Plume Dynamics

  • Jørgen Schou
  • Salvatore Amoruso
  • James G. Lunney
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)


Laser Ablation Pulse Laser Deposition Plasma Plume Langmuir Probe Silicon Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, O., Roger, S., Glinec, Y., Loulergue, J.C., Etchepare, J., Boulmer-Leborgne, C., Perrière, J., and Millon, E., 2003, Time-resolved spectroscopy measurements of a titanium plasma induced by nanosecond and femtosecond lasers, Appl. Phys. A 76: 319–323.CrossRefADSGoogle Scholar
  2. AlWazzan, R.A., Lewis, C.L.S. and Morrow, T., 1996, A technique for mapping three-dimensional number densities of species in laser produced plasmas, Rev. Sci Instrum. 67: 85–88.CrossRefADSGoogle Scholar
  3. Amoruso, S., 1999, Modeling of UV pulsed-laser ablation of metallic targets, Appl. Phys. A 69: 323–332.CrossRefADSGoogle Scholar
  4. Amoruso, S., Bruzzese, R., Spinelli, N. and Velotta, R., 1999, Characterization of laser-ablation plasmas, J. Phys. B 32: R131–R172.CrossRefADSGoogle Scholar
  5. Amoruso, S., Wang., X., Altucci, C., de Lisio, C., Armenante, M., Bruzzese R., and Velotta, R., 2000, Thermal and non-thermal ion emission during high-fluence femtosecond laser ablation of metallic targets, Appl. Phys. Lett. 77: 3728–3730.CrossRefADSGoogle Scholar
  6. Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M. and Wang, X., 2003, Dynamics of laser-ablated MgB2 plasma expanding in argon probed by optical emission spectroscopy, Phys. Rev. B 67: 224503-1–224503-11.CrossRefADSGoogle Scholar
  7. Amoruso, S., Toftmann, B., Schou, J., Velotta, R. and Wang, X., 2004a, Diagnostics of laser ablated plasma plumes, Thin Solid Films 453–454: 562–572.CrossRefGoogle Scholar
  8. Amoruso, S., Toftmann, B. and Schou, J., 2004b, Thermalization of a UV laser ablation plume in a background gas: from directed to diffusionlike flow, Phys. Rev. E 59: 056403-1–056403-6.ADSGoogle Scholar
  9. Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M., Wang, X., Ausanio, G., Iannotti, V. and Lanotte, L., 2004c, Generation of silicon nanoparticles via femtosecond laser ablation in vacuum, Appl. Phys. Lett. 84: 4502–4504.CrossRefADSGoogle Scholar
  10. Amoruso, S., Altucci, C., Bruzzese, R., de Lisio, C., Spinelli, N., Velotta, R., Vitiello M., and Wang, X., 2004d, Study of the plasma plume generated during near IR femtosecond laser irradiation of silicon targets, Appl. Phys. A 79: 1377–1380.ADSGoogle Scholar
  11. Amoruso S., Bruzzese R., Spinelli N., Velotta R., Vitiello M. and Wang X., 2004e, Emission of nanoparticles during ultrashort laser irradiation of silicon targets, Europhys. Lett. 67, 404–410.CrossRefADSGoogle Scholar
  12. Amoruso, S. and Vitiello, M., 2005, Characterization of plumes produced during ultrashort laser ablation of metals and semicoductors, in Laser Physics and Applications, Atanasov, P. A., Gateva, S.V., Avramov, L. A. and Serafetinides, A. A. eds., Proceedings SPIE vol. 5830, Bellingham, USA, pp. 11–20.Google Scholar
  13. Amoruso, S., Bruzzese, R., Velotta, R., Spinelli, N., Vitiello, M. and Wang, X., 2005a, Characterization of LaMnO3 laser ablation in oxygen by ion probe and optical emission spectroscopy, Appl. Surf. Sci. 248: 45–49.CrossRefADSGoogle Scholar
  14. Amoruso, S., Vitiello, M. and Wang, X., 2005b, Femtosecond laser ablation and deposition, in Pulsed Laser Deposition of Optoelectronic Films, Popescu, M. ed., Series Optoelectronic Materials and Devices, INOE, Bucharest, pp. 41–80.Google Scholar
