Advertisement

Time and Space-Resolved Spectroscopy

Spatial, temporal and spectral resolution in laser-materials processing and spectroscopic analysis
  • Richard F. HaglundJr.
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

6. Conclusions

Because ultrafast lasers have pulse durations shorter than most characteristic relaxation times of condensed phases, it has become more important than ever to characterize their temporal, spatial, and spectral content in detail. Of increasing importance are the broad spectral bandwidth, the enhanced probability of multiphoton electronic excitations, and the possibility of creating extremely high spatio-temporal densities of electronic (or, in the case of picosecond infrared free-electron lasers, vibrational) excitation. Narrow-band tunable laser sources continue to have an important place here, because they permit state-selective excitations. Because ultrafast lasers can be used both to control the direction of laser-induced materials modification and to follow the temporal and spatial evolution of those modifications, the kinds of techniques described here are likely to be much more frequently used in the future. The most advanced techniques for doing this include:
  • Temporal characterization based on autocorrelation and pump-probe techniques, coupled to microscopy;

  • The spatial evolution of the laser-modified material using X-ray and electron diffraction methods; and

  • Monitoring the temporal and spatial evolution of material removed by the laser using nonlinear time-resolved spectroscopy, such as CARS.

Keywords

Laser Pulse Laser Ablation Pump Pulse Physical Review Letter Spatial Light Modulator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albota, M., Beljonne, D., Bredas, J. L., Ehrlich, J. E., Fu, J. Y., Heikal, A. A., Hess, S. E., Kogej, T., Levin, M. D., Marder, S. R., McCord-Maughon, D., Perry, J. W., Rockel, H., Rumi, M., Subramaniam, C., Webb, W. W., Wu, X. L. and Xu, C., 1998, Design of organic molecules with large two-photon absorption cross sections, Science 281(5383):1653–1656.CrossRefADSGoogle Scholar
  2. Andrews, D. L., 1985, A Simple Statistical Treatment Of Multiphoton Absorption, American Journal Of Physics 53(10): 1001–1002.CrossRefADSGoogle Scholar
  3. Balistreri, M. L. M., Gersen, H., Korterik, J. P., Kuipers, L. and van Hulst, N. F., 2001, Tracking femtosecond laser pulses in space and time, Science 294(5544): 1080–1082.CrossRefADSGoogle Scholar
  4. Balistreri, M. L. M., Korterik, J. P., Kuipers, L. and van Hulst, N. F., 2000, Local observations of phase singularities in optical fields in waveguide structures, Physical Review Letters 85(2):294–297.CrossRefADSGoogle Scholar
  5. Brixner, T., Damrauer, N. H., Niklaus, P. and Gerber, G., 2001, Photoselective adaptive femtosecond quantum control in the liquid phase, Nature 414(6859):57–60.CrossRefADSGoogle Scholar
  6. Bubb, D. M., Papantonakis, M. R., Toftmann, B., Horwitz, J. S., McGill, R. A., Chrisey, D. B. and Haglund, R. F., 2002, Effect of ablation parameters on infrared pulsed laser deposition of poly(ethylene glycol) films, Journal of Applied Physics 91(12):9809–9814.CrossRefADSGoogle Scholar
  7. Callan, J. P., Kim, A. M. T., Huang, L. and Mazur, E., 2000, Ultrafast electron and lattice dynamics in semiconductors at high excited carrier densities, Chemical Physics 251(1–3): 167–179.CrossRefADSGoogle Scholar
  8. Cavalleri, A., Dekorsy, T., Chong, H. H. W., Kieffer, J. C. and Schoenlein, R. W., 2004, Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale, Physical Review B 70(16)Google Scholar
  9. Cavalleri, A., Rini, M., Chong, H. H. W., Fourmaux, S., Glover, T. E., Heimann, P. A., Kieffer, J. C. and Schoenlein, R. W., 2005, Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption, Physical Review Letters 95(6)Google Scholar
  10. Cavalleri, A., Siders, C. W., Brown, F. L. H., Leitner, D. M., Toth, C., Squier, J. A., Barty, C. P. J., Wilson, K. R., Sokolowski-Tinten, K., von Hoegen, M. H., von der Linde, D. and Kammler, M., 2000, Anharmonic lattice dynamics in germanium measured with ultrafast x-ray diffraction, Physical Review Letters 85(3):586–589.CrossRefADSGoogle Scholar
