 45:148–157.

    Article  CAS  Google Scholar 

  • Grahl, T., Sitzmann, W., and Märkl, H., 1992, Killing of microorganisms in fluid media by high-voltage pulses, In: DECHEMA Biotechnology Conferences, Vol. 5, Part B. Karlsruhe, Germany.

    Google Scholar 

  • Hamilton, W. A., and Sale, A. J. H., 1967, Effects of high electric fields on microorganisms: II. Mechanism of action of the lethal effect, Biochim. Biophys. Acta 148: 789–800.

    CAS  Google Scholar 

  • Heinz, V., Álvarez, I., Angersbach, A., and Knorr, D., 2001, Preservation of liquid foods by high intensity pulsed electric fields—basic concepts for process design, Trends Food Sci. Technol 12: 103–111.

    Article  CAS  Google Scholar 

  • Heinz, V., and Knorr, D., 2000, Effect of pH, ethanol addition and high hydrostatic pressure on the inactivation of Bacillus subtilis by pulsed electric fields, Innov. Food Sci. Emerg. Technol 1: 151–159.

    Article  CAS  Google Scholar 

  • Heinz, V., Phillips, S. T., Zenker, M., and Knorr, D., 1999, Inactivation of Bacillus subtilis by high intensity pulsed electric fields under close to isothermal conditions, Food Biotechnol. 13: 155–168.

    Article  Google Scholar 

  • Heinz, V., Toepfl, S., and Knorr, D., 2003, Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment, Innov. Food Sci. Emerg. Technol. 4: 167–175.

    Article  Google Scholar 

  • Hermawan, N., Evrendilek, G. A., Dantzer, W. R., Zhang, Q. H., and Richter, E. R., 2004, Pulsed electric field treatment of liquid whole egg inoculated with Salmonella Enteritidis, J. Food Saf. 24: 71–85.

    Article  Google Scholar 

  • Ho, S., and Mittal, G. S., 2000, High voltage pulsed electrical field for liquid food pasteurization, Food Rev. Int. 16(4): 395–434.

    Article  CAS  Google Scholar 

  • Hodgins, A. M., Mittal, G. S., and Griffiths, M. W., 2002, Pasteurization of fresh orange juice using low-energy pulsed electrical field, J. Food Sci. 67: 2294–2299.

    Article  CAS  Google Scholar 

  • Huis in’t Veld, J. H. J., 1996, Microbial and biochemical spoilage of foods: An overview, Int. J. Food Microbiol. 33: 1–18.

    Article  Google Scholar 

  • Hülsheger, H., Potel, J., and Niemann, E. G., 1981, Killing of bacteria with electric pulses of high field strength, Radiat. Environ. Biophys. 20: 53–65.

    Article  Google Scholar 

  • Hülsheger, H., Potel, J., and Niemann, E. G., 1983, Electric field effects on bacteria and yeast cells, Radiat. Environ. Biophys. 22: 149–162.

    Article  Google Scholar 

  • Jacob, H.-E., Förster, W., and Berg, H., 1981, Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope, Z. Allg. Mikrobiol. 21: 225–233.

    Article  CAS  Google Scholar 

  • Jayaram, S., Castle, G. S. P., and Margaritis, A., 1991, Effects of high electric field pulses on Lactobacillus brevis at elevated temperatures, lEEE Ind. Appl. Soc. Meet. 5: 674–681.

    Google Scholar 

  • Jayaram, S., Castle, G. S. P., and Margaritis, A., 1992, Kinetics of sterilization of Lactobacillus brevis cells by the application of high voltage pulses, Biotechnol. Bioeng. 40: 1412–1420.

    Article  CAS  Google Scholar 

  • Jayaram, S., Castle, G. S. P., and Margaritis, A., 1993, The effects of high field DC pulse and liquid medium conductivity on survivability of Lactobacillus brevis, Appl. Microbiol. Biotechnol 40: 117–122.

    Article  Google Scholar 

  • Jeantet, R., Baron, F., Nau, E, Roignant, M., and Brulé, G., 1999, High intensity pulsed electric fields applied to egg white: Effect on Salmonella enteritidis inactivation and protein denaturation, J. Food Prot. 62: 1381–1386.

    CAS  Google Scholar 

  • Jeyamkondan, S., Jayas, D. S., and Holley, R. A., 1999, Pulsed electric field processing of foods: A review, J. Food Prot. 62(9): 1088–1096.

