Advertisement

Fast Electronic Transport and Coulomb Explosion in Materials Irradiated with Ultrashort Laser Pulses

  • Nadezhda M. Bulgakova
  • Razvan Stoian
  • Arkadi Rosenfeld
  • Ingolf V. Hertel
  • Eleanor E. B. Campbell
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

Keywords

Laser Ablation Pulse Laser Ablation Coulomb Explosion Femtosecond Laser Ablation Phase Explosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anisimov, S. I., Kapeliovich, B. L., and Perel’man, T. L., 1974, Electron emission from metal surfaces exposed to ultrashort laser pulses, Sov. Phys. JETP, 39: 375–377.ADSGoogle Scholar
  2. Arnold, D., and Cartier, E., 1992, Theory of laser-induced free-electron heating and impact ionization in wide-ban-gap solids, Phys. Rev. B 46:15102–15115.CrossRefADSGoogle Scholar
  3. Ashkenasi, D., Rosenfeld, A., Varel, H., Wärmer, M, and Campbell, E. E. B., 1997, Laser processing of sapphire with picosecond and subpicosecond pulses, Appl. Surf. Sci. 120:65–80.CrossRefADSGoogle Scholar
  4. Ashkenasi, D., Stoian, R., and Rosenfeld, A., 2000, Single and multiple ultrashort laser pulse threshold of Al2O3 (corundum) at different etch phases, Appl. Surf. Sci. 154–155:40–46.CrossRefGoogle Scholar
  5. Bechtel, J. H., Lee Smith, W., and Bloembergen, N., 1977, Two-photon photoemission from metals induced by picosecond laser pulses, Phys. Rev. B 15:4557–4563.CrossRefADSGoogle Scholar
  6. Bitenskii, L. S., Murakhmetov, M. N., and Parilis, É. S., 1979, Sputtering of nonmetals by intermediate-energy multiply charged ions through a Coulomb “explosion”, Sov. Phys. Tech. Phys. 24:618–620.Google Scholar
  7. Bok, J., and Combescot, M., 1981, Comment on the “Evidence for a self-confined plasma” in laser annealing, Phys. Rev. Lett. 47:1564.CrossRefADSGoogle Scholar
  8. Borghesi, M, Romagnani, L., Schiavi, A., Campbell, D. H., Haines, M. G., Willi, O., Mackinnon, A. J., Galimberti, M., Gizzi, L., Clarke, R. J., and Hawkes, S., 2003, Measurement of highly transient electrical charging following high-intensity laser-solid interaction, Appl. Phys. Lett. 82:1529–1531.CrossRefADSGoogle Scholar
  9. Brand, J.L., and Tam, A.C., 1990, Mechanism of picosecond ultraviolet-laser sputtering of sapphire at 266 nm, Appl. Phys. Lett. 56:883–885.CrossRefADSGoogle Scholar
  10. Bulgakova, N. M., Bulgakov, A. V., and Bobrenok, O.F., 2000, Double layer effects in laser-ablation plasma plumes, Phys. Rev. E 62:5624–5635.CrossRefADSGoogle Scholar
  11. Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., and Campbell, E. E. B., 2004a, Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials, Phys. Rev. B, 69:054102(1–12).CrossRefADSGoogle Scholar
  12. Bulgakova, N. M., Stoian, R., Rosenfeld, A., Campbell, E. E. B., and Hertel, I. V., 2004b, Model description of surface charging during ultra-fast pulsed laser ablation of materials, Appl. Phys. A 79:1153–1155.ADSGoogle Scholar
  13. Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., Marine, W., and Campbell, E. E. B., 2005a, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion, Appl. Phys. A 81:345–356.CrossRefADSGoogle Scholar
  14. Bulgakova, N. M., Stoian, R., Rosenfeld, A., Hertel, I. V., and Campbell, E. E. B., 2005b, Surface charging under pulsed laser ablation of solids and its consequences: studies with a continuum approach, Proc. SPIE 5714:9–23.ADSCrossRefGoogle Scholar
  15. Cavalleri, A., Siders, C. W., Rose-Petruck, C., Jimenez, R., Tóth, Cs., Squier, J. A., Barty, C. P. J., and Wilson, K. R., 2001, Ultrafast x-ray measurement of laser heating in semiconductors: Parameters determining the melting threshold, Phys. Rev. B 63:193306 (1–4).CrossRefADSGoogle Scholar