  15. Amoruso, S., Bruzzese, R., Vitiello, M, Nedialkov, N. N. and Atanasov, P. A, 2005c, Experimental and theoretical investigation of femtosecond laser ablation of aluminium in vacuum, J. Appl. Phys. 98: 044907-1–044907-7.CrossRefADSGoogle Scholar
  16. Amoruso, S., Sambri, A., Vitiello, M. and Wang, X., 2006a, Propagation of LaMnO3 laser ablation plume in oxygen gas, Appl. Surf. Sci. (in press).Google Scholar
  17. Amoruso, S., Ausanio, G., Bruzzese, R., Gragnaniello, L., Lanotte, L., Vitiello, M. and Wang, X., 2006b, Characterization of laser ablatioin of solid targets with near-infrared pulses of 100 fs and 1 ps duration, Appl. Surf. Sci. (in press).Google Scholar
  18. Anisimov, S. I., Bäuerle, D. and Luk’yanchuk, B. S., 1993, Gas dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B 48: 12076–12081.CrossRefADSGoogle Scholar
  19. Anisimov, S. I., Luk’yanchuk, B. S., and Luches, A.., 1996, An analytical model for three-dimensional laser plume expansion into vacuum in hydrodynamic regime, Appl. Surf. Sci. 96–98: 24–32.CrossRefGoogle Scholar
  20. Anisimov, S. I., and Luk’yanchuk, B. S., 2002, Selected problems of laser ablation theory, Physics-Uspekhi, 45:293–324.CrossRefADSGoogle Scholar
  21. Arnold, N., Gruber, J. and Heitz, J., 1999, Spherical expansion of the vapor plume into ambient gas: an analytical model, Appl. Phys. A 69: S87–S93.CrossRefADSGoogle Scholar
  22. Ashfold, M. N. R., Claeyssens, F., Fuge, G. M. and Henley, S. J., 2004, Pulsed Laser Ablation and Deposition of Thin Films, Chem. Soc. Rev. 33: 23–31.CrossRefGoogle Scholar
  23. Ausanio, G., Barone, A. C., Iannotti, V., Lanotte, L., Amoruso, S., Bruzzese, R. and Vitiello, M., 2004, Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation, Appl. Phys. Lett. 85: 4103–4105.CrossRefADSGoogle Scholar
  24. Banks P.S., Dinh L., Stuart B.C., Feit M.D., Komashko A.M., Rubenchik A.M., Perry M.D. and McLean W., 1999, Short-pulse laser deposition of diamond-like carbon thin films, Appl. Phys. A 69: S347–S353.CrossRefADSGoogle Scholar
  25. Bulgakov, A.V. and Bulgakova, N. M., 1998, Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an underexpanded jet, J. Phys. D. Appl. Phys. 31: 693–703.CrossRefADSGoogle Scholar
  26. Chen, F. F. 1965, Electric probes, Plasma Diagnostic techniques, Huddlestone, R. H. and Leonard, S. L., eds., Academic Press, New York, pp. 113–200.Google Scholar
  27. Chrisey, D. B. and Hubler, G. K., 1994, Pulsed Laser Deposition of Thin Films, eds, Wiley, New York.Google Scholar
  28. Dijkkamp, D., Venkatesan, T., Wu, X.D, Shafeen, S.A., Jishraw, N., Minley, Y. H., McLean, W. L. and Croft, M., 1987, Prepation of Y-Ba-Cu oxide superconductor thin-films using pulsed laser evaporation from high-Tc bulk material, Appl. Phys. Lett. 51: 619–621.CrossRefADSGoogle Scholar
  29. Dinh, L. N., Hayes, S. E., Wynne, A. E., Wall, M. A., Saw, C. K., Stuart, B. C., Balooch, M., Paravastu, A. K. and Reimer, J. A., 2002, Properties of GaAs nanoclusters deposited by femtosecond laser, J. Mat. Sci. 37: 3953–3958.CrossRefGoogle Scholar
  30. Doggett, B. and Lunney, J.G., unpublished.Google Scholar
  31. Doggett, B., Budtz-Joergensen, C., Lunney, J.G., Sheerin, P. and Turner, T.T., 2005, Behaviour of a planar Langmuir probe in a laser ablation plasma, Appl. Surf. Sci. 247: 134–138.CrossRefADSGoogle Scholar
  32. Dyer, P. E., Issa, A. and Key, P. H., 1990, Dynamics of excimer laser ablation of superconductors in an oxygen environment, Appl. Phys. Lett. 57: 186–188.CrossRefADSGoogle Scholar
