Laser Forward Transfer of Electronic and Power Generating Materials

  • Alberto Piqué
  • Heungsoo Kim
  • Craig B. Arnold
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)


Laser Ablation Sacrificial Layer Acceptor Substrate Laser Micromachining Forward Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  1. Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N., and Thompson, P., 1987, A study of the mechanism of metal deposition by the laser-induced forward transfer process, J. Vac. Sci. Technol. B5: 1490–1494.ADSGoogle Scholar
  2. Arnold, C. B., Wartena, R. C., Pratap, B., Swider-Lyons, K. E., and Piqué, A., 2002, Laser direct writing of hydrous ruthenium dioxide micro-pseudocapacitors, in: Electroactive Polymers and Rapid Prototyping, D. B. Chrisey and S. C. Danforth, ed., volume 689, pages 275–280, Pittsburgh, PA. Materials Research Society.Google Scholar
  3. Arnold, C. B., Wartena, R. C., Swider-Lyons, K. E., and Piqué, A., 2003. Direct-write planar micro-ultracapacitors by laser engineering, J. Electrochem. Soc. 150: A571–A575.CrossRefGoogle Scholar
  4. Arnold, C. B., Kim, H., Sutto, T.E., and Piqué, A., 2004a, Direct write laser processing for miniature electrochemical systems, Laser Focus World, 40: 9–12.Google Scholar
  5. Arnold, C. B., Kim, H. and Piqué, A., 2004b, Laser transferred primary alkaline microbatteries, Appl. Phys. A, 79: 417–420.CrossRefADSGoogle Scholar
  6. Arnold, C.B., and Piqué, A., 2004c, Self-filling wet electrochemical cells by laser processing, US patent application 20040256359.Google Scholar
  7. Arnold, C.B., Piqué, A., Auyeung, R. C. Y. and Numberger, M., 2004d, Laser-based technique for producing and embedding electrochemical cells and electronic components directly into circuit board materials, US patent application 2005000613.Google Scholar
  8. Auyeung, R.C.Y., Wu, H.D., Modi, R., Piqué, A., Fitz-Gerald, J.M., Young, H.D., Lakeou, S., Chung, R., and Chrisey, D.B., 2000, Matrix-assisted laser transfer of electronic materials for direct-write applications, Proc. SPIE 4088: 393–396.ADSCrossRefGoogle Scholar
  9. Bähnisch, R., Gross, W., and Menschig, A., 2004, Single-shot, high repetition rate metallic pattern transfer, Microelectronic Engineering 50: 541–546.CrossRefGoogle Scholar
  10. Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Grätzel, M., 1997, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc. 80: 3157–3171.CrossRefGoogle Scholar
  11. Bates, J.D., Dudney, N. J., Lubben, D. C., Gruzalski, G. R., Kwak, b. S., Yu, X., and Zuhr, R. A., 1995, Thin-film rechargeable lithium batteries, J. Power Sources 54: 58–62.CrossRefGoogle Scholar
  12. Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A., and Evans, C. D., 2000, Thin-film lithium and lithium-ion batteries, Solid State Ionics 135: 33–45.CrossRefGoogle Scholar
  13. Bohandy, J., Kim, B.F., Adrian, F.J., 1986, Metal deposition from a supported metal film using an excimer laser, J. of Appl. Phys. 60: 1538–1539.CrossRefADSGoogle Scholar
  14. Bohandy, J., Kim, B.F., Adrian, F.J., and Jette, A.N., 1988, Metal deposition at 532 nm using a laser transfer technique, J. Appl. Phys. 63: 1158–1162.CrossRefADSGoogle Scholar
  15. Conway, B. E. 1999, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic, New York.Google Scholar
  16. Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T., and Rolison, D. R., 2002, Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from x-ray scattering, J. Phys. Chem. B 106: 12677–12683.CrossRefGoogle Scholar
  17. Esrom, H., Jun-Ying Zhang, Kogelschatz, U., and Pedraza, A.J., 1995, New approach of a laser-induced forward transfer for deposition of patterned thin metal films, Appl. Surf. Sci. 86: 202–207.CrossRefADSGoogle Scholar
  18. Fang, Q. L., Evans, D. A., Roberson, S. L., and Zheng, J. P., 2001, Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc. 148: A833–A837.CrossRefGoogle Scholar
