Skip to main content

Laser Forward Transfer of Electronic and Power Generating Materials

  • Chapter
Laser Ablation and its Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 129))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. References

  • Adrian, F.J., Bohandy, J., Kim, B.F., Jette, A.N., and Thompson, P., 1987, A study of the mechanism of metal deposition by the laser-induced forward transfer process, J. Vac. Sci. Technol. B5: 1490–1494.

    ADS  Google Scholar 

  • Arnold, C. B., Wartena, R. C., Pratap, B., Swider-Lyons, K. E., and Piqué, A., 2002, Laser direct writing of hydrous ruthenium dioxide micro-pseudocapacitors, in: Electroactive Polymers and Rapid Prototyping, D. B. Chrisey and S. C. Danforth, ed., volume 689, pages 275–280, Pittsburgh, PA. Materials Research Society.

    Google Scholar 

  • Arnold, C. B., Wartena, R. C., Swider-Lyons, K. E., and Piqué, A., 2003. Direct-write planar micro-ultracapacitors by laser engineering, J. Electrochem. Soc. 150: A571–A575.

    Article  Google Scholar 

  • Arnold, C. B., Kim, H., Sutto, T.E., and Piqué, A., 2004a, Direct write laser processing for miniature electrochemical systems, Laser Focus World, 40: 9–12.

    Google Scholar 

  • Arnold, C. B., Kim, H. and Piqué, A., 2004b, Laser transferred primary alkaline microbatteries, Appl. Phys. A, 79: 417–420.

    Article  ADS  Google Scholar 

  • Arnold, C.B., and Piqué, A., 2004c, Self-filling wet electrochemical cells by laser processing, US patent application 20040256359.

    Google Scholar 

  • Arnold, C.B., Piqué, A., Auyeung, R. C. Y. and Numberger, M., 2004d, Laser-based technique for producing and embedding electrochemical cells and electronic components directly into circuit board materials, US patent application 2005000613.

    Google Scholar 

  • Auyeung, R.C.Y., Wu, H.D., Modi, R., Piqué, A., Fitz-Gerald, J.M., Young, H.D., Lakeou, S., Chung, R., and Chrisey, D.B., 2000, Matrix-assisted laser transfer of electronic materials for direct-write applications, Proc. SPIE 4088: 393–396.

    Article  ADS  Google Scholar 

  • Bähnisch, R., Gross, W., and Menschig, A., 2004, Single-shot, high repetition rate metallic pattern transfer, Microelectronic Engineering 50: 541–546.

    Article  Google Scholar 

  • Barbe, C. J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Grätzel, M., 1997, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc. 80: 3157–3171.

    Article  Google Scholar 

  • Bates, J.D., Dudney, N. J., Lubben, D. C., Gruzalski, G. R., Kwak, b. S., Yu, X., and Zuhr, R. A., 1995, Thin-film rechargeable lithium batteries, J. Power Sources 54: 58–62.

    Article  Google Scholar 

  • Bates, J. B., Dudney, N. J., Neudecker, B., Ueda, A., and Evans, C. D., 2000, Thin-film lithium and lithium-ion batteries, Solid State Ionics 135: 33–45.

    Article  Google Scholar 

  • Bohandy, J., Kim, B.F., Adrian, F.J., 1986, Metal deposition from a supported metal film using an excimer laser, J. of Appl. Phys. 60: 1538–1539.

    Article  ADS  Google Scholar 

  • Bohandy, J., Kim, B.F., Adrian, F.J., and Jette, A.N., 1988, Metal deposition at 532 nm using a laser transfer technique, J. Appl. Phys. 63: 1158–1162.

    Article  ADS  Google Scholar 

  • Conway, B. E. 1999, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic, New York.

    Google Scholar 

  • Dmowski, W., Egami, T., Swider-Lyons, K. E., Love, C. T., and Rolison, D. R., 2002, Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from x-ray scattering, J. Phys. Chem. B 106: 12677–12683.

    Article  Google Scholar 

  • Esrom, H., Jun-Ying Zhang, Kogelschatz, U., and Pedraza, A.J., 1995, New approach of a laser-induced forward transfer for deposition of patterned thin metal films, Appl. Surf. Sci. 86: 202–207.

    Article  ADS  Google Scholar 

  • Fang, Q. L., Evans, D. A., Roberson, S. L., and Zheng, J. P., 2001, Ruthenium oxide film electrodes prepared at low temperatures for electrochemical capacitors, J. Electrochem. Soc. 148: A833–A837.

    Article  Google Scholar 

  • Fernandez-Pradas, J.M., Colina, M., Serra, P., Dominguez, J., and Morenza, J.L., 2004, Laser-induced forward transfer of biomolecules, Thin Sol. Films 453–454: 27–30.