  16. Cheng, H.-P., and Gillaspy, J. D., 1997, Nanoscale modification of silicon surfaces via Coulomb explosion, Phys. Rev. B 55:2628–2636.CrossRefADSGoogle Scholar
  17. Choi, T. Y., and Grigoropoulos, C. P., 2002 Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon, J. Appl. Phys. 92: 4918–4925.CrossRefADSGoogle Scholar
  18. Costache, F., Henyk, M., and Reif, J., 2003, Surface patterning on insulators upon femtosecond laser ablation, Appl. Surf. Sci. 208–209:486–491.CrossRefGoogle Scholar
  19. Costache, F., and Reif, J., 2004, Femtosecond laser induced Coulomb explosion from calcium fluoride, Thin Solid Films 453–454:334–339.CrossRefGoogle Scholar
  20. Dong, Y., and Molian, P., 2004, Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser, Appl. Phys. Lett. 84:10–12.CrossRefADSGoogle Scholar
  21. van Driel, H.M., 1987, Kinetics of high-density plasmas generated in Si by 1.06-and 0.53 µm picosecond laser pulses, Phys. Rev. B 35:8166–8176.CrossRefADSGoogle Scholar
  22. Driscoll, W. G., and Vaughan, W., (Eds), 1978, Handbook of Optics, McGraw-Hill Book Company, New York.Google Scholar
  23. Drits, M.E., (Ed.), Properties of Elements: Handbook (Moscow, Metallurgiya, 1985) (in Russian).Google Scholar
  24. Fleischer, R. L., Price, P. B., and Walker, R. M., 1965, Ion explosion spike mechanism for formation of charged-particle tracks in solids, J. Appl. Phys. 36:3645–3652.CrossRefADSGoogle Scholar
  25. Gamaly, E. G., Rode, A. V., Luther-Davies, B., and Tikhonchuk, V. T., 2002, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics, Phys. Plasmas 9:949–957.CrossRefADSGoogle Scholar
  26. Grigoryev, I. S., Meilikhov, E. Z., and Radzig, A.A., (Eds), 1996, Handbook of Physical Quantities, CRC Press, Boca Raton, FL.Google Scholar
  27. Held, T., Kuhn, T., and Mahler, G., 1991, Influence of internal electric fields and surface charges on the transport of an optically generated electron-hole plasma, Phys. Rev. B 44:12873–12879.CrossRefADSGoogle Scholar
  28. Henyk, M., Mitzner, R., Wolfframm, D., and Reif, J., 2000a, Laser-induced ion emission from dielectrics, Appl. Surf. Sci. 154–155:249–255.CrossRefGoogle Scholar
  29. Henyk, M., Wolfframm, D., and Reif, J., 2000b, Ultra short laser pulse induced charged particle emission from wide bandgap crystals, Appl. Surf. Sci. 168:263–266.CrossRefADSGoogle Scholar
  30. Herrmann, R., Gerlach, J., and Campbell, E. E. B., 1998, Ultrashort pulse laser ablation of silicon: an MD simulation study, Appl. Phys. A 66(1):35–42.CrossRefADSGoogle Scholar
  31. Hughes, R.C., 1979, Generation, transport, and trapping of excess charge carriers in Czochralski-grown sapphire, Phys. Rev. B 19:5318–5328.CrossRefADSGoogle Scholar
  32. Hummel, R. E., 1993, Electronic Properties of Materials, Springer-Verlag, Berlin, Heidelberg.Google Scholar
  33. Jones, S. C, Fischer, A. H., Braunlich, P., and Kelly, P., 1988, Prebreakdown energy absorption from intense laser pulses at 532 nm in NaCl, Phys. Rev. B 37:755–770.CrossRefADSGoogle Scholar
  34. Kaganov, M. I., Lifshitz., I. M., and Tanatarov, M. V., 1957, Relaxation between electrons and crystalline lattices, Sov.Phys. JETP 4:173–178.zbMATHGoogle Scholar
  35. Kanasaki, J., and Tanimura, K., 2002, Laser-induced electronic desorption of Si atoms from Si(111)-(7×7), Phys. Rev. B 66:125320(1–5).CrossRefADSGoogle Scholar
  36. E.O. Kane, 1962, Theory of photoelectric photoemission from semiconductors”, Phys. Rev. 127:131–141.CrossRefMathSciNetADSzbMATHGoogle Scholar