  33. Eliezer, S., Eliaz, N., Grossman, E., Fisher, D., Gouzman, I., Henis, Z., Pecker, S., Horovitz, Y., Fraenkel, M., Maman, S. and Lereah Y., 2004, Synthesis of nanoparticles with femtosecond laser pulses, Phys. Rev. B 69: 144119-1–144119-6.CrossRefADSGoogle Scholar
  34. Geohegan, D. B., 1992 Physics and diagnostics of laser ablation plume propagation for high-Tc superconductor film growth, Thin Solid Films 220:138–145.CrossRefADSGoogle Scholar
  35. Geohegan, D. B. and Puretzky, A: A., 1996, Laser ablation plume thermalization dynamics in background gases: combined imaging, optical absorption and emission spectroscopy, and ion probe measurements, Appl. Surf. Sci. 96–98:131–138.CrossRefGoogle Scholar
  36. Glover, T. E., 2003, Hydrodynamics of particle formation following femtosecond laser ablation, J. Opt. Soc. Am. B 20: 125–131.ADSCrossRefGoogle Scholar
  37. Gonzalo, J., Vega, F. and Afonso, C. N., 1996, Plasma expansion dynamics in reactive and inert atmospheres during laser ablation of Bi(2)Sr(2)Ca(2)O(7-y), J. Appl. Phys. 77:6588–6593.CrossRefADSGoogle Scholar
  38. Gorbunoff, A., 2002, Laser-Assisted Synthesis of Nanostructured Materials, Fortschritt-Berichte VDI 357, VDI verlag, Düsseldorf.Google Scholar
  39. Grojo, D., Hermann, J. and Perrone, A., 2005, Plasma analysis during femtosecond laser ablation of Ti, Zr, and Hf, J. Appl. Phys. 97: 063306-1–063306-9.CrossRefADSGoogle Scholar
  40. Hansen, T. N., Schou, J. and Lunney, J. G., 1997, Angular distributions of silver ions and neutrals emitted in vacuum by laser ablation, Europhys. Lett. 40: 441–446.CrossRefADSGoogle Scholar
  41. Hansen, T. N., Schou, J. and Lunney, J. G., 1999, Langmuir probe study of plasma expansion in pulsed laser ablation, Appl. Phys. A 69: S601–S604.CrossRefADSGoogle Scholar
  42. Harilal, S. S., Bindhu, C. V., Tillack, M. S., Najmabadi, F. and Gaeris, A. C., 2002, Plume splitting and sharpening in laser-produced aluminium plasma, J. Phys. D. Appl. Phys 35: 2935–2938.CrossRefADSGoogle Scholar
  43. Harilal, S. S., Bindhu, C. V., Tillack, M. S., Najmabadi, F. and Gaeris, A. C., 2003, Internal structure and expansion dynamics of laser ablation plumes into ambient gases, J. Appl. Phys. 93: 2380–2388.CrossRefADSGoogle Scholar
  44. Harris, T. J., 1963, High-speed photographs of laser-induced heating, IBM J. Res. Develop. 7: 342–345.CrossRefGoogle Scholar
  45. Hermann, J., Thomas, A. L., Boulmer-Leborgne, C., Dubreil, B., Giorgi, M. L. De, Perrone, A., Luches, A. and Mihailescu, I. N. 1995, Plasma diagnostics in pulsed laser TiN layer deposition, J. Appl. Phys. 77: 2928–2936.CrossRefADSGoogle Scholar
  46. Heszler P., Landström, L., Lindstam M. and Carlsson J.-O., 2001, Light-emission from tungsten nanoparticles during laser-assisted chemical vapour deposition of tungsten, J. Appl. Phys. 89: 396–3970.CrossRefADSGoogle Scholar
  47. Hubler, G. K., 1992, Pulsed laser deposition, MRS Bulletin, Vol. XVII, No. 2, Feb. 92.Google Scholar
  48. Itina, T. E., Marine, W. and Autric, M., 1997, Monte Carlo simulation of pulsed laser ablation from two-component target into diluted ambient gas, J. Appl. Phys. 82: 3536–3542.CrossRefADSGoogle Scholar
  49. Itina, T. E., Hermann, J., Delaporte, P. and Sentis, M., 2002, Laser-generated plasma plume expansion: Combined continuous-microscopic modelling, Phys. Rev. E 66:066406-1–066406-12.CrossRefADSGoogle Scholar
