Advertisement

Ultrafast Optical Measurements of Shocked Materials

  • David J. Funk
  • David S. Moore
  • Shawn D. McGrane
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

4. Conclusions

Much of the research discussed above was conducted in preparation for the studies that examined shock-induced chemistry in energetic materials. The knowledge we obtained regarding the influence of direct laser-drive upon the target on which the energetic polymer was coated, has led to our confidence that the reaction chemistry studies provide relevant information regarding the first decomposition steps in shock-loaded energetic materials. For example, the PMMA interferometric data were well-modeled using the bulk Hugoniots of both the PMMA and the aluminum; thus, the use of direct-drive did not perturb the thermodynamic state significantly from the Hugoniot, allowing us to make the assumption that on these timescales (hundreds of picoseconds), the states are well-approximated as the same relevant state obtained with gas-gun systems. We have also shown that caution must be exercised when attempting to use the interferometric data for the characterization of material motion; changes in the material properties can influence the interferometric data and must be deconvolved to yield the “true” surface motion. However, this also offers the possibility of using the changes in material properties as a measure of the shocked material’s thermodynamic state; discontinuities will exist in the index of refraction as the material crosses a phase boundary. These changes may then be used as a characterization tool if they are accurately measured using the interferometric techniques to measure phase boundaries under shock-loaded conditions. Finally, the culmination of these studies involved the first observation of reaction under shock loading conditions of an energetic material. We have shown that when an energetic polymer, PVN, is shocked to ∼200 kbar, we observe a disappearance of the NO2 vibration infrared absorption(s), indicating chemical reaction as the Shockwave traverses the film.

This work was performed at Los Alamos National Laboratory by the University of California under the auspices of the Department of Energy. under contract W-7405-ENG.