  11. Cavalleri, A., Toth, C., Siders, C. W., Squier, J. A., Raksi, F., Forget, P. and Kieffer, J. C., 2001, Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition, Physical Review Letters 8723(23)Google Scholar
  12. Chen, L. X., 2005, Probing transient molecular structures in photochemical processes using laser-initiated time-resolved X-ray absorption spectroscopy, Annual Review Of Physical Chemistry 56(221–254.CrossRefADSGoogle Scholar
  13. Chichkov, B. N., Momma, C., Nolte, S., vonAlvensleben, F. and Tunnermann, A., 1996, Femtosecond, picosecond and nanosecond laser ablation of solids, Applied Physics a-Materials Science & Processing 63(2): 109–115.ADSCrossRefGoogle Scholar
  14. Collet, E., Lemee-Cailleau, M. H., Buron-Le Cointe, M., Cailleau, H., Wulff, M., Luty, T., Koshihara, S. Y., Meyer, M., Toupet, L., Rabiller, P. and Techert, S., 2003, Laser-induced ferroelectric structural order in an organic charge-transfer crystal, Science 300(5619):612–615.CrossRefADSGoogle Scholar
  15. Demtröder, W., 2002, Laser Spectroscopy: Basic Concepts and Instrumentation (Berlin, Springer Verlag)Google Scholar
  16. Denk, W., Strickler, J. H. and Webb, W. W., 1990, 2-Photon Laser Scanning Fluorescence Microscopy, Science 248(4951):73–76.CrossRefADSGoogle Scholar
  17. Du, D., Liu, X., Korn, G., Squier, J. and Mourou, G., 1994, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs, Appl. Phys. Lett. 64(23):3071–3073.CrossRefADSGoogle Scholar
  18. Dudovich, N., Oron, D. and Silberberg, Y., 2002, Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy, Nature 418(6897):512–514.CrossRefADSGoogle Scholar
  19. Dudovich, N., Oron, D. and Silberberg, Y., 2004, Quantum control of the angular momentum distribution in multiphoton absorption processes, Physical Review Letters 92(10)Google Scholar
  20. Feurer, T., Vaughan, J. C. and Nelson, K. A., 2003, Spatiotemporal coherent control of lattice vibrational waves, Science 299(5605):374–377.CrossRefADSGoogle Scholar
  21. Hambir, S. A., Franken, J., Hare, D. E., Chronister, E. L., Baer, B. J. and Dlott, D. D., 1997, Ultrahigh time-resolution vibrational spectroscopy of shocked molecular solids, Journal Of Applied Physics 81(5):2157–2166.CrossRefADSGoogle Scholar
  22. Hare, D. E. and Dlott, D. D., 1994, Picosecond Coherent Raman-Study Of Solid-State Chemical-Reactions During Laser Polymer Ablation, Applied Physics Letters 64(6):715–717.CrossRefADSGoogle Scholar
  23. Henyk, M., Joly, A. G., Beck, K. M. and Hess, W. P., 2003, Photon stimulated desorption from KI: Laser control of I-atom velocity distributions, Surface Science 528(1–3):219–223.CrossRefADSGoogle Scholar
  24. Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D. and Motzkus, M., 2002, Quantum control of energy flow in light harvesting, Nature 417(6888):533–535.CrossRefADSGoogle Scholar
  25. Hess, W. P., Joly, A. G., Beck, K. M., Henyk, M., Sushko, P. V., Trevisanutto, P. E. and Shluger, A. L., 2005, Laser control of desorption through selective surface excitation, Journal Of Physical Chemistry B 109(42):19563–19578.CrossRefGoogle Scholar
  26. Hess, W. P., Joly, A. G., Gerrity, D. P., Beck, K. M., Sushko, P. V. and Shluger, A. L., 2002, Control of laser desorption using tunable single pulses and pulse pairs, Journal Of Chemical Physics 116(18):8144–8151.CrossRefADSGoogle Scholar
  27. Itoh, N. and Stoneham, A. M., 2001, Materials Processing by Electronic Excitation (Oxford, Oxford University Press)Google Scholar
  28. Joly, A. G., Beck, K. M., Henyk, M., Hess, W. P., Sushko, P. V. and Shluger, A. L., 2003, Surface electronic spectra detected by atomic desorption, Surface Science 544(1):L683–L688.CrossRefADSGoogle Scholar
  29. Juodkazis, S., Mizeikis, V., Seet, K. K., Miwa, M. and Misawa, H., 2005, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnology 16(6):846–849.CrossRefADSGoogle Scholar