  50. Kelly, R., Miotello, A., Mele, A. and Giardini Giudoni, A., 1998, Plume formation and characterization in laser-surface interactions, Laser Ablation and Desorption, Miller, J. C. and Haglund, R. F. eds., Experimental Methods in the Physical Sciences vol. 30. Academic Press, New York, pp. 225–289.Google Scholar
  51. Komashko, A. M., Feit, M. D. and Rubenchik, A. M., 2000, Modeling of long term behavior of ablation plumes produced with ultrashort laser pulses, SPIE Vol. 3935, Laser plasma generation and diagnostics, pp. 97–103.Google Scholar
  52. Koopman, D. W., 1971, Langmuir probe and microwave measurements of the properties of streaming plasmas generated by focused laser pulses, Phys. Fluids 14: 1707–1716.CrossRefADSGoogle Scholar
  53. Li, P., Lim, D. and Mazumder, J., 2002, Diagnostics of nanosecond dynamics of the plasma produced during KrF excimer laser ablation of zirconia in vacuum, J. Appl. Phys. 92:666–671.CrossRefADSGoogle Scholar
  54. Lindley, R. A., Gilgenbach, R. M., Ching, C. H., Lash, J. S., Doll, G. L., 1994, Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments, J. Appl. Phys. 76: 5457–5472.CrossRefADSGoogle Scholar
  55. Lowndes, D. H., 1998, Growth and doping of compound semiconductor films by pulsed laser ablation, Laser Ablation and Desorption, Miller, J. C. and Haglund, R. F. eds., Experimental Methods in the Physical Sciences vol. 30. Academic Press, New York, pp. 475–571.Google Scholar
  56. Lunney, J. G. and Jordan, R., 1998, Pulsed laser ablation of metals, Appl. Surf. Sci., 127–129:941–946.CrossRefGoogle Scholar
  57. Millon, E., Perrière, J., Déforneau, R. M., Déforneau, D., Albert, O. and Etchepare, J., 2003, Femtosecond pulsed-laser deposition of BaTiO3, Appl. Phys. A 77:73–80.CrossRefADSGoogle Scholar
  58. Nolte, S., Kamlage, G., Korte, F., Bauer, T., Wagner, T., Ostendorf, A., Fallnich, C. and Welling, H., 2000, Microstructuring with femtosecond lasers, Adv. Eng. Mat. 2: 23–27.CrossRefGoogle Scholar
  59. Perez, D. and Lewis, L. J., 2003, Molecular-dynamics study of ablation of solids under femtosecond laser pulses, Phys. Rev. B 67: 184102-1–184102-15.ADSCrossRefGoogle Scholar
  60. Phipps, Jr., C. R., Turner, T. P., Harrison, R. F., York, G. W., Osborne, W. Z., Anderson, G. K., Corlis, X. F., Haynes, L. C., Steele, H. S., Spicochi, K. C. and King, T. R., 1988, Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers, J. Appl. Phys: 64, 1083–1098.CrossRefADSGoogle Scholar
  61. Proyer, S. and Stangl, E., 1995, Time-integrated photography of laser-induced plasma plumes, Appl. Phys. A 60: 573–580.ADSCrossRefGoogle Scholar
  62. Qian, F., Craciun, V., Singh, R. K., Dutta, S. D. and Pronko, P. P., 1999, High intensity femtosecond laser deposition of diamond-like carbon thin films, J. Appl. Phys. 86: 2281–2290.CrossRefADSGoogle Scholar
  63. Saenger, K. L. 1994, Angular distribution of ablated material, Pulsed Laser Deposition of Thin Films, Chrisey, D. B. and Hubler, G. K. eds., Wiley, New York, pp. 199–227.Google Scholar
  64. Schou, J. 2006, Laser beam-solid interactions: Fundamental aspects, in: Materials Surface Processing by Directed Energy Techniques, Pauleau, I. ed., Elsevier, pp. 33–62.Google Scholar
  65. Scuderi, D., Albert, O., Moreau, D., Pronko, P. P. and Etchepare, J., 2005, Interaction of a laser plume with a second time delayed femtosecond pulse, Appl. Phys. Lett. 86: 071502-1–071502-3.CrossRefADSGoogle Scholar
  66. Sibold, D. and Urbassek, H. M., 1991, Kinetic study of pulsed desorption flows into vacuum, Phys. Rev. A 43: 6722–6734.CrossRefADSGoogle Scholar
