Advertisement

Materials Modification with Intense Extreme Ultraviolet Pulses from a Compact Laser

  • M. E. Grisham
  • G. Vaschenko
  • C. S. Menoni
  • L. Juha
  • M. Bittner
  • Yu. P. Pershyn
  • V. V. Kondratenko
  • E. N. Zubarev
  • A. V. Vinogradov
  • I. A. Artioukov
  • J. J. Rocca
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

5. Conclusion

In summary, we have realized a series of experiments with a compact 46.9 nm wavelength laser that produces intense pulses of nanosecond duration to study the ablation behavior of metals, common polymers, and Sc/Si multilayers. The key ablation process in polymers is likely to be a radiolysis of the polymer chains by EUV photons, resulting in the formation of numerous small molecular fragments that are subsequently removed from the surface of the samples. The EUV ablation rates for different polymers were found to be almost material independent, ∼ 50 – 400 nm/pulse. In each material EUV irradiation was observed to leave smooth craters with well defined edges and without signs of thermal damage. No threshold behavior was detected in the EUV ablation of the polymers in the range of fluences used in the experiment. In contrast to polymers the irradiation damage in metals and in Sc/Si multilayers is thermal in nature. A damage threshold of 0.08 J/cm2 was measured in the multilayer mirror coatings deposited on Si or borosilicate glass substrates, compared with a measured value of 0.7 J/cm2 for bare Si substrates. These results are relevant to the use of these mirrors with newly developed high-power EUV laser sources and provide a benchmark for their further improvement. In combination, the experiments demonstrate that compact extreme ultraviolet lasers are new tools available for surface modification studies and patterning.