Keywords

Laser Ablation Particle Velocity Probe Pulse Energetic Material Surface Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Ashcroft, N.W., and Sturm, K., 1981, Interband absorption and the optical properties of polyvalent metals, Phys. Rev. B 24:2315.CrossRefADSGoogle Scholar
  2. Ashkenasi, D., Varel, H., Rosenfeld, A., Henz, S., Herrmann, J., Campbell, E.E.B., 1998, Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials, Appl. Phys. Lett. 72:1442–4.CrossRefADSGoogle Scholar
  3. Barker, L.M., and Hollenbach, R.E., 1970, Shock-wave studies of PMMA, fused silica, and sapphire J. Appl. Phys. 41(10):4208.CrossRefADSGoogle Scholar
  4. Benuzzi-Mounaix, A., Koenig, M., Boudenne, J.M., Hall, T.A., Batani, D., Scianitti, F., Masini, A., Di Santo, D., 1999, Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments, Phys. Rev. E 60:R2488–2491.CrossRefADSGoogle Scholar
  5. Born, M. and Wolf, E., 1970, Principles of Optics 4th ed., Pergamon Press, New YorkGoogle Scholar
  6. Chhabildas, L.C., and Asay, J.R., 1979, Rise-time measurements of shock transitions in aluminum, copper, and steel, J. Appl. Phys. 50:2749.CrossRefADSGoogle Scholar
  7. Dandrea, R.G., and Ashcroft, N.W., 1985, High pressure as a probe of electron structure: aluminium, Phys. Rev. B, 32(10):6936.CrossRefADSGoogle Scholar
  8. Dlott, D.D., and Fayer, M.D., 1990, Shocked molecular solids: vibrational up pumping, defect hot spot formation, and the onset of chemistry, J. Chem. Phys., 92:3798–12.CrossRefADSGoogle Scholar
  9. Dlott, D.D., Hambir, S., Franken, J., 1998, The new wave in Shockwaves, J. Phys. Chem. B 102:2121–2130.CrossRefGoogle Scholar
  10. Duvall, G.E., Ogilvie, K.M., Wilson, R., Bellamy, P.M., Wei, P.S.P., 1982, Optical spectroscopy in a shocked liquid, Nature 296:846–847.CrossRefADSGoogle Scholar
  11. Evans, R., Badger, A.D., Failliès, F., Mahdieh, M., Hall, T.A., Audebert, P., Geindre, J.-P., Gauthier, J.-C., Mysyrowicz, A., Grillon, G., and Antonetti, A., 1996, Time-and space-resolved optical probing of femtosecond-laser-driven Shockwaves in aluminum, Phys. Rev. Lett. 77:3359.CrossRefADSGoogle Scholar
  12. Funk, D.J., Moore, D.S., Gahagan, K.T., Buelow, S.J., Reho, J.H., Fisher, G.L., and Rabie, R.L., 2001, Ultrafast measurement of the optical properties of aluminum during shock-wave breakout, Phys. Rev. B 64(11): 115114.CrossRefADSGoogle Scholar
  13. Gahagan, K.T., Moore, D.S., Funk, D. J., Rabie, R.L., Buelow, S. J., and Nicholson, J.N., 2000, Measurement of Shockwave rise times in metal thin films, Phys. Rev. Lett. 85(15):3205–3208.CrossRefADSGoogle Scholar
  14. Gahagan, K.T., Moore, D.S., Funk, D.J., Reho, J. H., Rabie, R.L., 2002, Ultrafast interferometric microscopy for laser-driven Shockwave characterization, J. Appl. Phys. 92(7):3679–3682.CrossRefADSGoogle Scholar
  15. Geindre, J. P., Audebert, P., Rousse, A., Falliès, F., Gauthier, J.C., Mysyrowicz, A., Dos Santos, A., Hamoniaux, G., and Antonetti, A., 1994, Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma, Opt. Lett. 19:1997–9.ADSCrossRefGoogle Scholar
  16. Gervais, F., 1991, in: Handbook of Optical Constants of Solids II, E. D. Palik, ed., Academic Press, San Diego, p. 761.Google Scholar
  17. Hambir, S.A., Kim, H., Dlott, D.D., and Frey, R.B., 2001, Real time ultrafast spectroscopy of shock front pore collapse, J. App. Phys. 90:5139.CrossRefADSGoogle Scholar
  18. Hare, D.E., Franken, J., Dlott, D.D., 1995, A new method for studying picosecond dynamics of shocked solids: application to crystalline energetic materials, Chem. Phys. Lett., 244(3–4):224–230.CrossRefADSGoogle Scholar
  19. Kadau, K., Germann, T.C., Lomdahl, P.S., and Holian, B.L., 2002, Microscopic view of structural phase transitions induced by Shockwaves, Science 296:1681.CrossRefADSGoogle Scholar
  20. Kuklja, M.M., 2003, On the initiation of chemical reactions by electronic excitations in molecular solids, Appl. Phys. A 76:359.CrossRefADSGoogle Scholar
