Advertisement

Development of Inertial Fusion Energy by Lasers

  • Sadao Nakai
  • Kunioki Mima
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

Keywords

Neutron Yield Inertial Confinement Fusion Fuel Pellet Core Plasma Fast Ignition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nuckolls J., et al., 1972, Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications, Nature, 239: 139.CrossRefADSGoogle Scholar
  2. Lindl J., 1998, Inertial Confinement Fusion-the Quest for Ignition and Energy Gain using Indirect Drive, Springer, New York.Google Scholar
  3. Atzeni S., 1995, Thermonuclear Burn Performance of Volume-Ignited and Centrally Ignited Bare Deuterium-Tritium Microspheres, Japan. J. Appl. Phys. 34: 1980–1992.CrossRefADSGoogle Scholar
  4. Tabak M., et al., 1994, Ignition and high gain with ultrapowerful lasers, Phys. Plasmas, 1:1626–1634.CrossRefADSGoogle Scholar
  5. Mayerter-Vehn J., 1982, Nucl. Fusion, 22: 561.CrossRefGoogle Scholar
  6. Nakai S., and Takabe H., 1996, Principles of inertial confinement fusion-physics of implosion and the concept of inertial fusion energy, Rep. Prog. Phys. 59: 1071–1132.CrossRefADSGoogle Scholar
  7. Hogan W. J., et al., ed., 1995, Energy from Inertial Fusion, IAEA, Vienna, ISBN 92-0-100794-9.Google Scholar
  8. Bodner S. E., et al., 1998, Naval Research Laboratory, NRL/MR/6730-98-8113.Google Scholar
  9. Shigemori K., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF/P-15.Google Scholar
  10. McCrory R. L., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF-1.Google Scholar
  11. Skupsky S., et al., 1989, Improved laser-beam uniformity using the angular dispersion of frequency-modulated light, J. Appl, Phys. 66: 3456–3462.CrossRefADSGoogle Scholar
  12. Regan S. P., et al., 2000, Experimental investigation of smoothing by spectral dispersion, J. Opt. Soc. Am. B, 17: 1483–1489.ADSCrossRefGoogle Scholar
  13. Takabe H., et al., 1985, Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma, Phys. Fluids, 28: 3676–3682.CrossRefMathSciNetADSzbMATHGoogle Scholar
  14. Lindl J., 1995, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasma, 2: 3933–4024.CrossRefADSGoogle Scholar
  15. Betti R., et al., 1998, Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion, Phys. Plasmas, 5: 1446–1454.CrossRefADSGoogle Scholar
  16. McKenty P. W., et al., 2001, Analysis of a direct-drive ignition capsule designed for the National Ignition Facility, Phys. Plasmas, 8: 2315–2322.CrossRefADSGoogle Scholar
  17. Bodner S. E., et al., 2000, High-gain direct-drive target design for laser fusion, Phys. Plasmas, 7:2298–2301.CrossRefADSGoogle Scholar
  18. Shigemori K., et al., 2001, Bull. Am. Phys. Soc. 46: 286.Google Scholar
  19. Mahady A. I., et al., 1999, Pulse heating and ignition for off-centre ignited targets, Nucl. Fusion, 39: 467–476.CrossRefADSGoogle Scholar
  20. Piriz A. R. and Sanchez M. M., 1998, Analytic model for the dynamics of fast ignition, Phys. Plasmas, 5: 2721–2726.CrossRefMathSciNetADSGoogle Scholar
  21. Deutsch C., Furukawa H., Mima K., Murakami M., and Nishihara K., 1996, Interaction Physics of the Fast Ignitor Concept, Phys. Rev. Lett. 77: 2483–2486.CrossRefADSGoogle Scholar
  22. Atzeni S., 1999, Inertial fusion fast ignitor: Igniting pulse parameter window vs the penetration depth of the heating particles and the density of the precompressed fuel, Phys. Plasmas, 6: 3316–3326.CrossRefADSGoogle Scholar
  23. Tanaka K. A., et al., 2000, Studies of ultra-intense laser plasma interactions for fast ignition, Phys. Plasmas, 7: 2014–2022.CrossRefADSGoogle Scholar
  24. Kodama R., et al., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/IFP/09.Google Scholar
  25. Sentoku Y., et al., 2003, Anomalous Resistivity Resulting from MeV-Electron Transport in Overdense Plasma, Phys. Rev. Lett. 90: 155001-1–155001-4.CrossRefADSGoogle Scholar
  26. Kitagawa Y., et al., 2002, Progress of fast ignitor studies and Petawatt laser construction at Osaka University, Phys. Plasmas, 9: 2202–2207.CrossRefADSGoogle Scholar
  27. Kodama R., et al., 2001, Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, Nature, 412: 798.CrossRefADSGoogle Scholar