  30. Juodkazis, S., Yamasaki, K., Mizeikis, V., Matsuo, S. and Misawa, H., 2004, Formation of embedded patterns in glasses using femtosecond irradiation, Applied Physics a-Materials Science & Processing 79(4–6): 1549–1553.ADSGoogle Scholar
  31. Kane, D. J., Taylor, A. J., Trebino, R. and Delong, K. W., 1994, Single-Shot Measurement Of The Intensity And Phase Of A Femtosecond Uv Laser-Pulse With Frequency-Resolved Optical Gating, Optics Letters 19(14): 1061–1063.ADSCrossRefGoogle Scholar
  32. Kane, D. J. and Trebino, R., 1993a, Characterization Of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating, Ieee Journal Of Quantum Electronics 29(2):571–579.CrossRefADSGoogle Scholar
  33. Kane, D. J. and Trebino, R., 1993b, Single-Shot Measurement Of The Intensity And Phase Of An Arbitrary Ultrashort Pulse By Using Frequency-Resolved Optical Gating, Optics Letters 18(10):823–825.ADSCrossRefGoogle Scholar
  34. Leiderer, P., Bartels, C., Konig-Birk, J., Mosbacher, M. and Boneberg, J., 2004, Imaging optical near-fields of nanostructures, Applied Physics Letters 85(22):5370–5372.CrossRefADSGoogle Scholar
  35. Masuda, M., Sugioka, K., Cheng, Y., Aoki, N., Kawachi, M., Shihoyama, K., Toyoda, K., Helvajian, H. and Midorikawa, K., 2003, 3-D microstructuring inside photosensitive glass by femtosecond laser excitation, Applied Physics A-Materials Science & Processing 76(5):857–860.CrossRefADSGoogle Scholar
  36. Mollenauer, L. F., Smith, K., Gordon, J. P. and Menyuk, C. R., 1989, Resistance Of Solitons To The Effects Of Polarization Dispersion In Optical Fibers, Optics Letters 14(21):1219–1221.ADSCrossRefGoogle Scholar
  37. Moore, D. S., Gahagan, K. T., Reho, J. H., Funk, D. J., Buelow, S. J., Rabie, R. L. and Lippert, T., 2001, Ultrafast nonlinear optical method for generation of planar shocks, Appl. Phys. Lett. 78(1):40–42.CrossRefADSGoogle Scholar
  38. Münzer, H. J., Mosbacher, M., Bertsch, M., Zimmermann, J., Leiderer, P. and Boneberg, J., 2001, Local held enhancement effects for nanostructuring of surfaces, Journal Of Microscopy-Oxford 202(129–135.CrossRefGoogle Scholar
  39. Oron, D., Tal, E. and Silberberg, Y., 2003, Depth-resolved multiphoton polarization microscopy by third-harmonic generation, Optics Letters 28(23):2315–2317.ADSCrossRefGoogle Scholar
  40. Patterson, J. E., Lagutchev, A., Huang, W. and Dlott, D. D., 2005, Ultrafast dynamics of shock compression of molecular monolayers, Physical Review Letters 94(1)Google Scholar
  41. Perry, M. D., Stuart, B. C, Banks, P. S., Feit, M. D., Yanovsky, V. and Rubenchik, A. M., 1999, Ultrashort-pulse laser machining of dielectric materials, Journal of Applied Physics 85(9):6803–6810.CrossRefADSGoogle Scholar
  42. Petek, H. and Ogawa, S., 2002, Surface femtochemistry: Observation and quantum control of frustrated desorption of alkali atoms from noble metals, Annual Review Of Physical Chemistry 53(507–531.CrossRefADSGoogle Scholar
  43. Piglmayer, K., Denk, R. and Bauerle, D., 2002, Laser-induced surface patterning by means of microspheres, Applied Physics Letters 80(25):4693–4695.CrossRefADSGoogle Scholar
  44. Rabitz, H. and Zhu, W. S., 2000, Optimal control of molecular motion: Design, implementation, and inversion, Accounts Of Chemical Research 33(8):572–578.CrossRefGoogle Scholar
  45. Rabitz, H. A., Hsieh, M. M. and Rosenthal, C. M., 2004, Quantum optimally controlled transition landscapes, Science 303(5666): 1998–2001.CrossRefADSGoogle Scholar
  46. Rethfeld, B., 2004, Unified model for the free-electron avalanche in laser-irradiated dielectrics, Physical Review Letters 92(18)Google Scholar
  47. Rethfeld, B., Sokolowski-Tinten, K., von der Linde, D. and Anisimov, S. I., 2004, Timescales in the response of materials to femtosecond laser excitation, Applied Physics A-Materials Science & Processing 79(4–6):767–769.ADSGoogle Scholar
  48. Siwick, B. J., Dwyer, J. R., Jordan, R. E. and Miller, R. J. D., 2004, Femtosecond electron diffraction studies of strongly driven structural phase transitions, Chemical Physics 299(2–3):285–305.CrossRefADSGoogle Scholar