    CAS  Google Scholar 

  • Kalchayanand, N., Sikes, T., Dunne, C. P., and Ray, B., 1994, Hydrostatic pressure and electroporation have increased bactericidal efficiency in combination with bacteriocins, Appl Environ. Microbiol. 60: 4174–4177.

    CAS  Google Scholar 

  • Katsuki, S., Majima, T., Nagata, K., Lisitsyn, I., Akiyama, H., Furuta, M., Hayashi, T., Takahashi, K., and Wirkner, S., 2000, Inactivation of Bacillus stearothermophilus by pulsed electric field, IEEE Trans. Plasma Sci. 28: 155–160.

    Article  Google Scholar 

  • Kehez, M. M., Savic, P., and Johnson, B. F., 1996, Contribution to the biophysics of the lethal effects of electric field on microorganisms, Biochim. Biophys. Acta 1278: 79–88.

    Article  Google Scholar 

  • Keith, W. D., Harris, L. J., and Griffiths, M. W., 1998, Reduction of bacterial levels in flour by pulsed electric fields, J. Food Process Eng. 21: 263–269.

    Article  Google Scholar 

  • Keith, W. D., Harris, L. J., Hudson, L., and Griffiths, M. W., 1997, Pulsed electric fields as a processing alternative for microbial reduction in spice, Food Res. Int. 30: 185–191.

    Article  Google Scholar 

  • Knorr, D., Geulen, M., Grahl, T., and Sitzmann, W., 1994, Food application of high electric field pulses, Trends Food Sci. Technol. 5: 71–75.

    Article  CAS  Google Scholar 

  • Lado, B. H., Bomser, J. A., Dunne, C. P., and Yousef, A. E., 2004, Pulsed electric field alters molecular chaperone expression and sensitizes Listeria monocytogenes to heat, Appl Environ. Microbiol. 70: 2289–2295.

    Article  CAS  Google Scholar 

  • Lado, B. H., and Yousef, A. E., 2003, Selection and identification of a Listeria monocytogenes target strain for pulsed electric field processing optimization, Appl. Environ. Microbiol. 69: 2223–2229.

    Article  CAS  Google Scholar 

  • Lebovka, N. I., and Vorobiev, E., 2004, On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields, Int. J. Food Microbiol. 91: 83–89.

    Article  CAS  Google Scholar 

  • Lee, B. H., Kermasha, S., and Baker, B. E., 1989, Thermal, ultrasonic and ultraviolet inactivation of Salmonella in thin films of aqueous media and chocolate, Food Microbiol. 6: 143–152.

    Article  Google Scholar 

  • Legan, D., Vandeven, M., Stewart, C, and Cole, M., 2002, Modeling the growth, survival, and death of bacterial pathogens in food, In: Foodborne Pathogens: Hazards, Risk Analysis and Control (C. Blackburn and P. McClure, eds.), Woodhead, Cambridge, England, pp. 53–91.

    Google Scholar 

  • Leistner, L., and Gorris, L. G. M., 1995, Food preservation by hurdle technology, Trends Food Sci. Technol. 6: 41–46.

    Article  CAS  Google Scholar 

  • Liang, Z., Mittal, G. S., and Griffiths, M. W., 2002, Inactivation of Salmonella typhimurium in orange juice containing antimicrobial agents by pulsed electric fields, J. Food Prot. 65: 1081–1087.

    CAS  Google Scholar 

  • Liu, X., Yousef, A. E., and Chism, G. W., 1996, Inactivation of Escherichia coli O157:H7 by the combination of organic acids and pulsed electric fields, J. Food Saf. 16: 287–299.

    Article  Google Scholar 

  • Lubicki, P., and Jayaram, S., 1997, High voltage pulse application for the destruction of the Gram-negative bacterium Yersinia enterocolitica, Bioelectrochem. Bioenerg. 43: 135–141.

    Article  CAS  Google Scholar 

  • Mafart, P., Couvert, O., Gaillard, S., and Leguerinel, I., 2002, On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model, Int. J. Food Microbiol. 72: 107–113.

    Article  CAS  Google Scholar 

  • Mañas, P., Barsotti, L., and Cheftel, J. C., 2001, Microbial inactivation by pulsed electric fields in a batch treatment chamber: Effects of some electrical parameters and food constituents, Innov. Food Sci. Emerg. Technol. 2: 239–249.

    Article  Google Scholar 

  • Márquez, V. O., Mittal, G. S., and Griffiths, M. W., 1997, Destruction and inhibition of bacterial spores by high voltage pulsed electric field, J. Food Sci. 62: 399–409.