    Article  Google Scholar 

  • Fogarassy, E., Fuchs, C., Kerherve, F., Hauchecorne, G., and Perriere, J., 1989, Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films, J. Appl. Phys. 66: 457–459.

    Article  ADS  Google Scholar 

  • Greer, J. A. and Parker, T. E., 1988, Laser-induced forward transfer of metal oxides to trim the frequency of surface acoustic wave resonator devices, Proc. SPIE 998: 113–125.

    Google Scholar 

  • Herman, I. P., 1989, Laser-assisted deposition of thin films from gas-phase and surface-adsorbed molecules, Chem. Rev. 89: 1323–1357.

    Article  Google Scholar 

  • Hinsch, A., Kroon, J. M., Kern, R., Uhlendorf, I., Holzbock, J., Meyer, A., and Ferber, 2001, Long-term stability of dye-sensitized solar cells, J., Prog. Photovolt: Res. Appl. 9: 425–438.

    Article  Google Scholar 

  • Holmes, A.S., and Saidam, S.M., 1998, Sacrificial layer process with laser-driven release for batch assembly operations, J. of Microelectromechanical Sys., 7: 416–422.

    Article  Google Scholar 

  • Holmes, A.S., 2002, Laser processes for MEMS manufacture, Proc. SPIE 4426: 203–209.

    Article  ADS  Google Scholar 

  • Humble, P. H., Harb, J. N., and LaFollettte, R., 2001, Microscopic nickel-zinc batteries for use in autonomous microsystems, J. Electrochem. Soc. 18: A1357–A1361.

    Article  Google Scholar 

  • Ito, S., Takeuchi, T., Katayama, T., Sugiyama, M., Matsuda, M., Kitamura, T., Wada, Y., and Yanagida, S., 2003, Conductive and transparent multilayer films for low-temperature-sintered mesoporous TiO2 electrodes of dye-sensitized solar cells, Chem. Mater. 15: 2824–2828.

    Article  Google Scholar 

  • Kalyanasundaram, K., and Grätzel, M., 1998, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemical Reviews 77: 347–414.

    Article  Google Scholar 

  • Kántor, Z., Tóth, Z., Szorenyi, T., and Tóth, A.L., 1994, Deposition of micrometer-sized tungsten patterns by laser transfer technique, Appl. Phys. Lett. 64: 3506–3508.

    Article  ADS  Google Scholar 

  • Karaiskou, A., Zergioti, I., Fotakis, C., Kapsetaki, M., and Kafetzopoulos, D., 2003, Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process, Appl. Surf. Sci. 208–209: 245–249.

    Article  Google Scholar 

  • Kim, H., Kushto, G. P., Arnold, C. B., Kafafi, Z. H., and Piqué, A., 2004, Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells, Appl. Phys. Lett. 85: 464–466.

    Article  ADS  Google Scholar 

  • Kim, H., Auyeung, R.C.Y., Ollinger, M., Kushto, Kafafi, Z. H., and Piqué, A., 2005, Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells, accepted for publication in Appl. Phys. A.

    Google Scholar 

  • Kim, I. H. and Kim, K. B., 2001, Ruthenium oxide thin film electrodes for supercapacitors. Electrochem, Solid-State Lett. 5: A62–A64.

    Article  Google Scholar 

  • Koeneman, P. B., Busch-Vishniac, I. J., and Wood, K. L., 1997, Feasibility of micro power supplies for MEMS, J. Microelectromech. Sys. 6: 355–362.

    Article  Google Scholar 

  • LaFollettte, R., Harb, J. N., and Humble, P., 2001, in: Sixteenth Annu. Battery Conf. Applications and Advances, R.S.L. Das and H. Frank, ed., IEEE, Piscatawy, NJ, pp. 349–354.

    Chapter  Google Scholar 

  • Linden, D. and Reddy, T. B., 2001, Handbook of Batteries, 3rd ed., McGraw-Hill, New York.

    Google Scholar 

  • McKeown, D. A., Hagans, P. L., Carette, L. P. L., Russell, A. E., Swider, K. E., and Rolison, D. R., 1999, Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B 103: 4825–4832.

    Article  Google Scholar 

  • Modi, R., Wu, H.D., Auyeung, R.C.Y., Gilmore, C.M., and Chrisey, D.B., 2001, Direct writing of polymer thick film resistors using a novel laser transfer technique, J. Mater. Res. 16: 3214–3222.

    Article  ADS  Google Scholar 

  • Nakada, S., Matsuda, M., Kambe, S., Saito, Y., Kitamura, T., Sakata, T., Wada, Y., Mori, H., and Yanagida, S., 2002, Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells, J. Phys. Chem. B 106: 10004–10010.

    Article  Google Scholar 

  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., and Grätzel, M., 1993, Conversion of light to electricity by cis-X2Bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc. 115: 6382–6390.

