Soft Laser Desorption Ionization — Maldi, Dios and Nanostructures

  • Akos Vertes
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)


Laser Ablation Porous Silicon Laser Fluence Surface Evaporation Silicon Nanowires 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. Alimpiev, S., Nikiforov, S., Karavanskii, V., Minton, T., and Sunner, J., 2001, On the mechanism of laser-induced desorption-ionization of organic compounds from etched silicon and carbon surfaces, J. Chem. Phys. 115(4): 1891–1901.CrossRefADSGoogle Scholar
  2. Allwood, D. A., Dreyfus, R. W., Perera, I. K., and Dyer, P. E., 1996, UV optical absorption of matrices used for matrix-assisted laser desorption/ionization, Rapid Commun. Mass Spectrom. 10(13): 1575–1578.CrossRefGoogle Scholar
  3. Allwood, D., Dreyfus, R., Perera, I., and Dyer, P., 1997, Optical absorption of matrix compounds for laser-induced desorption and ionization (MALDI), Appl. Surf. Sci. 109/110:154–157.CrossRefGoogle Scholar
  4. Allwood, D., and Dyer, P., 2000, Quantitative fluorescence measurements performed on typical matrix molecules in matrix-assisted laser desorption/ionisation, Chem. Phys. 261(3):457–467.CrossRefGoogle Scholar
  5. Apitz, I., and Vogel, A., 2005, Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin, Appl. Phys. A 81(2):329–338.CrossRefADSGoogle Scholar
  6. Bencsura, A., Navale, V., Sadeghi, M., and Vertes, A., 1997, Matrix-Guest Energy Transfer in Matrix-Assisted Laser Desorption, Rapid Commun. Mass Spectrom. 11(6):679–682.CrossRefGoogle Scholar
  7. Bencsura, A., and Vertes, A., 1995, Dynamics of hydrogen bonding and energy transfer in matrix-assisted laser desorption, Chem. Phys. Letters 247(1–2):142–148.CrossRefADSGoogle Scholar
  8. Beuhler, R. J., Flanigan, E., Greene, L. J., and Friedman, L., 1974, Proton transfer mass spectrometry of peptides. A rapid heating technique for underivatized peptides containing arginine, J. Am. Chem. Soc. 96(12):3990–3999.CrossRefGoogle Scholar
  9. Chen, Y., Luo, G., Diao, J., Chornoguz, O., Reeves, M., and Vertes, A., 2005, Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays, J. Phys.: Conf. Ser. in press.Google Scholar
  10. Chen, Y., and Vertes, A., 2003, Pumping rate and surface morphology dependence of ionization processes in matrix-assisted laser desorption ionization, J. Phys. Chem. A 107(46):9754–9761.CrossRefGoogle Scholar
  11. Chen, Y., and Vertes, A., 2005, Black silicon as matrix-free laser desorption ionization substrate, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28–Sept. 1, 2005, 2005(111):ANYL.Google Scholar
  12. Crecelius, A., Clench, M. R., Richards, D. S., and Parr, V., 2002, Thin-layer chromatography-matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry using particle suspension matrices, J. Chromatogr. A 958(1–2):249–260.CrossRefGoogle Scholar
  13. Cullis, A. G., Canham, L. T., and Calcott, P. D. J., 1997, The structural and luminescence properties of porous silicon, J. Appl. Phys. 82(3):909–965.CrossRefADSGoogle Scholar
  14. Diao, J. J., Qiu, F. S., Chen, G. D., and Reeves, M. E., 2003, Surface vertical deposition for gold nanoparticle film, J. Phys. D Appl. Phys. 36:L25–L27.CrossRefADSGoogle Scholar
  15. Dreisewerd, K., 2003, The desorption process in MALDI, Chem. Rev. 103(2):395–425.CrossRefGoogle Scholar
  16. Finkel, N. H., Prevo, B. G., Velev, O. D., and He, L., 2005, Ordered silicon nanocavity arrays in surface-assisted desorption/ionization mass spectrometry, Anal. Chem. 77(4): 1088–1095.CrossRefGoogle Scholar
  17. Gabelica, V., Schulz, E., and Karas, M., 2004, Internal energy build-up in matrix-assisted laser desorption/ionization, J. Mass Spectrom. 39(6): 579–593.CrossRefGoogle Scholar
  18. Go, E. P., Apon, J. V., Luo, G., Saghatelian, A., Daniels, R. H., Sahi, V., Dubrow, R., Cravatt, B. F., Vertes, A., and Siuzdak, G., 2005, Desorption/ionization on silicon nanowires, Anal. Chem. 77(6):1641–1646.CrossRefGoogle Scholar