  37. Kuhn, T., and Mahler, G., 1989, Carrier capture in quantum wells and its importance for ambipolar transport, Solid-State Electron. 32:1851–1855.CrossRefADSGoogle Scholar
  38. Li, M., Menon, S., Nibarger, J. P., and Gibson, G.N., 1999, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics, Phys. Rev. Lett. 82:2394–2397.CrossRefADSGoogle Scholar
  39. Logothetis, E. M., and Hartman, P. L., 1969, Laser-induced electron emission from solids: many-photon photoelectric effects and thermionic emission, Phys. Rev. 187:460–474.CrossRefADSGoogle Scholar
  40. Mao, S. S., Mao, X.-L., Greif, R., and Russo, R.E., 1998, Simulation of infrared picosecond laser-induced electron emission from semiconductors, Appl. Surf. Sci. 127–129:206–211.CrossRefGoogle Scholar
  41. Marine, W., Bulgakova, N. M., Patrone, L., Ozerov, I., 2004, Electronic mechanism of ion expulsion under UF nanosecond laser excitation of silicon: experiment and modeling, Appl. Phys. A 79:771–774.CrossRefADSGoogle Scholar
  42. Mihaychuk, J. G., Shamir, N., and van Driel, H. M., 1999, Multiphoton photoemission and electric-field-induced optical second-harmonic generation as probes of charge transfer across the Si/SiO2 interface, Phys. Rev. B 59: 2164–2173.CrossRefADSGoogle Scholar
  43. Miotello, A., and Dapor, M., 1997, Slow electron impinging on dielectric solids. 2. Implantation profiles, electron mobility, and recombination processes, Phys. Rev. B 56:2241–2247.CrossRefADSGoogle Scholar
  44. Melchinger, A., and Hofmann, S., 1995, Dynamic double-layer model description of time-dependent charging phenomena in insulators under electron-beam irradiation, J. Appl. Phys. 78:6224–6232.CrossRefADSGoogle Scholar
  45. Nolte, S., Chichkov, B. N., Welling, H., Shani, Y., Lieberman, K., and Terkel, H., 1999, Nanostructuring with spatially localized femtosecond laser pulses, Opt. Lett. 24,:914–916.ADSCrossRefGoogle Scholar
  46. Petite, G., Daguzan, P., Guizard, S., and Martin, P., 1996, Conduction electrons in wide-bandgap oxides: a subpicosecond time-resolved optical study, Nucl. Instr. Meth. B 107:97–101.CrossRefADSGoogle Scholar
  47. Quèrè, F., Guizard, S., Martin, P., Petite, G., Gobert, O., Meynadier, P., and Perdrix, M., 1999, Ultrafast carrier dynamics in laser-excited materials: subpicosecond optical studies, Appl. Phys. B 68:459–463.CrossRefADSGoogle Scholar
  48. Ribeiro, R. M., Ramos, M. M. D., Stoneham, A. M., and Correia Pires, J. M., 1997, Modelling of surface evaporation by laser ablation, Appl. Surf. Sci. 109–110:158–161.CrossRefGoogle Scholar
  49. Ribeiro, R. M., Ramos, M. M. D., and Stoneham, A. M., 1998, Mesoscopic modeling of laser ablation, Thermophysics and Aeromechanics 5:223–234.Google Scholar
  50. Roeterdink, W. G., Juurlink, L. B. F., Vaughan, O. P. H., Dura Diez, J., Bonn, M., and Kleyn, A.W., 2003 Coulomb explosion in femtosecond laser ablation of Si(111), Appl. Phys. Lett. 82:4190–4192.CrossRefADSGoogle Scholar
  51. Samsonov, G.V., (Ed.), 1965, Physicochemical Properties of the Elements, Naukova Dumka, Kiev (in Russian).Google Scholar
  52. Schneider, D. H. G., and Briere, M. A., 1996, Investigations of the interactions of highest charge state ions with surfaces, Phys. Scr. 53:228–242.CrossRefADSGoogle Scholar
  53. Siekhaus, W. J., Kinney, J. H., Milam, D., Chase, L. L., 1986, Electron emission from insulator and semiconducor surfaces by multiphoton excitation below the optical damage threshold, Appl. Phys. A 39:163–166.CrossRefADSGoogle Scholar