  49. Siwick, B. J., Green, A. A., Hebeisen, C. T. and Miller, R. J. D., 2005, Characterization of ultrashort electron pulses by electron-laser pulse cross correlation, Optics Letters 30(9): 1057–1059.CrossRefADSGoogle Scholar
  50. Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., von der Linde, D., Oparin, A., Meyer-ter-Vehn, J. and Anisimov, S. I., 1998, Transient states of matter during short pulse laser ablation, Physical Review Letters 81(1):224–227.CrossRefADSGoogle Scholar
  51. Squier, J. A. and Muller, M., 1999, Third-harmonic generation imaging of laser-induced breakdown in glass, Applied Optics 38(27):5789–5794.ADSCrossRefGoogle Scholar
  52. Squier, J. A., Muller, M., Brakenhoff, G. J. and Wilson, K. R., 1998, Third harmonic generation microscopy, Optics Express 3(9):315–324.ADSCrossRefGoogle Scholar
  53. Stoian, R., Boyle, M., Thoss, A., Rosenfeld, A., Korn, G., Hertel, I. V. and Campbell, E. E. B., 2002, Laser ablation of dielectrics with temporally shaped femtosecond pulses, Applied Physics Letters 80(3):353–355.CrossRefADSGoogle Scholar
  54. Stoian, R., Mermillod-Blondin, A., Winkler, S. W., Rosenfeld, A., Hertel, I. V., Spyridaki, M., Koudoumas, E., Tzanetakis, P., Fotakis, C., Burakov, I. M. and Bulgakova, N. M., 2005, Temporal pulse manipulation and consequences for ultrafast laser processing of materials, Optical Engineering 44(5)Google Scholar
  55. Stoneham, A. M., Ramos, M. M. D. and Ribeiro, R. M., 1999, The mesoscopic modeling of laser ablation, Appl. Phys. A 69(S81–S86.CrossRefADSGoogle Scholar
  56. Strickler, J. H. and Webb, W. W., 1991, 3-Dimensional Optical-Data Storage In Refractive Media By 2-Photon Point Excitation, Optics Letters 16(22):1780–1782.ADSCrossRefGoogle Scholar
  57. Stuart, B. C., Feit, M. D., Herman, S., Rubenchik, A. M., Shore, B. W. and Perry, M. D., 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Physical Review B 53(4):1749–1761.CrossRefADSGoogle Scholar
  58. Stuart, B. C., Feit, M. D., Rubenchik, A. M., Shore, B. W. and Perry, M. D., 1995, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses, Physical Review Letters 74(12):2248–2251.CrossRefADSGoogle Scholar
  59. Trebino, R., DeLong, K. W., Fittinghoff, D. N., Sweetser, J. N., Krumbugel, M. A., Richman, B. A. and Kane, D. J., 1997, Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating, Review Of Scientific Instruments 68(9):3277–3295.CrossRefADSGoogle Scholar
  60. Warren, W. S., Rabitz, H. and Dahleh, M., 1993, Coherent Control Of Quantum Dynamics-The Dream Is Alive, Science 259(5101): 1581–1589.CrossRefMathSciNetADSGoogle Scholar
  61. Weiner, A. M., 2000, Femtosecond pulse shaping using spatial light modulators, Review Of Scientific Instruments 71(5):1929–1960.CrossRefADSGoogle Scholar
  62. Weiner, A. M., Leaird, D. E., Wiederrecht, G. P. and Nelson, K. A., 1990, Femtosecond Pulse Sequences Used For Optical Manipulation Of Molecular-Motion, Science 247(4948):1317–1319.CrossRefADSGoogle Scholar
  63. Williams, R. M., Piston, D. W. and Webb, W. W., 1994, 2-Photon Molecular-Excitation Provides Intrinsic 3-Dimensional Resolution For Laser-Based Microscopy And Microphotochemistry, Faseb Journal 8(11):804–813.Google Scholar
  64. Yu, A. C., Ye, X., Ionascu, D., Cao, W. X. and Champion, P. M., 2005, Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range, Review Of Scientific Instruments 76(11)Google Scholar
  65. Zhigilei, L. V. and Garrison, B. J., 2000, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes, Journal Of Applied Physics 88(3):1281–1298.CrossRefADSGoogle Scholar
  66. Zumbusch, A., Holtom, G. R. and Xie, X. S., 1999, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering, Physical Review Letters 82(20):4142–4145.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Richard F. HaglundJr.
    • 1
  1. 1.Department of Physics and Astronomy and W. M. Keck Foundation Free-Electron Laser CenterVanderbilt UniversityNashville

Personalised recommendations