Skip to main content

New Aspects of Laser-Induced Ionization of Wide Band-Gap Solids

  • Chapter
Laser Ablation and its Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 129))

  • 3048 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, E.N., 1952, Motion of an electron in a perturbed periodic potential, Phys. Rev. 85(1):41–50.

    Article  ADS  MATH  Google Scholar 

  • Adams, E.N., and Argyres, P.N., 1956, Acceleration of electrons by an external force field, Phys. Rev. 102(3): 605–606.

    Article  ADS  Google Scholar 

  • Apostolova, T., and Hahn, Y., 2000, Modeling of laser-induced breakdown in dielectrics with subpicosecond pulses, J. Appl. Phys. 88(2): 1024–1034.

    Article  ADS  Google Scholar 

  • Ashkenasi, D., Varel, H., Rosenfeld, A., Noack, F., Campbell, E.E.B., 1996, Pulse-width influence on the laser-induced structuring of CaF2 (111), Appl. Phys. A 63: 103–107.

    ADS  Google Scholar 

  • Audebert, P., Daguzan, Ph., Dos Santos, A., et al., 1994, Space-time observation of an Electron Gas in SiO2, Phys. Rev. Lett. 73(14): 1990–1993.

    Article  ADS  Google Scholar 

  • Avron, J.E., 1976, Model calculation of Stark ladder resonances, Phys. Rev. Lett. 37(23):1568–1571.

    Article  ADS  Google Scholar 

  • Bloch, F., 1928, Quantum mechanics of electrons in crystals, Zeitschrift fuer Physik 52: 555–599.

    Article  ADS  Google Scholar 

  • Bonch-Bruevich, V.L., and Kalaschnikov, S.G., 1982, Halbleiterphysik, VEB Deutscher Verlag Wissenschaften, Berlin, Chapters III, IV.

    Google Scholar 

  • Braunstein, R., and Ockman, N., 1964, Optical Double-Photon Absorption in CdS, Phys.Rev. 134: A499–A507.

    Article  ADS  Google Scholar 

  • Bychkov, Yu.A., and Dykhne, A.M., 1970, Breakdown in semiconductors in an alternating electric field, Sov. Phys. — JETP 31: 928–9337 [transl. from Zh. Eksp. Teor. Phys. (USSR) 58(5), 1734–1743 (1970)].

    ADS  Google Scholar 

  • Du, D., Liu, X., Mourou, G., 1996, Reduction of multi-photon ionization in dielectrics due to collisions, Appl. Phys. B 63: 617–621.

    ADS  Google Scholar 

  • Gruzdev, V.E., 2004, Analysis of the transparent-crystal ionization model developed by L.V.Keldysh, J. of Opt. Technology 71(8): 504–508 [transl. from Opticheskii Zhumal 71(8), 14–20 (2004)].

    Article  ADS  Google Scholar 

  • Gruzdev, V.E., 2005, Laser-induced collective ionization in wide band-gap crystalline dielectrics, in “ICONO 2005: Ultrafast Phenomena and Physics of Superintense Laser Fields”, Proc. SPIE (to appear).

    Google Scholar 

  • Gruzdev, V.E., 2006a, “Analysis of the Keldysh model for laser-induced ionization of transparent solids”, J of Phys. C: Cond. Matter, (submitted).

    Google Scholar 

  • Gruzdev, V.E., 2006b, Influence of band structure on photo-ionization of non-metallic crystals by high-intensity laser radiation, Phys. Rev. B, (submitted).

    Google Scholar 

  • Gruzdev, V.E., 2006c, Effect of collective ionization in wide band-gap crystalline dielectrics, Phys. Rev. B (in preparation).

    Google Scholar 

  • Guizard, S., Martin, P., Petite, G., D’Oliveira, P., Meynadier, P., 1996, Time-resolved study of laser-induced colour centres in SiO2, J. Phys.: Cond. Matter. 8: 1281–1290.

    Article  ADS  Google Scholar 

  • Houston, W.V., 1940, Acceleration of Electrons in a Crystal Lattice, Phys. Rev. 57: 184–186.

    Article  MathSciNet  ADS  Google Scholar 

  • Jones, H.D., and Reiss, H.R., 1977, Intense-field effects in solids, Phys. Rev. B 16(6): 2466–2473.

    Article  ADS  Google Scholar 

  • Kaiser, A., Rethfeld, B., Vicanek, M., Simon, G., 2000, Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses, Phys. Rev. B. 61(17): 11437–11450.

    Article  ADS  Google Scholar 

  • Kane, E.O., 1957, Band structure of indium antimonide”, J. Phys. Chem. Solids 1: 249–261.

    Article  ADS  Google Scholar 

  • Kautek, W., Krueger, J., Lenzner, M., Sartania, S., Spielmann, Ch., Krausz, F., 1996, Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps, Appl. Phys. Lett. 69(21): 3146–3148.

    Article  ADS  Google Scholar 

  • Keldysh, L.V., 1958, Behavior of non-metallic crystals in strong electric fields, Sov. Phys. — JETP 6(4): 763–770 [transl. from Zh. Eksp. Theor. Phys. (USSR) 33, 994–1003 (1957)].