Keywords

Laser Ablation Ablation Rate Multilayer Coating Material Modification Attenuation Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A. T., Tobin, M. T., and Peterson, P. F., 1994, X-ray response of National-Ignition-Facility first surface materials, Fusion Technol. 26: 804–808.Google Scholar
  2. Balandin, A., Khitun, A., Liu, J. L., Wang, K. L., Borca-Tasciuc, T., and Chen, G., 1999, Optimization of the thermoelectric properties of low-dimensional structures via phonon engineering, Proc. International Conference on Thermoelectrics, IEEE, Piscataway, pp. 189–192.Google Scholar
  3. Bauerle, D., 1996, Laser Processing and Chemistry, 2nd ed., Springer, Berlin.Google Scholar
  4. Beetz, T., and Jacobsen, C., 2003, Soft X-ray radiation-damage studies in PMMA using a cryo-STXM, J. Synchrotron Radiat. 10: 280–283.CrossRefGoogle Scholar
  5. Benware, B. R., Macchietto, C. D., Moreno, C. H., and Rocca, J. J., 1998, Demonstration of a high average power tabletop soft X-ray laser, Phys. Rev. Lett. 81: 5804–5807.CrossRefADSGoogle Scholar
  6. Benware, B. R., Ozols, A., Rocca, J. J., Artioukov, I. A., Kondratenko, V. V., and Vinogradov, A. V., 1999, Focusing of a tabletop soft-x-ray laser beam and laser ablation, Opt. Lett. 24: 1714–1716.ADSCrossRefGoogle Scholar
  7. Capeluto, M. G., Vaschenko, G., Grisham, M, Marconi, M. C, Ludueña, S., Pietrasanta, L., Lu, Y., Parkinson, B., Menoni, C. S., and Rocca, J. J., 2005, Nanopatterning with interferometric lithography using a compact λ = 46.9 nm laser, IEEE Trans. Nanotechnol., in press.Google Scholar
  8. Chen, G., and Neagu, M., 1997, Thermal conductivity and heat transfer in superlattices, Appl. Phys. Lett. 71: 2761–2763.CrossRefADSGoogle Scholar
  9. Chen, G., 1997, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures, J. Heat Transfer 119: 220–229.CrossRefGoogle Scholar
  10. Costela, A., Garciamoreno, I., Florido, F., Figuera, J. M., Sastre, R., Hooker, S. M., Cashmore, J. S., and Webb, C. E., 1995, Laser-ablation of polymeric materials at 157 nm, J. Appl. Phys. 77: 2343–2350.CrossRefADSGoogle Scholar
  11. Deno, H., Sugiyama, S., Kakudate, Y., Yoshida, M., and Fujiwara, S., 1996, VUV ablation of polymers by emission from gas-puff Z-pinch plasmas, Appl. Surf. Sci. 96–8: 563–568.CrossRefADSGoogle Scholar
  12. Dyer, P. E., 2003, Excimer laser polymer ablation: twenty years on, Appl. Phys. A: Mater. Sci. Process. 77: 167–173.CrossRefMathSciNetADSGoogle Scholar
  13. Fedorenko, A. I., Pershin, Yu. P., Poltseva, O. V., Ponomarenko, A. G., Sevryukova, V. S., Voronov, D. L., and Zubarev, E. N., 2001, Structure of Sc/Si multilayer mirrors in as-deposited state and after annealing, J. X-Ray Sci. Technol. 9: 35–42.Google Scholar
  14. Fiedorowicz, H., Bartnik, A., Bittner, M., Juha, L., Krasa, J., Kubat, P., Mikolajczyk, J., and Rakowski, R., 2004, Micromachining of organic polymers by direct photo-etching using a laser plasma X-ray source, Microelectron. Eng. 73–74: 336–339.CrossRefGoogle Scholar
  15. Grisham, M., Vaschenko, G., Menoni, C. S., Rocca, J. J., Pershyn, Yu. P., Zubarev, E. N., Voronov, D. L., Sevryukova, V. A., Kondratenko, V. V., Vinogradov, A. V., and Artioukov., I. A., 2004, Damage to extreme-ultraviolet Sc/Si multilayer mirrors exposed to intense 46.9-nm laser pulses, Opt. Lett. 29: 620–622.CrossRefADSGoogle Scholar
  16. Haglund, Jr., R. F., 1996, Microscopic and mesoscopic aspects of laser-induced desorption and ablation, Appl. Surf. Sci. 96–8, 1–13.CrossRefADSGoogle Scholar
  17. Holmes-Siedle, A., and Adams, L., 2002, Handbook of Radiation Effects, 2nd ed., Oxford University Press, Oxford, p. 569.Google Scholar
  18. Juha, L., Krasa, J., Präg, A., Cejnarova, A., Chvostova, D., Rohlena, K., Jungwirth, K., Kravarik, J., Kubes, P., Bakshaev, Yu. L., Chernenko, A. S., Korolev, V. D., Tumanov, V. I., Ivanov, M. I., Bernardinello, A., Ullschmied, J., and Boody, F. P., 2002a, Ablation of poly(methyl methacrylate) by a single pulse of soft X-rays emitted from Z-pinch and laser-produced plasmas, Surf. Rev. Lett. 9: 347–352.CrossRefGoogle Scholar