    Article  Google Scholar 

  • Martín-Belloso, O., Qin, B. L., Chang, F. J., Barbosa-Cánovas, G. V., and Swanson, B. G., 1997a, Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields, J. Food Process Eng. 20: 317–336.

    Article  Google Scholar 

  • Martín-Belloso, O., Vega-Mercado, H., Qin, B. L., Chang, F. J., Barbosa-Cánovas, G. V., and Swanson, B. G., 1997b, Inactivation of Escherichia coli suspended in liquid egg using pulsed electric fields, J. Food Process Preserv. 21:193–208.

    Article  Google Scholar 

  • McDonal, K., and Sun, D., 1999, Predictive microbiology for the food industry: A review, Int. J. Food Microbiol. 52: 1–27.

    Article  Google Scholar 

  • McMeekin, T. A., and Ross, T., 2002, Predictive microbiology: Providing a knowledge-based framework for change management, Int. J. Food Microbiol. 78: 133–153.

    Article  CAS  Google Scholar 

  • Meng, J., and Doyle, M. P., 2002, Introduction: Microbial food safety, Microbes Infect. 4: 395–397.

    Article  Google Scholar 

  • Metrick, C., Hoover, D. G., and Farkas, D. F., 1989, Effects of hydrostatic pressure on heat-resistance and heat-sensitive strains of Salmonella, J. Food Sci. 54: 1547–1549.

    Article  Google Scholar 

  • Min, S., and Zhang, Q. H., 2000, Effect of water activity on the inactivation of Enterobacter cloacae by pulsed electric field treatment, IFT Annual Meeting, Dallas. June 10–14.

    Google Scholar 

  • Mizuno, A., and Hori, Y., 1988, Destruction of living cells by pulsed high-voltage application, IEEE Trans. Ind. Gen. Appl. 24(3): 387–394.

    Article  Google Scholar 

  • Morren, J., Roodenburg, B., and de Haan, S. W. H., 2003, Electrochemical reactions and electrode corrosion in pulsed electric field (PEF) treatment chambers, Innov. Food Sci. Emerg. Technol. 4: 285–295.

    Article  CAS  Google Scholar 

  • Neidhardt, F. C., Ingraham, J. L., and Schaechter, M. (eds.), 1990, The effects of temperature, pressure, and pH, In: Physiology of the Bacterial cell. A Molecular Approach, Sinauer Associates, Sunderland, MA, pp. 226–246.

    Google Scholar 

  • Neumann, E., 1989, The relaxation hysteresis of membrane electroporation, In: Electroporation and Electrofusion in Cell Biology (E. Neuman, A. E. Sowers, and C. Jordan, eds.), Plenum Press, New York, pp. 61–82.

    Google Scholar 

  • Neumann, E., 1996, Gene delivery by membrane electroporation, In: Electrical Manipulation of Cells (P. T. Lynch and M. R. Davey, eds.), Chapman and Hall, New York, pp. 157–184.

    Google Scholar 

  • Neumann, E., and Rosenheck, K., 1973, Potential difference across vesicular membranes, J. Membr. Biol. 14: 194–196.

    Google Scholar 

  • Ohshima, T., Akuyama, K., and Sato, M., 2002, Effect of culture temperature on high-voltage pulsed sterilization of Escherichia coli, J. Electrostal 55: 227–235.

    Article  Google Scholar 

  • Pagán, R., Esplugas, S., Góngora-Nieto, M. M., Barbosa-Cánovas, G. V., and Swanson, B. G., 1998, Inactivation of Bacillus subtilis spores using high intensity pulsed electric fields in combination with other food conservation technologies, Food Sci. Technol. Int. 4: 33–44.

    Article  Google Scholar 

  • Peleg, M., 1995, A model of microbial survival after exposure to pulsed electric fields, J. Sci. Food Agric. 67: 93–99.

    Article  CAS  Google Scholar 

  • Peleg, M., and Cole, M. B., 1998, Reinterpretation of microbial survival curves, Crit. Rev. Food Sci. Nutr. 3: 353–380.

    Article  Google Scholar 

  • Peleg, M., and Penchina, C. M., 2000, Modeling microbial survival during exposure to lethal agent varying intensity, Crit. Rev. Food Sci. Nutr. 40: 159–172.

    Article  CAS  Google Scholar 

  • Pol, I. E., Mastwijk, H. C., Slump, R. A., Popa, M. E., and Smid, E. J., 2001a, Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment and carvacrol, J. Food Prot. 64: 1012–1018.

