Pulsed Laser Deposition for Functional Optical Films

  • C. N. Afonso
  • J. Gonzalo
  • R. Serna
  • J. Solís
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)

4. Summary

Pulsed laser deposition is a versatile technique with high capabilities to produce complex oxide films. Several parameters must be controlled and optimised in order to achieve the desired film quality or structure, since there is a narrow range of laser energy density values, gas pressures and target-substrate distances that lead to optimum deposition conditions. The goal to reach is the control of the kinetic energy of the species arriving to the substrate to avoid undesired processes (such as surface damage or sputtering), while keeping a value high enough to enhance beneficial processes at the substrate (such as film density enhancement, surface mobility and reactivity and, in some cases, even implantation).

Additionally, PLD has a high potential to produce complex glassy films for integrated optical applications with improved optical performances. The main advantages of PLD when compared to other deposition methods are the capability of producing glassy films in an extended compositional range with respect to bulk materials and the possibility of avoiding oxygen deficiencies in the glass network by using an oxygen pressure during deposition. Finally, PLD has a high potential to produce complex nanostructured films formed by layers with thicknesses ranging from submonolayers (1013 atoms cm−2 level) that can be associated to atomic doping to clusters and nanoparticles (up to 1016 atoms cm−2). The main advantages of PLD in these cases when compared to other deposition methods are the capability of producing complex oxide hosts and the possibility of structuring the distribution of the dopant in the nanometer scale in a single step process.