  19. Juha, L., Präg, A. R., Krasa, J., Cejnarova, A., Kralikova, B., Skala, J., Chvostova, D., Krzywinski, J., Andrejczuk, A., Jurek, M., Klinger, D., Sobierajski, R., Fiedorowicz, H., Bartnik, A., Pína, L., Kravarik, J., Kubes, P.,. Bakshaev, Yu. L, Chernenko, A. S., Korolev, V. D., Tumanov, V. I., Ivanov, M. I., Scholz, M., Ryc, L., Tomaszewski, K., Viskup, R., and Boody, F. P., 2002b, Ablation of Organic Polymers and Elemental Solids Induced by Intense XUV Radiation, in: X-ray Lasers: 2002, J. J. Rocca, J. Dunn, and S. Suckewer, eds., AIP Conf. Proc. 641, pp. 504–509.Google Scholar
  20. Juha, L., Bittner, M., Chvostova, D., Krasa, J., Otcenasek, Z., Präg, A. R., Ullschmied, J., Pientka, Z., Krzywinski, J., Pelka, J. B., Wawro, A., Grisham, M. E., Vaschenko, G., Menoni, C. S., and Rocca., J. J., 2005a, Ablation of organic polymers by 46.9-nm-laser radiation, Appl. Phys. Lett. 86, 034109.CrossRefADSGoogle Scholar
  21. Juha, L., Bittner, M., Chvostova, D., Krasa, I, Kozlova, M., Polan, J., Prag, A. R., Rus, B., Stupka, M., Feldhaus, J., Letal, V., Otcenasek, Z., Krzywinski, J., Pelka, J. B., Andrejczuk, A., Sobieraiski, R., Ryc, L., Boody, F. P., Fiedorovicz, H., Bartnik, A., Mikolajczyk, J., Rakowski, R., Kubat, P., Pina, L., Horvath, M., Grisham, M. E., Vaschenko, G. O., Menoni, C. S., and Rocca, J. J., 2005b, Short-wavelength ablation of molecular solids: pulse duration and wavelength effects, J. Microlithography, Microfabrication, and Microsystems 4: 033007.CrossRefADSGoogle Scholar
  22. Katoh, T., and Zhang, Y., 1998, High aspect ratio micromachining by synchrotron radiation direct photo-etching, Microsyst. Technol. 4: 135–138.CrossRefGoogle Scholar
  23. Lapczyna, M., and Stuke, M, 1998, Direct fabrication of micro mesas by VUV laser ablation of polymers: PMMA (polymethylmethacrylate), Appl. Phys. A: Mater. Sci. Process. 66: 473–475.CrossRefADSGoogle Scholar
  24. Lee, S. K., Chang, W. S., and Na, S. J., 1999, Numerical and experimental study on the thermal damage of thin Cr films induced by excimer laser irradiation, J. Appl. Phys. 86: 4282–4289.CrossRefADSGoogle Scholar
  25. Leguern, F., André, J.-M., Lebreton, J.-P., Dutrannoy, J.-L., Chauvineau, J.-P., Krastev, K.,. Larcade, J.-L., Friart, D., Nazet, C., and Barchewitz, R., 1997, Experimental study and simulation of the damage induced to various multilayer interferential mirrors by soft X-ray plasma-laser sources, J. X-Ray Sci. Technol. 7: 271–283.Google Scholar
  26. Lippert, T., and Dickinson, J. T., 2003, Chemical and spectroscopic aspects of polymer ablation: special features and novel directions, Chem. Rev. 103: 453–485.CrossRefGoogle Scholar
  27. Lukashenko, G. M, Polotskaya, R. I., and Sidorko, V. R., 1992, Thermodynamic properties of scandium, lanthanum, neodymium, and gadolinium silicides and germanides, J. Alloys Compounds 179: 299–305.CrossRefGoogle Scholar
  28. Macchietto, C. D., Benware, B. R., and Rocca, J. J., 1999, Generation of millijoule-level soft-x-ray laser pulses at a 4-Hz repetition rate in a highly saturated tabletop capillary discharge amplifier, Opt. Lett. 24: 1115–1117.ADSCrossRefGoogle Scholar
  29. MacGowan, B. J., Mrowka, S., Barbee, Jr., T. W., DaSilva, L. B., Eder, D. C., Koch, J. A., Pan, L. S., Turner, J. A., Underwood, J. H., and Young, P. E., 1992, Investigation of damage to multilayer optics in x-ray laser cavities: W/C, WRe/C, WC/C, stainless-steel/C, and Cr3C2/C mirrors, J. X-Ray Sci. Technol. 3: 231–282.CrossRefGoogle Scholar
  30. Maida, O., Kohma, N., Ueno, M., Shibuya, A., Kanashima, T., Okuyama, M., and Ohashi, H., 2001, Evaporation and expansion of poly-tetra-fluoro-ethylene induced by irradiation of soft X-rays from a figure-8 undulator, Jpn. J. Appl. Phys., Part 1 40: 2435–2439.CrossRefADSGoogle Scholar
  31. Pugachev, A.T., Churakova, N.P., and Volkov, Yu. A., 1982, Heat conduction of gold thin films in the temperature interval of 80 to 300 K, Poverkhnost. Fizika, khimiia, mekhanika 9: 149.Google Scholar