    CAS  Google Scholar 

  • Pol, I. E., van Arendonk, W. G. C., Mastwijk, H. C., Krommer, J., Smid, E. J., and Moezelaar, R., 2001b, Sensitivities of germinating spores and carvacrol-adapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment, Appl. Environ. Microbiol. 67: 1693–1699.

    Article  CAS  Google Scholar 

  • Pothakamury, U. R., Vega, H., Zhang, Q., Barbosa-Cánovas, G. V., and Swanson, B. G., 1996, Effect of growth stage and processing temperature on the inactivation of E. coli by pulsed electric fields, J. Food Prot. 59(11): 1167–1171.

    Google Scholar 

  • Pruitt, K., and Kamau, D. N., 1993, Mathematical models of bacteria growth, inhibition and death under combinated stress conditions, J. Ind. Microbiol. 12: 221–231.

    Article  Google Scholar 

  • Püttmann, M., Ade, N., and Hof, H., 1993, Dependence of fatty acid composition of Listeria spp. on growth temperature, Res. Microbiol. 144: 279–283.

    Article  Google Scholar 

  • Qin, B. L., Barbosa-Cánovas, G. V., Swanson, B. G., Pedrow, P. D., and Olsen, R. G., 1991, A continuous treatments system for inactivating microorganisms with pulsed electric fields, In: IEEE Ind. Appl. Soc. Annu. Meet., IEEE, Piscataway, NJ, pp. 1345–1352.

    Google Scholar 

  • Qin, B. L., Barbosa-Cánovas, G. V., Swanson, B. G., Pedrow, P. D., and Olsen, R. G., 1998, Inactivating microorganisms using a pulsed electric field continuous treatment system, IEEE Trans. Ind. Appl. 34: 43–50.

    Google Scholar 

  • Qin, B. L., Vega-Mercado, H., Pothakamury, U. R., and Barbosa-Cánovas, G. V., 1995, Application of pulsed electric fields for inactivation of bacteria and enzymes, J. Franklin Inst. 332A:209–220.

    Google Scholar 

  • Qin, B. L., Zhang, Q., Barbosa-Cánovas, G. V., Swanson, B. G., and Pedrow, P. D., 1994, Inactivation of microorganisms by pulsed electric fields of different voltage waveforms, IEEE Trans. Dielectr. Electr. Insul. 1: 1047–1057.

    Article  Google Scholar 

  • Qiu, X., Sharma, S., Tuhela, L., and Zhang, Q. H., 1998, An integrated PEF pilot plant for continuous nonthermal pasteurization of fresh orange juice, Trans. ASAE 41: 1069–1074.

    Google Scholar 

  • Raso, J., Álvarez, I., Condón, S., and Sala, F. J., 2000, Predicting inactivation of Salmonella senftenberg by pulsed electric fields, Innov. Food Sci. Emerg. Technol. 1: 21–30.

    Article  Google Scholar 

  • Raso, J., and Barbosa-Cánovas, G. V., 2003, Nonthermal preservation of foods using combined processing techniques, Crit. Rev. Food Sci. 43:265–285.

    Article  Google Scholar 

  • Raso, J., Calderón, M. L., Góngora, M., Barbosa-Cánovas, G. V., and Swanson, B. G., 1998a, Inactivation of mold ascospores and conidiospores suspended in fruit juices by pulsed electric fields, Lebensm. Wiss. Technol. 31:668–672.

    Article  CAS  Google Scholar 

  • Raso, J., Calderón, M. L., Góngora, M., Barbosa-Cánovas, G. V., and Swanson, B. G., 1998b, Inactivation of Zygosaccha-romyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields, J. Food Sci. 63:1042–1044.

    Article  CAS  Google Scholar 

  • Raso, J., Góngora-Nieto, M., Barbosa-Cánovas, G., and Swanson, B. G., 1998c, Influence of several environmental factors on the initiation of germination on Bacillus cereus by high hydrostatic pressure, Int. J. Food Microbiol. 44: 125–132.

    Article  CAS  Google Scholar 

  • Ravishankar, S., Fleischman, G. J., and Balasubramaniam, V. M., 2002, The inactivation of Escherichia coli O157:H7 during pulsed electric field (PEF) treatment in a static chamber, Food Microbiol. 19: 351–361.

    Article  CAS  Google Scholar 

  • Reina, L. D., Jin, Z. T., Zhang, Q. H., and Youself, A. E., 1998, Inactivation of Listeria monocytogenes in milk by pulsed electric field, J. Food Prot. 61:1203–1206.