  21. Marsh, S.P., 1980, LASL Shock Hugoniot Data, University of California, Berkeley.Google Scholar
  22. McGrane, S.D., Moore, D.S., Funk, D.J., and Rabie, R.L., 2002, Spectrally modified chirped pulse generation of sustained Shockwaves, Appl. Phys. Lett. 80:3919.CrossRefADSGoogle Scholar
  23. McGrane, S.D., Moore, D.S., Funk, D.J., 2003, Sub-picosecond shock interferometry of transparent thin films, J. Appl. Phys. 93(9):5063–5068.CrossRefADSGoogle Scholar
  24. McGrane, S.D., Moore, D.S., Funk, D.J., 2004a, in: Shock Compression of Condensed Matter-2003, M.D. Furnish, Y.M. Gupta, J.W. Forbes, eds, AIP Proceedings Vol 706, Melville, NY.Google Scholar
  25. McGrane, S.D., Moore, D.S., and Funk, D.J., 2004b, Shock induced reaction observed via ultrafast infrared absorption in poly(vinyl nitrate) films, J. Phys. Chem. A 108:9342–9347.CrossRefGoogle Scholar
  26. Momma, C., Nolte, S., Chichkov, B.N., Alvenslebeen, F.v., and Tünnermann, 1997, Precise laser ablation with ultrashort pulses, A., Appl. Surf. Sci. 109/110:15.CrossRefGoogle Scholar
  27. Moore, D.S. Gahagan, K.T., Reho, J.H., Funk, D.J. Buelow, S.J., Rabie, R.L., and Lippert, T., 2001, Ultrafast nonlinear optical method for generation of planar shocks, Appl. Phys. Lett. 78:40–42.CrossRefADSGoogle Scholar
  28. Moore, D.S. and McGrane, S.D., 2003, Comparative infrared and Raman spectroscopy of energetic polymers, J. Mol. Struct. 661:561–566.CrossRefADSGoogle Scholar
  29. Moore, D.S., McGrane, D.J. Funk, 2004, Infrared complex refractive index measurements and simulated reflection mode infrared absorption spectroscopy of shock-compressed polymer thin films, Appl. Spectrosc. 58:491–498.CrossRefADSGoogle Scholar
  30. Ogilvie, K.M. and Duvall, G.E., 1983, Shock-induced changes in the electronic spectra of liquid CS2, J. Chem. Phys. 78:1077–1087.CrossRefADSGoogle Scholar
  31. Schmitt, M.J., Kopp, R.A., Moore, D.S., and McGrane, S.D., 2004, Analysis of laser-driven shocks in confined in unconfined geometries, in: Shock Compression of Condensed Matter — 2003, M.D. Furnish, et al., eds, AIP, Melville, NY, pp. 1409–1412.Google Scholar
  32. Smith, D.Y., Shiles, E., and Inokuti, M., 1985, in: Handbook of Optical Constants of Solids, E. D. Palik, ed., Academic Press, San Diego, p. 374.Google Scholar
  33. Stuart, B.C., Freit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., and Perry, M.D., 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53:1749.CrossRefADSGoogle Scholar
  34. Takeda, M., Ina, H., Kobayashi, S., 1982, Fourier-transform method of fringe-pattern analysis for computer-based topography and inteferometry, J. Opt. Soc. Am. 72:156–160.ADSCrossRefGoogle Scholar
  35. Tarver, C.M., 1997, Multiple roles of highly vibrationally excited molecules in the reaction zones of detonation waves, J. Phys. Chem. 101(27):4845.Google Scholar
  36. Tokunaga, E., Terasaki, A., and Kobayashi, T., 1992, Frequency-domain interferometer for femtosecond time-resolved phase spectroscopy, Opt. Lett. 17:1131.ADSCrossRefGoogle Scholar
  37. von der Linde, D., Sokolowski-Tinten, K., 2000, The physical mechanisms of short-pulse laser ablation, Appl. Surf. Sci. 154/155:1.CrossRefGoogle Scholar
  38. Weiner, A.M., 1995, Femtosecond optical pulse shaping and processing, Prog. Quant. Electr. 19:161.CrossRefMathSciNetADSGoogle Scholar
  39. Wise, J.L., and Chhabildas, L.C., 1985, in: Shockwaves in Condensed Matter, Y. M. Gupta, ed., Plenum Press, New York.Google Scholar
  40. Xu, L., Li, L., Nakagawa, N., Morita, R., Yamashita, M., 2000, Application of a spatial light modulator for programmable optical pulse compression to the sub-6-fs regime, IEEE Phot. Tech. Lett. 12:1540.CrossRefADSGoogle Scholar
  41. Zel’dovich, Y.B., Raiser, Y.P., 1966, in: Physics of Shockwaves and High Temperature Hydrodynamic Phenomena, Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • David J. Funk
    • 1
  • David S. Moore
    • 1
  • Shawn D. McGrane
    • 1
  1. 1.Los Alamos National LaboratoryLos Alamos

Personalised recommendations