    ADS  Google Scholar 

  • Keldysh, L.V., 1965, Ionization in the field of a strong electromagnetic wave, Sov. Phys. — JETP, 20(5): 1307–1314 [transl. from Zh. Eksp. Theor. Phys. (USSR) 47, 1945–1957 (1964)].

    MathSciNet  Google Scholar 

  • Kovarskii, V.A., and Perlin, E.Y., 1971, Multi-photon interband optical transitions in crystals, Phys. Status Solidi (b) 45: 47–56.

    Article  ADS  Google Scholar 

  • Lenzner, M, Krueger, J., Sartania, S., Cheng, Z., Spielmann, Ch., Mourou, G., Kautek, W., Krausz, F., 1998, Femtosecond optical breakdown in dielectrics, Phys. Rev. Lett. 80(18): 4076–4079.

    Article  ADS  Google Scholar 

  • Li, M., Menon, S., Nibarger, J.P., Gibson, G.N., 1999, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics, Phys. Rev. Lett. 82(11): 2394–2397.

    Article  ADS  Google Scholar 

  • Lyssenko, V.G., Valusis, G., Löser, F., et al., 1997, Direct measurement of the spatial displacement of Bloch-oscillating electrons in semiconductor superlattices, Phys. Rev. Lett. 79(2): 301–304.

    Article  ADS  Google Scholar 

  • Nathan, V., Guenther, A.H., Mitra, S.S., 1985, Review of multiphoton absorption in crystalline solids, J. Opt. Soc. Am. B 2(2): 294–316.

    Article  ADS  Google Scholar 

  • Poole, R.T., Jenkin, J.G., Liesegang, J., Leckey, R.C.G., 1975, Electronic band structure of the alkali halides. I. Experimental parameters, Phys. Rev. B. 11(12): 5179–5189.

    Article  ADS  Google Scholar 

  • Quere, F., Guizard, S., Martin, Ph., 2001, Time-resolved study of laser-induced breakdown in dielectrics, Europhys. Lett. 56(1): 138–144.

    Article  ADS  Google Scholar 

  • Rethfeld, B., 2004, Unified Model for the Free-Electron Avalanche in Laser-Irradiated Dielectrics, Phys. Rev. Lett. 92(18): 187401.

    Article  ADS  Google Scholar 

  • Rethfeld, B., 2005, Free electron generation in laser-irradiated dielectrics, in “ICONO 2005: Nonlinear Optical Phenomena VII”, Proc. SPIE (to appear).

    Google Scholar 

  • Schaffer, C., Brodeur, A., Mazur, E., 2001, Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses, Meas. Sci. Technol. 12: 1784–1794.

    Article  ADS  Google Scholar 

  • Stoian, R., Ashkenasi, D., Rosenfeld, A., Campbell, E.E.B., 2000, Coulomb explosion in ultrashort laser ablation of Al2O3, Phys. Rev. B 62(19): 13167–13173.

    Article  ADS  Google Scholar 

  • Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., Perry, M.D., 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53(4):1749–1761.

    Article  ADS  Google Scholar 

  • Sudzius, M., Lyssenko, V.G., Löser, F., et al., 1998, Optical control of Bloch-oscillation amplitudes: From harmonic spatial motion to breathing modes, Phys. Rev. B 57(20):R12693–R12696.

    Article  ADS  Google Scholar 

  • Tien, A.-C., Backus, S., Kapteyn, H., Murnane, M., Mourou, G., 1999, Short-pulse laser damage in transparent materials as a function of pulse duration, Phys. Rev. Lett. 82(19):3883–3886.

    Article  ADS  Google Scholar 

  • Vaidyanathan, A., Walker, T., Guenther, A.H., Mitra, S.S., Narducci, L.M., 1980, Two-photon absorption in several direct-gap crystals, Phys. Rev. B 21(2): 743–748.

    Article  ADS  Google Scholar 

  • Von der Linde, D., and Schüller, H., 1996, Breakdown threshold and plasma formation in femtosecond laser-solid interaction, J. Opt. Soc. Am. B 13(1): 216–222.

    Article  ADS  Google Scholar 

  • Von der Linde, D., and Sokolovski-Tinten, K., 2000, The physical mechanism of short-pulse laser ablation, Appl. Surface Science 154–155: 1–10.

    Article  Google Scholar 

  • Wannier, G.H., 1960, Wave functions and effective Hamiltonian for Bloch electrons in an electric field, Phys. Rev. 117(2): 432–439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wannier, G.H., 1962, Dynamics of band electrons in electric and magnetic fields, Rev. Mod. Phys. 34(4): 645–655.

    Article  MathSciNet  ADS  Google Scholar 

  • Yee, J.H., 1971, Four-Photon Transition in Semiconductors, Phys. Rev. B 3(2): 355–360.

    Article  ADS  Google Scholar 

  • Yee, J.H., 1972, Three-Photon Absorption in Semiconductors, Phys. Rev. B 5(2): 449–458.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Gruzdev, V.E. (2007). New Aspects of Laser-Induced Ionization of Wide Band-Gap Solids. In: Phipps, C. (eds) Laser Ablation and its Applications. Springer Series in Optical Sciences, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30453-3_5

Download citation

Publish with us

Policies and ethics