  32. Riedel, D., and Castex, M. C., 1999, Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm, Appl. Phys. A: Mater. Sci Process. 69: 375–380.CrossRefADSGoogle Scholar
  33. Rocca, J. J., Shlyaptsev, V. N., Tomasel, F.G., Cortazar, O. D., Hartshorn, D., Chilla, J. L. A., 1994, Demonstration of a discharged pumped table-top soft-x-ray laser, Phys. Rev. Lett. 73: 2192–2195.CrossRefADSGoogle Scholar
  34. Rocca, J. J., Clark, D.P., Chilla, J. L. A., Shlyaptsev, V. N., 1996, Energy extraction and achievement of the saturation limit in a discharge-pumped table-top soft x-ray amplifier, Phys. Rev. Lett. 77: 1476–1479.CrossRefADSGoogle Scholar
  35. Sobierajski, R. J., Krzywinski, J., Andrejczuk, A., Faatz, B., Felten, F., Jacobi, S., Juha, L., Jurek, M., Kauch, A., Klinger, D., Pelka, J. B., Saldin, E., Schneidmiller, E., Sikora, M., Steeg, B., and Yurkov, M., 2003, Free Electron Lasers 2002, Argonne, edited by K.-J. Kim, S. V. Milton, and E. Gluskin, Elsevier, Amsterdam, p. II–77.Google Scholar
  36. Srinivasan, R., and Braren, B., 1989, Ultraviolet laser ablation of organic polymers, Chem. Rev. 89: 1303–1316.CrossRefGoogle Scholar
  37. Srinivasan, R., 1994, Laser Ablation: Principles and Applications, J. C. Miller, ed., Springer, Berlin, p. 107.Google Scholar
  38. Uspenskii, Yu. A., Levashov, V. E., Vinogradov, A. V., Fedorenko, A. I., Kondratenko, V.V., Pershin, Y. P., Zubarev, E. N., and Fedotov, V. Y., 1998, High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35–50 nm, Opt. Lett. 23: 771–773.ADSCrossRefGoogle Scholar
  39. Voronov, D. L., Zubarev, E. N., Kondratenko, V. V., Penkov, A. V., Pershin, Y. P., Ponomarenko, A. G., Artioukov, I. A., Vinogradov, A. V., Uspenskii, Y. A., and Seely, J. F., 2002, Thermoresistive multilayer mirrors with antidiffusion barriers for work at the wavelengths 40–50 nm, in: X-ray Lasers 2002, J. J. Rocca, J. Dunn, and S. Suckewer, eds., AIP Conf. Proc. 641, pp. 575–582.Google Scholar
  40. Yaakobi, B., Kim, H., Soures, J. M., Deckman, H. W., and Dunsmuir, J., 1983, Submicron x-ray lithography using laser-produced plasma as a source, Appl. Phys. Lett. 43: 686–688.CrossRefADSGoogle Scholar
  41. Yu, L. H., DiMauro, L., Doyuran, A., Graves, W. S., Johnson, E. D., Heese, R., Krinsky, S., Loos, H., Murphy, J. B., Rakowsky, G., Rose, J., Shaftan, T., Sheehy, B., Skaritka, J., Wang, X. J., and Wu, Z., 2003, First ultraviolet high-gain harmonic-generation free-electron laser, Phys. Rev. Lett. 91: 074801.CrossRefADSGoogle Scholar
  42. Yurkov, M. V., 2003, Development of free-electron x-ray lasers on the TESLA test accelerator (DESY, Germany), At. Energy 94: 108–112.CrossRefGoogle Scholar
  43. Zhang, X., Jacobsen, C., Lindaas, S., and Williams, S., 1995, Exposure strategies for polymethyl methacrylate from in situ x-ray absorption near edge structure spectroscopy, J. Vac. Sci. Technol. B 13: 1477–1483.CrossRefGoogle Scholar
  44. Zhang, Y., Katoh, T., Washio, M., Yamada, H., and Hamada, S., 1995, High aspect ratio micromachining Teflon by direct exposure to synchrotron radiation, Appl. Phys. Lett. 67: 872–874.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • M. E. Grisham
    • 1
  • G. Vaschenko
    • 1
  • C. S. Menoni
    • 1
  • L. Juha
    • 2
    • 3
  • M. Bittner
    • 2
  • Yu. P. Pershyn
    • 4
  • V. V. Kondratenko
    • 4
  • E. N. Zubarev
    • 4
  • A. V. Vinogradov
    • 5
  • I. A. Artioukov
    • 5
  • J. J. Rocca
    • 1
  1. 1.NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer EngineeringColorado State UniversityFort Collins
  2. 2.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic
  3. 3.Center for Radiochemistry and Radiation ChemistryCzech Technical University in PraguePrague 1Czech Republic
  4. 4.Metal and Semiconductor Physics DepartmentNational Technical University “KhPI”KharkovUkraine
  5. 5.P. N. Lebedev Physical InstituteMoscowRussia

Personalised recommendations