  19. Fernandez-Pradas, J.M., Colina, M., Serra, P., Dominguez, J., and Morenza, J.L., 2004, Laser-induced forward transfer of biomolecules, Thin Sol. Films 453–454: 27–30.CrossRefGoogle Scholar
  20. Fogarassy, E., Fuchs, C., Kerherve, F., Hauchecorne, G., and Perriere, J., 1989, Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films, J. Appl. Phys. 66: 457–459.CrossRefADSGoogle Scholar
  21. Greer, J. A. and Parker, T. E., 1988, Laser-induced forward transfer of metal oxides to trim the frequency of surface acoustic wave resonator devices, Proc. SPIE 998: 113–125.Google Scholar
  22. Herman, I. P., 1989, Laser-assisted deposition of thin films from gas-phase and surface-adsorbed molecules, Chem. Rev. 89: 1323–1357.CrossRefGoogle Scholar
  23. Hinsch, A., Kroon, J. M., Kern, R., Uhlendorf, I., Holzbock, J., Meyer, A., and Ferber, 2001, Long-term stability of dye-sensitized solar cells, J., Prog. Photovolt: Res. Appl. 9: 425–438.CrossRefGoogle Scholar
  24. Holmes, A.S., and Saidam, S.M., 1998, Sacrificial layer process with laser-driven release for batch assembly operations, J. of Microelectromechanical Sys., 7: 416–422.CrossRefGoogle Scholar
  25. Holmes, A.S., 2002, Laser processes for MEMS manufacture, Proc. SPIE 4426: 203–209.ADSCrossRefGoogle Scholar
  26. Humble, P. H., Harb, J. N., and LaFollettte, R., 2001, Microscopic nickel-zinc batteries for use in autonomous microsystems, J. Electrochem. Soc. 18: A1357–A1361.CrossRefGoogle Scholar
  27. Ito, S., Takeuchi, T., Katayama, T., Sugiyama, M., Matsuda, M., Kitamura, T., Wada, Y., and Yanagida, S., 2003, Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells, Chem. Mater. 15: 2824–2828.CrossRefGoogle Scholar
  28. Kalyanasundaram, K., and Grätzel, M., 1998, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemical Reviews 77: 347–414.CrossRefGoogle Scholar
  29. Kántor, Z., Tóth, Z., Szorenyi, T., and Tóth, A.L., 1994, Deposition of micrometer-sized tungsten patterns by laser transfer technique, Appl. Phys. Lett. 64: 3506–3508.CrossRefADSGoogle Scholar
  30. Karaiskou, A., Zergioti, I., Fotakis, C., Kapsetaki, M., and Kafetzopoulos, D., 2003, Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process, Appl. Surf. Sci. 208–209: 245–249.CrossRefGoogle Scholar
  31. Kim, H., Kushto, G. P., Arnold, C. B., Kafafi, Z. H., and Piqué, A., 2004, Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells, Appl. Phys. Lett. 85: 464–466.CrossRefADSGoogle Scholar
  32. Kim, H., Auyeung, R.C.Y., Ollinger, M., Kushto, Kafafi, Z. H., and Piqué, A., 2005, Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells, accepted for publication in Appl. Phys. A. Google Scholar
  33. Kim, I. H. and Kim, K. B., 2001, Ruthenium oxide thin film electrodes for supercapacitors. Electrochem, Solid-State Lett. 5: A62–A64.CrossRefGoogle Scholar
  34. Koeneman, P. B., Busch-Vishniac, I. J., and Wood, K. L., 1997, Feasibility of micro power supplies for MEMS, J. Microelectromech. Sys. 6: 355–362.CrossRefGoogle Scholar
  35. LaFollettte, R., Harb, J. N., and Humble, P., 2001, in: Sixteenth Annu. Battery Conf. Applications and Advances, R.S.L. Das and H. Frank, ed., IEEE, Piscatawy, NJ, pp. 349–354.CrossRefGoogle Scholar
  36. Linden, D. and Reddy, T. B., 2001, Handbook of Batteries, 3rd ed., McGraw-Hill, New York.Google Scholar
  37. McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E., and Rolison, D. R., 1999, Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B 103: 4825–4832.CrossRefGoogle Scholar
  38. Modi, R., Wu, H.D., Auyeung, R.C.Y., Gilmore, C.M., and Chrisey, D.B., 2001, Direct writing of polymer thick film resistors using a novel laser transfer technique, J. Mater. Res. 16: 3214–3222.ADSCrossRefGoogle Scholar
  39. Nakada, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., and Yanagida, S., 2002, Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, J. Phys. Chem. B 106: 10004–10010.CrossRefGoogle Scholar
