Skip to main content

Development of Inertial Fusion Energy by Lasers

  • Chapter
Book cover Laser Ablation and its Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 129))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Nuckolls J., et al., 1972, Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications, Nature, 239: 139.

    Article  ADS  Google Scholar 

  • Lindl J., 1998, Inertial Confinement Fusion-the Quest for Ignition and Energy Gain using Indirect Drive, Springer, New York.

    Google Scholar 

  • Atzeni S., 1995, Thermonuclear Burn Performance of Volume-Ignited and Centrally Ignited Bare Deuterium-Tritium Microspheres, Japan. J. Appl. Phys. 34: 1980–1992.

    Article  ADS  Google Scholar 

  • Tabak M., et al., 1994, Ignition and high gain with ultrapowerful lasers, Phys. Plasmas, 1:1626–1634.

    Article  ADS  Google Scholar 

  • Mayerter-Vehn J., 1982, Nucl. Fusion, 22: 561.

    Article  Google Scholar 

  • Nakai S., and Takabe H., 1996, Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy, Rep. Prog. Phys. 59: 1071–1132.

    Article  ADS  Google Scholar 

  • Hogan W. J., et al., ed., 1995, Energy from Inertial Fusion, IAEA, Vienna, ISBN 92-0-100794-9.

    Google Scholar 

  • Bodner S. E., et al., 1998, Naval Research Laboratory, NRL/MR/6730-98-8113.

    Google Scholar 

  • Shigemori K., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF/P-15.

    Google Scholar 

  • McCrory R. L., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF-1.

    Google Scholar 

  • Skupsky S., et al., 1989, Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl, Phys. 66: 3456–3462.

    Article  ADS  Google Scholar 

  • Regan S. P., et al., 2000, Experimental investigation of smoothing by spectral dispersion, J. Opt. Soc. Am. B, 17: 1483–1489.

    Article  ADS  Google Scholar 

  • Takabe H., et al., 1985, Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids, 28: 3676–3682.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lindl J., 1995, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasma, 2: 3933–4024.

    Article  ADS  Google Scholar 

  • Betti R., et al., 1998, Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion, Phys. Plasmas, 5: 1446–1454.

    Article  ADS  Google Scholar 

  • McKenty P. W., et al., 2001, Analysis of a direct-drive ignition capsule designed for the National Ignition Facility, Phys. Plasmas, 8: 2315–2322.

    Article  ADS  Google Scholar 

  • Bodner S. E., et al., 2000, High-gain direct-drive target design for laser fusion, Phys. Plasmas, 7:2298–2301.

    Article  ADS  Google Scholar 

  • Shigemori K., et al., 2001, Bull. Am. Phys. Soc. 46: 286.

    Google Scholar 

  • Mahady A. I., et al., 1999, Pulse heating and ignition for off-centre ignited targets, Nucl. Fusion, 39: 467–476.

    Article  ADS  Google Scholar 

  • Piriz A. R. and Sanchez M. M., 1998, Analytic model for the dynamics of fast ignition, Phys. Plasmas, 5: 2721–2726.

    Article  MathSciNet  ADS  Google Scholar 

  • Deutsch C., Furukawa H., Mima K., Murakami M., and Nishihara K., 1996, Interaction Physics of the Fast Ignitor Concept, Phys. Rev. Lett. 77: 2483–2486.

    Article  ADS  Google Scholar 

  • Atzeni S., 1999, Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel, Phys. Plasmas, 6: 3316–3326.

    Article  ADS  Google Scholar 

  • Tanaka K. A., et al., 2000, Studies of ultra-intense laser plasma interactions for fast ignition, Phys. Plasmas, 7: 2014–2022.

    Article  ADS  Google Scholar 

  • Kodama R., et al., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/IFP/09.

    Google Scholar 

  • Sentoku Y., et al., 2003, Anomalous Resistivity Resulting from MeV-Electron Transport in Overdense Plasma, Phys. Rev. Lett. 90: 155001-1–155001-4.

    Article  ADS  Google Scholar 

  • Kitagawa Y., et al., 2002, Progress of fast ignitor studies and Petawatt laser construction at Osaka University, Phys. Plasmas, 9: 2202–2207.

    Article  ADS  Google Scholar 

  • Kodama R., et al., 2001, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature, 412: 798.

    Article  ADS  Google Scholar 

  • Yamanaka T., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/OV3/2.