  54. Sjodin, T., Petek, H., and Dai, H-L., 1998, Ultrafast carrier dynamics in silicon: a two-color transient reflection grating study on a (111) surface, Phys. Rev. Lett. 81: 5664–5667.CrossRefADSGoogle Scholar
  55. Sokolowski-Tinten, K., and von der Linde, D., 2000, Generation of dense electron-hole plasmas in silicon, Phys. Rev. B 61:2643–2650.CrossRefADSGoogle Scholar
  56. Stoian, R., Varel, H., Rosenfeld, A., Ashkenasi, D., Kelly, R., and Campbell, E. E. B., 2000a, Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al2O3, Appl. Surf. Sci. 165:44–55.CrossRefADSGoogle Scholar
  57. Stoian, R., Ashkenasi, D., Rosenfeld, A., Wittmann, M., Kelly, R., and Campbell, E. E. B., 2000b, The dynamics of ion expulsion in ultrashort pulse laser sputtering of Al2O3, Nucl. Instrum. Methods Phys. Res. B 166–167:682–690.CrossRefGoogle Scholar
  58. Stoian, R., Ashkenasi, D., Rosenfeld, A., and Campbell, E. E. B., 2000c, Coulomb explosion in ultrashort pulsed laser ablation of Al2O3, Phys. Rev. B 62(19): 13167–13173.CrossRefADSGoogle Scholar
  59. Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I.V., Bulgakova, N.M., and Campbell, E. E. B., 2002a, Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation, Phys. Rev. Lett. 88:097603(1–4).CrossRefADSGoogle Scholar
  60. Stoian, R., Boyle, M., Thoss, A., Rosenfeld, A., Korn, G., Hertel, I. V., and Campbell, E. E.B., 2002b, Laser ablation of dielectrics with temporally shaped femtosecond pulses, Appl. Phys. Lett. 80:353–355.CrossRefADSGoogle Scholar
  61. Stuart, B.C., Feit, M.D., Herman, S., Rubenchik, A.M., Shore, B.W., and Perry, M.D., 1996, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53:1749–1761.CrossRefADSGoogle Scholar
  62. Tam, A.C., Brand, J.L., Cheng, D.C., and Zapka, W., 1989, Picosecond laser sputtering of sapphire at 266 ran, Appl. Phys. Lett. 55:2045–2047.CrossRefADSGoogle Scholar
  63. Tien, A.-C, Backus, S., Kapteyn, H., Murnane, M., and Mourou, G., 1999, Short-pulse laser damage in transparent materials as a function of pulse duration, Phys. Rev. Lett. 82:3883–3886.CrossRefADSGoogle Scholar
  64. Vanagas, E., Kudryashov I, Tuzhilin D, Juodkazis, S., Matsuo, S., and Misawa, H., Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses, Appl. Phys. Lett. 82(17):2901–2903.Google Scholar
  65. Varel, H, Wähmer, M., Rosenfeld, A., Ashkenasi, D., and Campbell, E. E. B, 1998, Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume, Appl. Surf. Sci. 127–129:128–133.CrossRefGoogle Scholar
  66. Wellershoff, S.-S., Hohlfeld, J., Güdde, J., and Matthias, E., 1999, The role of electron-phonon coupling in femtosecond laser damage of metals, Appl.Phys. A 69: S99–S107.CrossRefADSGoogle Scholar
  67. Yoffa, E.J., Dynamics of dense laser-induced plasmas, 1980, Phys. Rev. B 21:2415–2425.CrossRefADSGoogle Scholar
  68. Zvavyi, S. P., and Ivlev, G. D., 1996, Influence of the initial silicon temperature on crystallization of a layer melted by nanosecond laser heating, Inzh.-Fiz. Zh. 69:790–793 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Nadezhda M. Bulgakova
    • 1
  • Razvan Stoian
    • 2
  • Arkadi Rosenfeld
    • 3
  • Ingolf V. Hertel
    • 3
    • 4
  • Eleanor E. B. Campbell
    • 5
  1. 1.Institute of Thermophysics SB RASNovosibirskRussia
  2. 2.Laboratoire TSI (UMR 5516 CNRS)Universite Jean MonnetSaint EtienneFrance
  3. 3.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany
  4. 4.Department of PhysicsFree University of BerlinBerlinGermany
  5. 5.Department of PhysicsGöteborg UniversityGöteborgSweden

Personalised recommendations