    CAS  Google Scholar 

  • Reyns, K. M. F. A., Diels, A. M. J., and Michiels, C. W., 2004, Generation of bactericidal and mutagenic components by pulsed electric field treatment, Int. J. Food Microbiol. 93: 165–173.

    Article  CAS  Google Scholar 

  • Rodrigo, D., Martínez, A., Harte, F., Barbosa-Cánovas, G. V., and Rodrigo, M., 2001, Study of inactivation of Lactobacillus plantarum in orange-carrot juice by means of pulsed electric fields: Comparison of inactivation kinetics models, J. Food Prot. 64:259–263.

    CAS  Google Scholar 

  • Rodrigo, D., Ruíz, P., Barbosa-Cánovas, G. V., Martínez, A., and Rodrigo, M., 2003, Kinetic model for the inactivation of Lactobacillus plantarum by pulsed electric fields, Int. J. Food Microbiol. 81:223–229.

    Article  CAS  Google Scholar 

  • Russell, N. J., 2002, Bacterial membranes: The effects of chill storage and food processing: An overview, Int. J. Food Microbiol. 79: 27–34.

    Article  CAS  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1967, Effect of high electric fields on microorganisms. I. Killing of bacteria and yeast, Biochim. Biophys. Acta 148:781–788.

    Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1968, Effect of high electric fields on microorganisms. III. Lysis of erythrocytes and protoplasts, Biochim. Biophys. Acta 163:37–43.

    Article  CAS  Google Scholar 

  • Schoenbach, K. H., Peterkin, F. E., Alden, R. W., and Beebe, S. J., 1997, The effect of pulsed electric fields on biological cells: Experiments and applications, IEEE Trans. Plasma Sci. 25(2): 284–292.

    Article  Google Scholar 

  • Sensoy, I., Zhang, Q. H., and Sastry, S. K., 1997, Inactivation kinetics of Salmonella dublin by pulsed electric field, J. Food Process Eng. 20: 367–381.

    Article  Google Scholar 

  • Sepúlveda, D. R., Góngora-Nieto, M. M., Guerrero, J. A., and Barbosa-Cánovas, G. V., 2004, Production of extended-shelf life milk by processing pasteurized milk with pulsed electric fields, J. Food Eng. 67: 81–87.

    Article  Google Scholar 

  • Sepúlveda, D. R., Góngora-Nieto, M. M., San-Martin, M. F., and Barbosa-Cánovas, G. V., 2005, Influence of treatment temperature on the inactivation of Listeria innocua by pulsed electric fields, Lebensm. Wiss. Technol. 38: 167–172.

    Article  CAS  Google Scholar 

  • Simpson, R. K., Whittington, R., Earnshaw, R. G., and Russell, N. J., 1999, Pulsed high electric field causes “all or nothing” membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target, Int. J. Food Microbiol. 48: 1–10.

    Article  CAS  Google Scholar 

  • Smelt, J. P. P. M., Hellemons, J., Wouters, P. C., and van Gerwen, S. J. C., 2002, Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means, Int. J. Food Microbiol. 78: 57–77.

    Article  Google Scholar 

  • Smith, J. L., Benedict, R. C., and Palumbo, A., 1982, Protection against heat-injury in Staphylococcus aureus by solutes, J. Food Prot. 45:54–58.

    CAS  Google Scholar 

  • Smith, K., Mittal, G. S., and Griffiths, M. W., 2002, Pasteurization of milk using pulsed electrical field and antimicrobials, J. Food Sci. 67:2304–2308.

    Article  CAS  Google Scholar 

  • Stanley, D. W., 1991, Biological membrane deterioration and associated quality losses in food tissues, Crit. Rev. Food Sci. 30: 487–553.

    Article  CAS  Google Scholar 

  • Stewart, C. M., Tompkin, R. B., and Cole, M. B., 2002, Food safety: New concepts for the new millennium, Innov. Food Sci. Emerg. Technol. 3: 105–112.

    Article  Google Scholar 

  • Tatebe, W., Muraji, M., Fujii, T., and Berg, H., 1995, Re-examination of electropermeabilization on yeast cells: Dependence on growth phase and ion concentration, Bioelectrochem. Bioenerg. 38: 149–152.

    Article  CAS  Google Scholar 

  • Toko, K., and Yamafuji, K., 1981, Stabilization effect of protons and divalent cations on membrane structures of lipids, Biophys. Chem. 14: 11–23.