  67. Singh, R. K. and Narayan, J., 1990 Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B 41: 8843–8859.CrossRefADSGoogle Scholar
  68. Sokolowski-Tinten, K., Bialkowski, J., Cavalleri, A., von der Linde, D., Oparin, A., Meyerter-Vehn, J. and Anisimov, S. I., 1998, Transient states of matter during short pulse laser ablation, Phys. Rev. Lett. 81:224–227.CrossRefADSGoogle Scholar
  69. Thestrup, B., Toftmann, B., Schou, J., Doggett, B. and Lunney, J. G., 2002, Ion dynamics in laser ablation plumes from selected metals at 355 nm, Appl. Surf. Sci. 197–198:175–180.CrossRefGoogle Scholar
  70. Toftmann, B., Schou, J., T. N. Hansen and Lunney, J. G., 2000, Angular distribution of electron temperature and density in a laser-ablation plume, Phys. Rev. Lett. 84: 3998–4001.CrossRefADSGoogle Scholar
  71. Toftmann, B., Schou, J. and Lunney, J. G., 2003, Dynamics of the plume produced by nanosecond ultraviolet laser ablation of metals, Phys. Rev. B 67: 104101-1–104101-5.CrossRefADSGoogle Scholar
  72. Toftmann, B., Amoruso, S., Schou, J. and Lunney, J. G., 2006, The propagation of laser ablation plume ions in a background gas (unpublished).Google Scholar
  73. Tyuina, M., and Leppävuori, S., 2000, Effects of laser fluence, size, and shape of the laser focal spot in pulsed laser deposition using a multielement target, J. Appl. Phys. 87 8132–8142.CrossRefADSGoogle Scholar
  74. VanRompay, P. A., Nantel, M. and Pronko, P. P., 1998, Pulse-contrast effects on energy distributions of C1+ to C4+ ions for high-intensity 100-fs laser-ablation plasmas, Appl. Surf. Sci. 129:1023–1028.CrossRefGoogle Scholar
  75. Vertes, A., Gijbels, R. and Adams, F., 1993, Laser Ionization Mass Analysis, Chemical Analysis Series, vol 124, John Wiley, New York.Google Scholar
  76. Vidal, F., Johnston, T. W., Laville, S., Barthelemy, O., Chaker, M., Le Drogoff, B., Margot, J. and Sabsabi, M, 2001, Critical-point phase separation in laser ablation of conductors, Phys. Rev. Lett. 86: 2573–2576.CrossRefADSGoogle Scholar
  77. Weaver, I. and Lewis, C. L. S.,1996, Polar distribution of ablated atomic material during pulsed laser deposition of Cu in vacuum: Dependence on foused laser spot size and power density, J. Appl. Phys. 79: 7216–7222.CrossRefADSGoogle Scholar
  78. Willmott, P. R. and Huber, J. R., 2000, Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72:315–328.CrossRefADSGoogle Scholar
  79. Wood, R. F., Chen, K. R., Leboeuf, J. N., Puretzky, A. A. and Geohegan, D. B. 1997, Dynamics of plume propagation and splitting during pulsed-laser ablation, Phys. Rev. Lett. 79: 1571–1574.CrossRefADSGoogle Scholar
  80. Wood, R. F., Leboeuf, J. N., Geohegan, D. B., Puretzky, A. A. and Chen, K.R. 1998, Dynamics of plume propagation and splitting during pulsed-laser ablation of Si in He and Ar, Phys. Rev. B 58: 1533–1543.CrossRefADSGoogle Scholar
  81. Ye, M. and Grigoropoulos, C. P., 2001, Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium, J. Appl. Phys. 89: 5183–5190.CrossRefADSGoogle Scholar
  82. Zel’dovich, Ya. R. and Raizer, Yu. P., 2001, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, Cambridge, Massachusetts.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Jørgen Schou
    • 1
  • Salvatore Amoruso
    • 2
  • James G. Lunney
    • 3
  1. 1.Department of Optics and Plasma ResearchRisø National LaboratoryRoskildeDenmark
  2. 2.Coherentia CNR-INFM and Dipartimento di Scienze FisicheUniversità di Napoli Federico IINapoliItaly
  3. 3.School of PhysicsTrinity CollegeDublin, 2Ireland

Personalised recommendations