  40. Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., 1993, Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 115: 6382–6390.CrossRefGoogle Scholar
  41. Okuya, M., Nakade, K., and Kaneko, S., 2002, Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 70: 425–435.CrossRefGoogle Scholar
  42. O’Regan, B. and Grätzel, M., 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353: 737–740.CrossRefGoogle Scholar
  43. Osgood, R. M. and Deutsch, T. F., 1985, Laser-induced chemistry for microelectronics, Science 227: 709–714.CrossRefADSGoogle Scholar
  44. Papakonstantinou, P., Vainos, N.A., and Fotakis, C., 1999, Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films, Appl. Surf. Sci. 151: 159–170.CrossRefADSGoogle Scholar
  45. Pimenov, S.M., Shafeev, G.A., Smolin, A.A., Konov, V.I., and Vodolaga, B.K., 1995, Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films, Appl. Surf. Sci. 86: 208–212.CrossRefADSGoogle Scholar
  46. Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Lakeou, S., Chung, R., McGill, R.A., Wu, P.K., Duignan, M., Fitz-Gerald, J., and Wu, H.D., 1999a, Laser direct writing of circuit elements and sensors, Proc. SPIE 3618: 330–339.ADSCrossRefGoogle Scholar
  47. Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Fitz-Gerald, J., Wu, H.D., McGill, R.A., Lakeou, S., Wu, P.K., Nguyen, V., and Duignan, M., 1999b, A novel laser transfer process for direct writing of electronic and sensor materials, Appl. Phys. A A69: 279–284.ADSGoogle Scholar
  48. Piqué, A., Chrisey, A.D.B., Fitz-Gerald, J.M., McGill, R.A., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duignan, M., 2000a, Direct writing of electronic and sensor materials using a laser transfer technique, J. Mater. Res. 15: 1872–1875.ADSCrossRefGoogle Scholar
  49. Piqué, A., Fitz-Gerald, J., Chrisey, D.B., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., and McGill, R.A., 2000b, Direct writing of electronic materials using a new laser assisted transfer/annealing technique, Proc. SPIE 3922: 105–112.CrossRefGoogle Scholar
  50. Piqué, A., Weir, D.W., Wu, P.K., Pratap, B., Arnold, C.B., Ringeisen, B.R., McGill, R.A., Auyeung, R.C.Y., Kant, R.A., and Chrisey, D.B., 2002, Direct-write of sensor devices by a laser forward transfer technique, Proc. SPIE 4637: 361–368.ADSCrossRefGoogle Scholar
  51. Piqué, A., Arnold, C.B., Pratap, B., Auyeung, R.C.Y., Kim, H., and Weir, D.W., 2003, Laser direct-write of metal patterns for interconnects and antennas, Proc. SPIE 4977: 602–608.CrossRefGoogle Scholar
  52. Piqué, A., Mathews, S.A., Auyeung, R.C., Ollinger, M., Kim, H., Pratap, B., Arnold, C.B., and Sutto, T.E., 2004a, Application of laser direct-write techniques for embedding electronic and micropower components, Proc. SPIE 5662: 564–569.ADSCrossRefGoogle Scholar
  53. Piqué, A., Arnold, C. B., Kim, H., Ollinger, M., and Sutto, T.E., 2004b, Rapid prototyping of micro-power sources by laser direct-write, Appl. Phys. A, 79: 783–786.CrossRefADSGoogle Scholar
  54. Piqué, A., Pratap, B., Mathews, S. A., Karns, B. J., Auyeung, R. C., Kasser, M., Ollinger, M., Kim, H., Lakeou, S., and Arnold, C.B., 2005a, Laser direct-write of embedded electronic components and circuits, Proc. SPIE 5713: 223–230.ADSCrossRefGoogle Scholar
  55. Piqué, A., Mathews, S. A., Pratap, B., and Auyeung, R. C., 2005b, Laser forward transfer of semiconductor devices, Laser Precision Microfabrication Conference, Williamsburg VA.Google Scholar
  56. Sarangapani, S., Tilak, B., and Chen, C., 1996, Materials for electrochemical capacitors. J. Electrochem. Soc. 143:3791–3799.CrossRefGoogle Scholar
  57. Schultze, V., and Wagner, M, 1991, Laser-induced forward transfer of aluminum, Appl. Surf. Sci. 52:303–309.CrossRefADSGoogle Scholar
  58. Serra, P., Colina, M., Fernandez-Pradas, J.M., Sevilla, L., and Morenza, J.L., 2004, Preparation of functional DNA microarrays through laser-induced forward transfer, Appl. Phys. Lett. 85: 1639–1641.CrossRefADSGoogle Scholar