    Article  CAS  Google Scholar 

  • Tsuchiya, H., Sato, M., Kanematsu, N., Kato, M., and Hoshino, Y., 1987, Temperature-dependent changes in phospholipid and fatty acid composition and membrane lipid fluidity in Yersinia enterocolitica, Lett. Appl. Microbiol. 5: 15–18.

    Article  CAS  Google Scholar 

  • van Boekel, M. A. J. S., 2002, On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells, Int. J. Food Microbiol. 74: 139–159.

    Article  Google Scholar 

  • Van Heesch, E. J. M., Pemen, A. J. M., Huijbrechts, P. A. H. J., van der Laan, P. C. T., Ptasinski, K. J., Zandstra, G. J., and De Jong, P., 2000, A fast pulsed power source applied to treatment of conducting liquids and air, IEEE Trans. Plasma Sci. 28: 137–143.

    Article  Google Scholar 

  • van Loey, A. B. V., and Hendrickx, M., 2002, Effects of high electric pulses on enzymes, Trends Food Sci. Technol. 12:94–102.

    Article  Google Scholar 

  • Vega-Mercado, H., Pothakamury, U. R., Chang, F.-J., Barbosa-Cánovas, G. V., and Swanson, B. G., 1996, Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles, Food Res. Intern. 29: 117–121.

    Article  CAS  Google Scholar 

  • Vernhes, M. C., Benichou, A., Pernin, P., Cabanes, P. A., and Teissié, J., 2002, Elimination of free-living amoebae in fresh water with pulsed electric fields, Water Res. 36: 3429–3438.

    Article  CAS  Google Scholar 

  • Virto, R., Sanz, D., Álvarez, I., Condón, S., and Raso, J., 2005, Inactivation kinetics of Yersinia enterocolitica by citric and lactic acid at different temperatures, Int. J. Food Microbiol. 103:251–257.

    Article  CAS  Google Scholar 

  • Whiting, R. C., 1995, Microbial modeling in foods, Crit. Rev. Food Sci. Nutr. 35: 467–494.

    Article  Google Scholar 

  • Wouters, P., Álvarez, I., and Raso, J., 2001, Critical factors determining inactivation kinetics by pulsed electric field food processing, Trends Food Sci. Technol. 12: 112–121.

    Article  CAS  Google Scholar 

  • Wouters, P. C., Dutreux, N., Smelt, J. P. P., and Lelieveld, H. L. M., 1999, Effects of pulsed electric fields on inactivation kinetics of Listeria innocua, Appl. Environ. Microbiol. 65(12): 5354–5371.

    Google Scholar 

  • Wouters, P. C., and Smelt, J. P. P. M., 1997, Inactivation of microorganisms with pulsed electric fields: Potential for food preservation, Food Biotechnol. 11:193–229.

    Article  Google Scholar 

  • Xiong, R., Xie, G., Edmondson, A. E., and Sheard, M. A., 1999, A mathematical model for bacterial inactivation, Int. J. Food Microbiol. 46: 45–55.

    Article  CAS  Google Scholar 

  • Zhang, Q., Chang, F. J., Barbosa-Cánovas, G. V., and Swanson, B. G., 1994b, Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields, Lebensm. Wiss. Technol. 27: 538–543.

    Article  CAS  Google Scholar 

  • Zhang, Q., Monsalve-González, A., Barbosa-Cánovas, G. V., and Swanson, B. G., 1994c, Inactivation of Escherichia coli and Saccharomyces cerevisiae by pulsed electric fields under controlled temperature conditions, Trans. Am. Soc. Agric. Eng. 581–587.

    Google Scholar 

  • Zhang, Q., Monsalve-González, A., Quin, B.L. Barbosa-Cánovas, G. V., and Swanson, B. G., 1994a, Inactivation of Saccharomyces cerevisiae in apple juice by square wave and exponential decay pulsed electric fields, J. Food Process Eng. 17: 469–478.

    Article  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Riemann, R, 1974, Dielectric breakdown of cell membranes, Biophys. J. 14: 881–899.

    Article  CAS  Google Scholar 

  • Zwietering, M. H., 2002, Quantification of microbial quality and safety in minimally processed foods, Int. Dairy J. 12:263–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Álvarez, I., Condón, S., Raso, J. (2006). Microbial Inactivation by Pulsed Electric Fields. In: Raso, J., Heinz, V. (eds) Pulsed Electric Fields Technology for the Food Industry. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-31122-7_4

Download citation

Publish with us

Policies and ethics