    Article  Google Scholar 

  • Okuya, M., Nakade, K., and Kaneko, S., 2002, Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells 70: 425–435.

    Article  Google Scholar 

  • O’Regan, B. and Grätzel, M., 1991, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353: 737–740.

    Article  Google Scholar 

  • Osgood, R. M. and Deutsch, T. F., 1985, Laser-induced chemistry for microelectronics, Science 227: 709–714.

    Article  ADS  Google Scholar 

  • Papakonstantinou, P., Vainos, N.A., and Fotakis, C., 1999, Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films, Appl. Surf. Sci. 151: 159–170.

    Article  ADS  Google Scholar 

  • Pimenov, S.M., Shafeev, G.A., Smolin, A.A., Konov, V.I., and Vodolaga, B.K., 1995, Laser-induced forward transfer of ultra-fine diamond particles for selective deposition of diamond films, Appl. Surf. Sci. 86: 208–212.

    Article  ADS  Google Scholar 

  • Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Lakeou, S., Chung, R., McGill, R.A., Wu, P.K., Duignan, M., Fitz-Gerald, J., and Wu, H.D., 1999a, Laser direct writing of circuit elements and sensors, Proc. SPIE 3618: 330–339.

    Article  ADS  Google Scholar 

  • Piqué, A., Chrisey, D.B., Auyeung, R.C.Y., Fitz-Gerald, J., Wu, H.D., McGill, R.A., Lakeou, S., Wu, P.K., Nguyen, V., and Duignan, M., 1999b, A novel laser transfer process for direct writing of electronic and sensor materials, Appl. Phys. A A69: 279–284.

    ADS  Google Scholar 

  • Piqué, A., Chrisey, A.D.B., Fitz-Gerald, J.M., McGill, R.A., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duignan, M., 2000a, Direct writing of electronic and sensor materials using a laser transfer technique, J. Mater. Res. 15: 1872–1875.

    Article  ADS  Google Scholar 

  • Piqué, A., Fitz-Gerald, J., Chrisey, D.B., Auyeung, R.C.Y., Wu, H.D., Lakeou, S., and McGill, R.A., 2000b, Direct writing of electronic materials using a new laser assisted transfer/annealing technique, Proc. SPIE 3922: 105–112.

    Article  Google Scholar 

  • Piqué, A., Weir, D.W., Wu, P.K., Pratap, B., Arnold, C.B., Ringeisen, B.R., McGill, R.A., Auyeung, R.C.Y., Kant, R.A., and Chrisey, D.B., 2002, Direct-write of sensor devices by a laser forward transfer technique, Proc. SPIE 4637: 361–368.

    Article  ADS  Google Scholar 

  • Piqué, A., Arnold, C.B., Pratap, B., Auyeung, R.C.Y., Kim, H., and Weir, D.W., 2003, Laser direct-write of metal patterns for interconnects and antennas, Proc. SPIE 4977: 602–608.

    Article  Google Scholar 

  • Piqué, A., Mathews, S.A., Auyeung, R.C., Ollinger, M., Kim, H., Pratap, B., Arnold, C.B., and Sutto, T.E., 2004a, Application of laser direct-write techniques for embedding electronic and micropower components, Proc. SPIE 5662: 564–569.

    Article  ADS  Google Scholar 

  • Piqué, A., Arnold, C. B., Kim, H., Ollinger, M., and Sutto, T.E., 2004b, Rapid prototyping of micro-power sources by laser direct-write, Appl. Phys. A, 79: 783–786.

    Article  ADS  Google Scholar 

  • Piqué, A., Pratap, B., Mathews, S. A., Karns, B. J., Auyeung, R. C., Kasser, M., Ollinger, M., Kim, H., Lakeou, S., and Arnold, C.B., 2005a, Laser direct-write of embedded electronic components and circuits, Proc. SPIE 5713: 223–230.

    Article  ADS  Google Scholar 

  • Piqué, A., Mathews, S. A., Pratap, B., and Auyeung, R. C., 2005b, Laser forward transfer of semiconductor devices, Laser Precision Microfabrication Conference, Williamsburg VA.

    Google Scholar 

  • Sarangapani, S., Tilak, B., and Chen, C., 1996, Materials for electrochemical capacitors. J. Electrochem. Soc. 143:3791–3799.

    Article  Google Scholar 

  • Schultze, V., and Wagner, M, 1991, Laser-induced forward transfer of aluminum, Appl. Surf. Sci. 52:303–309.

    Article  ADS  Google Scholar 

  • Serra, P., Colina, M., Fernandez-Pradas, J.M., Sevilla, L., and Morenza, J.L., 2004, Preparation of functional DNA microarrays through laser-induced forward transfer, Appl. Phys. Lett. 85: 1639–1641.