  59. Sutto, T. E., Ollinger, M., Kim, H., Arnold, C.B. and Piqué, A., 2006, Laser transferable polymer-ionic liquid separator/electrolytes for solid-state rechargeable lithium ion microbatteries, Electrochem. Solid-State Lett. 9:A69–A71.CrossRefGoogle Scholar
  60. Tolbert, W.A., Lee, I.-Y.S., Doxtader, M.M., Ellis, E.W., and Dlott, D.D., 1993a, High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms, J. Imaging. Sci. Tech. 37: 411–421.Google Scholar
  61. Tolbert, W.A., I-Yin Sandy Lee, Xiaoning Wen, Dlott, D.D., Doxtader, M.M., and Ellis, E.W., 1993b, Laser ablation transfer imaging using picosecond optical pulses: ultra-high speed, lower threshold and high resolution, J. Imaging. Sci. Tech. 37: 485–489.Google Scholar
  62. Tóth, Z., Szorenyi, T., and Tóth, A.L., 1993, Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning, Appl. Surf. Sci. 69: 317–320.CrossRefADSGoogle Scholar
  63. Trasatti, S. and Kurzweil, P., 1994, Electrochemical supercapacitors as versatile energy stores, Plat. Met. Rev. 38:46–56.Google Scholar
  64. Vincent, C. A. and Scrosati, B., 1997, Modern Batteries, 2nd ed., Arnold, London.Google Scholar
  65. Wartena, R. C., Curtright, A.E., Arnold, C. B., Piqué, A. and Swider-Lyons, K. E., 2004, Liion microbatteries generated by laser direct write, J. Power Sources 126: 193–202.CrossRefGoogle Scholar
  66. Wu, P.K., Ringeisen, B.R., Callahan, J., Brooks, M., Bubb, D.M., Wu, H.D., Piqué, A., Spargo, B., McGill, R.A., and Chrisey, D.B., 2001, The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write, Thin Sol. Films 389–399:607–614.CrossRefGoogle Scholar
  67. Young, D., Auyeung, R.C.Y., Piqué, A., Chrisey, D.B., and Dlott, D.D., 2001a, Time-resolved optical microscopy of a laser-based forward transfer process, Appl. Phys. Lett. 78:3169–3171.CrossRefADSGoogle Scholar
  68. Young, D., Wu, H.D., Auyeung, R.C.Y., Modi, R., Fitz-Gerald, J., Piqué, A., Chrisey, D.B., Atanassova, P., and Kodas, T., 2001b, Dielectric properties of oxide structures by a laser-based direct-writing method, J. Mater. Res. 16:1720–1725.ADSCrossRefGoogle Scholar
  69. Young, D., Auyeung, R.C.Y., Piqué, A., Chrisey, D.B., and Dlott, D.D., 2002, Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy, Appl. Surf. Sci. 197–198:181–187.CrossRefGoogle Scholar
  70. Zergioti, I., Mailis, S., Vainos, N.A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C.P., and Fotakis, C., 1998a, Microdeposition of metal and oxide structures using ultrashort laser pulses, Appl. Phys. A 66: 579–582.CrossRefADSGoogle Scholar
  71. Zergioti, I., Malilis, S., Vainos, N.A., Fotakis, C., Chen, S., and Grigoropoulos, C.P., 1998b, Microdeposition of metals by femtosecond excimer laser, Appl. Surf. Sci. 127–129: 601–605.CrossRefGoogle Scholar
  72. Zergioti, I., Karaiskou, A., Papazoglou, D.G., Fotakis, C., Kapsetaki, M., and Kafetzopoulos, D., 2005, Femtosecond laser microprinting of biomaterials, Appl. Phys. Lett. 86: 163902-1–163902-3.CrossRefADSGoogle Scholar
  73. Zhang, C, Liu, D., Mathews, S.A., Graves, I, Schaefer, T.M., Gilbert, B.K., Modi, R., Wu, H.-D., and Chrisey, D.B., 2003, Laser direct-write and its application in low temperature Co-fired ceramic (LTCC) technology, Microelectronic Eng. 70:41–49.CrossRefGoogle Scholar
  74. Zheng, J. P., Cygan, P. J., and Jow, T. R., 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142:2699–2703.CrossRefGoogle Scholar
  75. Zheng, J. P. and Xin, Y., 2002, Characterization of RuO2 · xH2O with various water contents, J. Power Sources 110:86–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Alberto Piqué
    • 1
  • Heungsoo Kim
    • 1
  • Craig B. Arnold
    • 2
  1. 1.U.S. Naval Research LaboratoryWashington DC
  2. 2.Dept. of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton

Personalised recommendations