  19. Her, T.-H., Finlay, R. J., Wu, C., Deliwala, S., and Mazur, E., 1998, Microstructuring of silicon with femtosecond laser pulses, Appl. Phys. Lett. 73(12):1673–1675.CrossRefADSGoogle Scholar
  20. Her, T.-H., Finlay, R. J., Wu, C., and Mazur, E., 2000, Femtosecond laser-induced formation of spikes on silicon, Appl. Phys. A 70(4):383–385.CrossRefADSGoogle Scholar
  21. Jellison, Jr., G. E., and Modine, F. A., 1982, Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures, Appl. Phys. Lett. 41(2):180–182.CrossRefADSGoogle Scholar
  22. Juhasz, P., Vestal, M. L., and Martin, S. A., 1997, On the initial velocity of ions generated by matrix-assisted laser desorption ionization and its effect on the calibration of delayed extraction time-of-flight mass spectra, J. Am. Soc. Mass Spectrom. 8(3):209–217.CrossRefGoogle Scholar
  23. Karas, M., and Hillenkamp, F., 1988, Laser desorption ionization of proteins with molecular masses exceeding 10 000 Daltons, Anal. Chem. 60(20):2299–2301.CrossRefGoogle Scholar
  24. Knochenmuss, R., 2002, A quantitative model of ultraviolet matrix-assisted laser desorption/ionization, J. Mass Spectrom. 37(8):867–877.CrossRefGoogle Scholar
  25. Knochenmuss, R., 2003, A quantitative model of ultraviolet matrix-assisted laser desorption/ionization including analyte ion generation., Anal. Chem. 75(10):2199–2207.CrossRefGoogle Scholar
  26. Knochenmuss, R., and Vertes, A., 2000, Time-delayed 2-pulse studies of MALDI matrix ionization mechanisms, J. Phys. Chem. B 104(23):5406–5410.CrossRefGoogle Scholar
  27. Konn, D. O., Murrell, J., Despeyroux, D., and Gaskell, S.J., 2005, Comparison of the effects of ionization mechanism, analyte concentration, and ion “cool-times” on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization, J. Am. Soc. Mass Spectrom. 16(5): 743–751.CrossRefGoogle Scholar
  28. Kovalev, D., Polisski, G., Ben-Chorin, M., Diener, J., and Koch, F., 1996, The temperature dependence of the absorption coefficient of porous silicon, J. Appl. Phys. 80(10):5978–5983.CrossRefADSGoogle Scholar
  29. Kruse, R.A., Li, X., Bohn, P. W., and Sweedler, J. V., 2001 Experimental factors controlling analyte ion generation in laser desorption/ionization mass spectrometry on porous silicon, Anal. Chem. 73(15):3639–3645.CrossRefGoogle Scholar
  30. Luo, G., Chen, Y., Siuzdak, G., and Vertes, A., 2005a, Surface modification and laser pulse length effects on internal energy transfer in DIOS, J. Phys. Chem. B 109(51): 24450–24456CrossRefGoogle Scholar
  31. Luo, G., Diao, J., Chornoguz, O., Reeves, M., and Vertes, A., 2005b, Laser desorption/ionization mass spectrometry from nanoparticle films, Abstracts of Papers, 230th ACS National Meeting, Washington, DC, United States, Aug. 28–Sept. 1, 2005, 2005(109):ANYL.Google Scholar
  32. Luo, G. H., Marginean, I., and Vertes, A., 2002, Internal energy of ions generated by matrix-assisted laser desorption/ionization, Anal. Chem. 74(24):6185–6190.CrossRefGoogle Scholar
  33. McLean, J. A., Stumpo, K. A., and Russell, D. H., 2005, Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides, J. Am. Chem. Soc. 127(15):5304–5305.CrossRefGoogle Scholar
  34. Menzel, C., Dreisewerd, K., Berkenkamp, S. and Hillenkamp, F., 2001, Mechanisms of energy deposition in infrared matrix-assisted laser desorption/ionization mass spectrometry, Int. J. Mass Spectrom. 207(1/2): 73–96.Google Scholar
  35. Okuno, S., Arakawa, R., Okamoto, K., Matsui, Y., Seki, S., Kozawa, T., Tagawa, S., and Wada, Y., 2005, Requirements for laser-induced desorption/ionization on submicrometer structures, Anal. Chem. 77(16):5364–5369.CrossRefGoogle Scholar
  36. Posthumus, M. A., Kistemaker P. G., Meuzelaar H. L. C, and Ten Noever de Brauw M. C., 1978, Laser desorption-mass spectrometry of polar nonvolatile bio-organic molecules, Anal. Chem. 50(7):985–991.CrossRefGoogle Scholar