    Article  ADS  Google Scholar 

  • Sutto, T. E., Ollinger, M., Kim, H., Arnold, C.B. and Piqué, A., 2006, Laser transferable polymer-ionic liquid separator/electrolytes for solid-state rechargeable lithium ion microbatteries, Electrochem. Solid-State Lett. 9:A69–A71.

    Article  Google Scholar 

  • Tolbert, W.A., Lee, I.-Y.S., Doxtader, M.M., Ellis, E.W., and Dlott, D.D., 1993a, High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms, J. Imaging. Sci. Tech. 37: 411–421.

    Google Scholar 

  • Tolbert, W.A., I-Yin Sandy Lee, Xiaoning Wen, Dlott, D.D., Doxtader, M.M., and Ellis, E.W., 1993b, Laser ablation transfer imaging using picosecond optical pulses: ultra-high speed, lower threshold and high resolution, J. Imaging. Sci. Tech. 37: 485–489.

    Google Scholar 

  • Tóth, Z., Szorenyi, T., and Tóth, A.L., 1993, Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning, Appl. Surf. Sci. 69: 317–320.

    Article  ADS  Google Scholar 

  • Trasatti, S. and Kurzweil, P., 1994, Electrochemical supercapacitors as versatile energy stores, Plat. Met. Rev. 38:46–56.

    Google Scholar 

  • Vincent, C. A. and Scrosati, B., 1997, Modern Batteries, 2nd ed., Arnold, London.

    Google Scholar 

  • Wartena, R. C., Curtright, A.E., Arnold, C. B., Piqué, A. and Swider-Lyons, K. E., 2004, Liion microbatteries generated by laser direct write, J. Power Sources 126: 193–202.

    Article  Google Scholar 

  • Wu, P.K., Ringeisen, B.R., Callahan, J., Brooks, M., Bubb, D.M., Wu, H.D., Piqué, A., Spargo, B., McGill, R.A., and Chrisey, D.B., 2001, The deposition, structure, pattern deposition, and activity of biomaterial thin-films by matrix-assisted pulsed-laser evaporation (MAPLE) and MAPLE direct write, Thin Sol. Films 389–399:607–614.

    Article  Google Scholar 

  • Young, D., Auyeung, R.C.Y., Piqué, A., Chrisey, D.B., and Dlott, D.D., 2001a, Time-resolved optical microscopy of a laser-based forward transfer process, Appl. Phys. Lett. 78:3169–3171.

    Article  ADS  Google Scholar 

  • Young, D., Wu, H.D., Auyeung, R.C.Y., Modi, R., Fitz-Gerald, J., Piqué, A., Chrisey, D.B., Atanassova, P., and Kodas, T., 2001b, Dielectric properties of oxide structures by a laser-based direct-writing method, J. Mater. Res. 16:1720–1725.

    Article  ADS  Google Scholar 

  • Young, D., Auyeung, R.C.Y., Piqué, A., Chrisey, D.B., and Dlott, D.D., 2002, Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy, Appl. Surf. Sci. 197–198:181–187.

    Article  Google Scholar 

  • Zergioti, I., Mailis, S., Vainos, N.A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C.P., and Fotakis, C., 1998a, Microdeposition of metal and oxide structures using ultrashort laser pulses, Appl. Phys. A 66: 579–582.

    Article  ADS  Google Scholar 

  • Zergioti, I., Malilis, S., Vainos, N.A., Fotakis, C., Chen, S., and Grigoropoulos, C.P., 1998b, Microdeposition of metals by femtosecond excimer laser, Appl. Surf. Sci. 127–129: 601–605.

    Article  Google Scholar 

  • Zergioti, I., Karaiskou, A., Papazoglou, D.G., Fotakis, C., Kapsetaki, M., and Kafetzopoulos, D., 2005, Femtosecond laser microprinting of biomaterials, Appl. Phys. Lett. 86: 163902-1–163902-3.

    Article  ADS  Google Scholar 

  • Zhang, C, Liu, D., Mathews, S.A., Graves, I, Schaefer, T.M., Gilbert, B.K., Modi, R., Wu, H.-D., and Chrisey, D.B., 2003, Laser direct-write and its application in low temperature Co-fired ceramic (LTCC) technology, Microelectronic Eng. 70:41–49.

    Article  Google Scholar 

  • Zheng, J. P., Cygan, P. J., and Jow, T. R., 1995, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142:2699–2703.

    Article  Google Scholar 

  • Zheng, J. P. and Xin, Y., 2002, Characterization of RuO2 · xH2O with various water contents, J. Power Sources 110:86–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Piqué, A., Kim, H., Arnold, C.B. (2007). Laser Forward Transfer of Electronic and Power Generating Materials. In: Phipps, C. (eds) Laser Ablation and its Applications. Springer Series in Optical Sciences, vol 129. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30453-3_14

Download citation

Publish with us

Policies and ethics