  28. Yamanaka T., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/OV3/2.Google Scholar
  29. Mima K., et al., 2000, 18th IAEA Fusion Energy Conf. (Sorrento, Italy), IAEA-CN-77/IF/1.Google Scholar
  30. Kodama R., et al., 2002, Nuclear fusion: Fast heating scalable to laser fusion ignition, Nature, 418: 933.CrossRefADSGoogle Scholar
  31. Johzaki T., et al., 2003, Analysis of Core Plasma Heating by Relativistic Electrons in Fast Ignition, Fusion Sci. Technol. 43: 428–436.Google Scholar
  32. Mima K., et al., 2002, 19th Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/IF3.Google Scholar
  33. Izawa Y., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002) IAEA-CN-94/IF/P-04.Google Scholar
  34. Yamanaka T., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/OV/3-1.Google Scholar
  35. Krupke W. F., 1989, Fusion Technol. 15: 377.Google Scholar
  36. Naito K., et al., 1992, Conceptual Design Studies of a Laser Diode Pumped Solid State Laser System for the Laser Fusion Reactor Driver, Japan J. Appl. Phys. 31: 259–273.CrossRefADSGoogle Scholar
  37. Orth C. D., et al., 1996, A diode pumped solid state laser driver for inertial fusion energy, Nucl. Fusion, 44: 75–116.CrossRefADSGoogle Scholar
  38. Nakai S., 2000, AAPPS Bull. 10: 2.Google Scholar
  39. Matsui H., et al., 2000, Conceptual Design of Laser-Diode-Pumped Water-Cooled Nd:Glass Slab Laser Driver for Inertial Fusion Energy, Rev. Laser Eng. 28: 176–181 (in Japanese).Google Scholar
  40. Bayramian A.J., et al., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp. 459–464.Google Scholar
  41. Matsui H., et al., 1999, Conceptual design of a laser-diode-pumped Nd:glass slab laser driver for inertial fusion energy, Fusion Eng. Des. 44: 401–405.CrossRefGoogle Scholar
  42. Kawashima T., et al., 2001, Design and Performance of a Diode-Pumped Nd:Silica-Phosphate Glass Zig-Zag Slab Laser Amplifier for Inertial Fusion Energy, Japan. J. Appl. Phys. 40:6415–6425.CrossRefADSGoogle Scholar
  43. Lu J., et al., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp 576–579.Google Scholar
  44. Fujimoto Y. and Nakatsuka M., 2002, in: IFSA 2001-Inertial fusion sciences and applications, K. A. Tanaka, et al., ed., Elsevier, Paris, pp. 524–527.Google Scholar
  45. Krupke W. F., 2000, Advanced diode-pumped solid state lasers (DPSSLs): near term trends and future prospects, Proc. SPIE, 3889: 21–33.ADSCrossRefGoogle Scholar
  46. Booth L. A., 1972, Central Station Power Generation by Laser Driven Fusion, vol. 1, Report LA-4858-MS (Los Alamos, NM: Los Alamos National Laboratory), Laser driven inertial fusion energy, 349.Google Scholar
  47. Mima K., et al., 1992, 14th IAEA Fusion Energy Conf. (Wurzburg, Germany, 30 September–7 October 1992), IAEA-CN-56/G-2-3.Google Scholar
  48. Yamanaka C, 1981, Report ILE-8127P Inst. of Laser Engineering, Osaka, Japan.Google Scholar
  49. Moir R. W., et al., 1994, Fusion Technol. 25: 5.CrossRefMathSciNetGoogle Scholar
  50. Kozaki Y., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/FT/P-1-25.Google Scholar
  51. Sviatoslavsky I. N., et al., 1992, Fusion Technol. 21: 1470.Google Scholar
  52. Norimatsu T., et al., 2002, 19th IAEA Fusion Energy Conf. (Lyon, France, 14–19 October 2002), IAEA-CN-94/FT/l-3Rb.Google Scholar
  53. Yamanaka C, and Nakai S., 1986, Thermonuclear neutron yield of 1012 achieved with Gekko XII green laser, Nature, 319: 757.CrossRefADSGoogle Scholar
  54. Nakai S., et al., 1989, Bull. Am. Phys. Soc. 34: 2040.Google Scholar
  55. Nakai S., et al., 1990, 13th IAEA Fusion Energy Conf. (Washington, DC, USA, 1–6 October 1990), IAEA-CN-53/B-I-3.Google Scholar
  56. Azechi H., et al., 1991, High-density compression experiments at ILE, Osaka, Laser Particle Beams, 9: 193–207.CrossRefGoogle Scholar
  57. Strickland D., and Morou G., 1985, Compression of amplified chirped optical pulses, Opt. Commun. 56: 219–221.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Sadao Nakai
    • 1
    • 2
  • Kunioki Mima
    • 1
  1. 1.Institute of Laser EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.The Gradurate School for the Creation of New Photonics IndustriesHamamatsu, ShizuokaJapan

Personalised recommendations