  37. Rothenberg, J. E., and Kelly, R., 1984, Laser sputtering. Part II. The mechanism of the sputtering of Al2O3, Nucl. Instrurn. Meth. Phys. Res. B 229(2–3):291–300.CrossRefADSGoogle Scholar
  38. Sadeghi, M., and Vertes, A., 1998, Crystallite size dependence of volatilization in matrix-assisted laser desorption ionization, Appl. Surf. Sci. 127/129:226–234.CrossRefGoogle Scholar
  39. Schurenberg, M., Dreisewerd, K., and Hillenkamp, F., 1999, Laser desorption/ionization mass spectrometry of peptides and proteins with particle suspension matrixes, Anal. Chem., 71(1):221–229.CrossRefGoogle Scholar
  40. Sedov, L. I., 1993, Similarity and Dimensional Methods in Mechanics, 10-th ed., CRC Press, Boca Raton.Google Scholar
  41. Shen, Z. X., Thomas, J. J., Averbuj, C., Broo, K. M., Engelhard, M., Crowell, J. E., Finn, M. G., and Siuzdak, G., 2001, Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry, Anal. Chem. 73(3):612–619CrossRefGoogle Scholar
  42. Stevenson, E., Breuker, K., and Zenobi, R., 2000 Internal energies of analyte ions generated from different matrix-assisted laser desorption/ionization matrices, J. Mass Spectrom. 35(8): 1035–1041.CrossRefGoogle Scholar
  43. Stimson, E., Truong, O., Richter, W. J., Waterfield, M. D., and Burlingame, A. L., 1997, Enhancement of charge remote fragmentation in protonated peptides by high-energy CID MALDI-TOF-MS using “cold” matrices, Int. J. Mass Spectrom. Ion Processes 169/170:231–240.CrossRefADSGoogle Scholar
  44. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., and Yoshida, T., 1988, Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 2(8):151–153.CrossRefGoogle Scholar
  45. Taylor, G., 1950, The Formation of a Blast Wave by a Very Intense Explosion. I. Theoretical Discussion, Proc. Roy. Soc. London A 201(1065):159–174.ADSCrossRefGoogle Scholar
  46. Turney, K., Drake, T. J., Smith, J. E., Tan W., and Harrison, W. W., 2004, Functionalized nanoparticles for liquid atmospheric pressure matrix-assisted laser desorption/ionization peptide analysis, Rapid Commun. Mass Spectrom. 18(20):2367–2374.CrossRefGoogle Scholar
  47. Vertes, A., Irinyi, G., and Gijbels, R., 1993, Hydrodynamic model of matrix assisted laser desorption mass spectrometry,” Anal. Chem. 65(17):2389–2393.CrossRefGoogle Scholar
  48. Wei, J., Buriak, J. M., and Siuzdak, G., 1999, Desorption-ionization mass spectrometry on porous silicon, Nature 399(6733): 243–246.CrossRefADSGoogle Scholar
  49. Wu, X., Sadeghi, M., and Vertes, A., 1998, Molecular dynamics of matrix-assisted laser desorption of leucine enkephalin guest molecules from nicotinic acid host crystal, J. Phys. Chem. B 102(24):4770–4778.CrossRefGoogle Scholar
  50. Xu, S., Li, Y., Zou, H., Qiu, J., Guo, Z., and Guo, B., 2003, Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry, Anal. Chem. 75(22):6191–6195.CrossRefGoogle Scholar
  51. Yazawa, M., Koguchi, M., Muto, A., Ozawa, M., and Hiruma, K., 1992, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Appl. Phys. Lett. 61(17):2051–2053.CrossRefADSGoogle Scholar
  52. Zenobi, R., and Knochenmuss, R., 1998, Ion formation in MALDI mass spectrometry, Mass Spec. Rev. 17(5):337–366.CrossRefGoogle Scholar
  53. Zhigilei, L. V., and Garrison, B. J., 2000, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes, J. Appl. Phys. 88(3): 1281–1298.CrossRefADSGoogle Scholar
  54. Zhigilei, L. V., Kodali, P. B. S., and Garrison, B. J., 1997, Molecular dynamics model for laser ablation and desorption of organic solids, J. Phys. Chem. B 101(11):2028–2037.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Akos Vertes
    • 1
  1. 1.Department of Chemistry, Institute for Proteomics Technology and ApplicationsThe George Washington UniversityWashington DC

Personalised recommendations