    Google Scholar 

  • Mima K., et al., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/IF/1.

    Google Scholar 

  • Kodama R., et al., 2002, Nuclear fusion: Fast heating scalable to laser fusion ignition, Nature, 418: 933.

    Article  ADS  Google Scholar 

  • Johzaki T., et al., 2003, Analysis of Core Plasma Heating by Relativistic Electrons in Fast Ignition, Fusion Sci. Technol. 43: 428–436.

    Google Scholar 

  • Mima K., et al., 2002, 19th Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF3.

    Google Scholar 

  • Izawa Y., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002) IAEA-CN-94/IF/P-04.

    Google Scholar 

  • Yamanaka T., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/OV/3-1.

    Google Scholar 

  • Krupke W. F., 1989, Fusion Technol. 15: 377.

    Google Scholar 

  • Naito K., et al., 1992, Conceptual Design Studies of a Laser Diode Pumped Solid State Laser System for the Laser Fusion Reactor Driver, Japan J. Appl. Phys. 31: 259–273.

    Article  ADS  Google Scholar 

  • Orth C. D., et al., 1996, A diode pumped solid state laser driver for inertial fusion energy, Nucl. Fusion, 44: 75–116.

    Article  ADS  Google Scholar 

  • Nakai S., 2000, AAPPS Bull. 10: 2.

    Google Scholar 

  • Matsui H., et al., 2000, Conceptual Design of Laser-Diode-Pumped Water-Cooled Nd:Glass Slab Laser Driver for Inertial Fusion Energy, Rev. Laser Eng. 28: 176–181 (in Japanese).

    Google Scholar 

  • Bayramian A.J., et al., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp. 459–464.

    Google Scholar 

  • Matsui H., et al., 1999, Conceptual design of a laser-diode-pumped Nd:glass slab laser driver for inertial fusion energy, Fusion Eng. Des. 44: 401–405.

    Article  Google Scholar 

  • Kawashima T., et al., 2001, Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy, Japan. J. Appl. Phys. 40:6415–6425.

    Article  ADS  Google Scholar 

  • Lu J., et al., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp 576–579.

    Google Scholar 

  • Fujimoto Y. and Nakatsuka M., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp. 524–527.

    Google Scholar 

  • Krupke W. F., 2000, Advanced diode-pumped solid state lasers (DPSSLs): near term trends and future prospects, Proc. SPIE, 3889: 21–33.

    Article  ADS  Google Scholar 

  • Booth L. A., 1972, Central Station Power Generation by Laser Driven Fusion, vol. 1, Report LA-4858-MS (Los Alamos, NM: Los Alamos National Laboratory), Laser driven inertial fusion energy, 349.

    Google Scholar 

  • Mima K., et al., 1992, 14th IAEA Fusion Energy Conf. (Wurzburg, Germany, 30 September–7 October 1992), IAEA-CN-56/G-2-3.

    Google Scholar 

  • Yamanaka C, 1981, Report ILE-8127P Inst. of Laser Engineering, Osaka, Japan.

    Google Scholar 

  • Moir R. W., et al., 1994, Fusion Technol. 25: 5.

    Article  MathSciNet  Google Scholar 

  • Kozaki Y., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/FT/P-1-25.

    Google Scholar 

  • Sviatoslavsky I. N., et al., 1992, Fusion Technol. 21: 1470.

    Google Scholar 

  • Norimatsu T., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/FT/l-3Rb.

    Google Scholar 

  • Yamanaka C, and Nakai S., 1986, Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser, Nature, 319: 757.

    Article  ADS  Google Scholar 

  • Nakai S., et al., 1989, Bull. Am. Phys. Soc. 34: 2040.

    Google Scholar 

  • Nakai S., et al., 1990, 13th IAEA Fusion Energy Conf. (Washington, DC, USA, 1–6 October 1990), IAEA-CN-53/B-I-3.

    Google Scholar 

  • Azechi H., et al., 1991, High-density compression experiments at ILE, Osaka, Laser Particle Beams, 9: 193–207.

    Article  Google Scholar 

  • Strickland D., and Morou G., 1985, Compression of amplified chirped optical pulses, Opt. Commun. 56: 219–221.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Nakai, S., Mima, K. (2007). Development of Inertial Fusion Energy by Lasers. In: Phipps, C. (eds) Laser Ablation and its Applications. Springer Series in Optical Sciences, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30453-3_15

Download citation

Publish with us

Policies and ethics