Surface Plasmon Resonance Laser Ablation Nanocomposite Film Nonlinear Refractive Index Laser Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonso, C.N., 1995, Pulsed laser deposition of films for optical applications, in: Insulating Materials for Optoelectronics: New Developments, F. Agulló-López, ed., World Scientific, Singapore, pp. 1–28.Google Scholar
  2. Afonso, C.N., Ballesteros, J.M., Gonzalo, J., Righini, G.C., and Pelli, S., 1996, Rare-earth doped glass waveguides prepared by pulsed laser deposition, Appl. Surf. Sci. 96–98: 760–763CrossRefGoogle Scholar
  3. Afonso, C. N., Gonzalo J., Serna R., and Solís J., in press, Metal-dielectric nanocomposites produced by pulsed laser deposition: a route for new functional materials, in: Recent Advances on Laser Processing, J. Perrière, E. Millon and E. Fogarassy, eds., Elsevier.Google Scholar
  4. Amoruso, S., Bruzzese, R., Spinelli, N., Velotta, R., Vitiello, M., and Wang, X., 2003, Dynamics of laser-ablated MgB2 plasma expanding in argon probed by optical emission spectroscopy, Phys. Rev. B 67: Art. 224503Google Scholar
  5. Anisimov, S.I., Bäuerle, D., and Lukyanchuk, B.S., 1993, Gas-dynamics and film profiles in pulsed-laser deposition of materials, Phys. Rev. B 48: 12076–12081CrossRefADSGoogle Scholar
  6. Ay, F., Aydinli A., and Agan, S., 2003, Low-loss as-grown germanosilicate layers for optical waveguides, Appl. Phys. Lett. 83: 4743–4745.CrossRefADSGoogle Scholar
  7. Bär, S., Huber, G., Gonzalo, J., Perea, A., Climent, A., and Paszti, F., 2003, Europium-doped sesquioxide thin-films grown on sapphire by PLD, Mat. Sci. Eng. B 105: 30–33.CrossRefGoogle Scholar
  8. Barnes, J.-P., Petford-Long, A.K., Doole, R.C., Serna, R., Gonzalo, J., Suarez-Garcia, A., Afonso, C.N., and Hole, D., 2002, Structural studies of Ag nanocrystals embedded in amorphous A12O3 grown by pulsed laser deposition, Nanotechnology 13: 465–470.CrossRefADSGoogle Scholar
  9. Barnes, J.-P., Petford-Long, A.K., Suarez-Garcia, A., and Serna, R., 2003, Evidence for shallow implantation during the growth of bismuth nanocrystals by pulsed lased deposition, J. Appl. Phys. 93: 6396–6398.CrossRefADSGoogle Scholar
  10. Blank, D.H.A., Koster, G., Rijnders, G.A.J.H.M., van Setten, E., Slycke, P. and Rogalla, H., 2000, Epitaxial growth of oxides with pulsed laser interval deposition, J. Cryst. Growth 211, 98–105.CrossRefADSGoogle Scholar
  11. Chaos, J.A., Gonzalo, J., Afonso, C.N., J. Perrière and García-González, M.T., 2001, Growth of stoichiometric and textured LiNbO3 films on Si by pulsed laser deposition, Appl. Phys. A 72: 705–710.ADSCrossRefGoogle Scholar
  12. Chen, Li-Chyong, 1994, Particulates generated by pulsed laser ablation, in: Pulsed Laser Deposition of Thin-films, D. B. Chrisey and G. K. Hubler, eds., John Wiley & Sons, New York, pp. 167–198.Google Scholar
  13. Chrisey D.B. and Hubler G.K., eds, 1994, Pulsed Laser Deposition of Thin-films, John Wiley and Sons Inc., New York.Google Scholar
  14. Clement, M.K.Th., Hayden, J.S., Hayden, Y.T., Hoffmann H.-J., Lentes F.-T., and Neuroth, N., 1995, Optical properties, in: The Properties of Optical Glass, H. Bach and N. Neuroth, eds., Springer-Verlag, Berlin, pp. 59–165.Google Scholar
  15. del Coso, R. and Solis, J., 2004a, Relation between nonlinear refractive index and third-order susceptibility in absorbing media, J. Opt., Soc. Am. B 21: 640–644.CrossRefADSGoogle Scholar
  16. del Coso, R., Requejo-Isidro, J, Solis, J., Gonzalo, J. and Afonso, C.N., 2004b, Third order nonlinear optical susceptilibity of Cu:Al2O3 nanocomposites: from spherical nanoparticles to the percolation threshold, J. Appl. Phys. 95, 2755–62.CrossRefADSGoogle Scholar
  17. Dempsey, N.M., Ranno, L., Givord, D., Gonzalo, J., Serna, R., Fei, G.T., Petford-Long, A.K., Doole, R.C., and Hole, D.E., 2001, Magnetic behavior of Fe:Al2O3 nanocomposite films produced by pulsed laser deposition, J. Appl. Phys. 90: 6268–6274.CrossRefADSGoogle Scholar
  18. Dyer, P.E., Issa, A., and Key, P.H., 1990, Dynamics of excimer laser ablation of superconductors in an oxygen environment, Appl. Phys. Lett. 57: 186–188.CrossRefADSGoogle Scholar
  19. Fähler S., Sturm, K., and Krebs, H-U., 1999, Resputtering during the growth of pulsed-laser-deposited metallic films in vacuum and in an ambient gas. Appl. Phys. Lett. 75: 3766–3768.CrossRefADSGoogle Scholar
  20. Federighi, M. and Dipasquale, F., 1995, The effect of pair-induced energy-transfer on the performance of silica wave-guide amplifiers with high Er3+/Yb3+ concentrations, IEE Photonic. Tech. L. 7: 303–305.CrossRefADSGoogle Scholar
  21. Ford, A.C., Tepper, T., and Ross, C.A., 2003, Reactive pulsed laser deposition of silica and doped silica thin-films, Thin Solid Films 437: 211–216CrossRefADSGoogle Scholar
  22. Frantti, J., and Lantto V., 1994, Characterization of Pb0.97Nd0.02(Zr0.55Ti0.45)O3 thin-films prepared by pulsed laser deposition, J. Appl. Phys. 76: 2139–2142CrossRefADSGoogle Scholar
  23. Geohegan, D.B., 1994, Diagnostics and characteristics of pulsed laser deposition of laser plasmas, in: Pulsed Laser Deposition of Thin-films, D. B. Chrisey and G. K. Hubler, eds., John Wiley & Sons, New York, pp. 115–165.Google Scholar
  24. Geohegan, D.B., Puretzky, A.A., Duscher, G., and Pennycook, S.J., 1998, Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation, Appl. Phys. Lett. 72: 2987–2989.CrossRefADSGoogle Scholar
  25. Gonzalo, J., Afonso, C.N., and Perrière, J., 1996, Influence of the laser energy density on the plasma expansion dynamics and film stoichiometry during laser ablation of BiSrCaCuO, J. Appl. Phys. 79: 8042–8046.CrossRefADSGoogle Scholar
  26. Gonzalo J., Chaos J.A., Suarez-Garcia A, Afonso C.N., and Pruned V., 2002, Enhanced second-order nonlinear optical response of LiNbO3 films upon Er doping, Appl. Phys. Lett. 81: 2532–2534.CrossRefADSGoogle Scholar
  27. Gonzalo, J., Sanz, O., Perea, A., Fernández-Navarro, J.M., Afonso, C.N., and Garcia Lopez, J., 2003, High refractive index and transparent heavy metal oxide glassy thin-films, Appl. Phys. A 76: 943–946.CrossRefADSGoogle Scholar
  28. Gonzalo, J., Perea, A., Babonneau, D., Afonso, C.N., Beer, N., Barnes, J.P., Petford-Long, A.K., Hole, D.E., and Townsend, P.D., 2005, Competing processes during the production of metal nanoparticles by pulsed laser deposition, Phys. Rev. B 71: Art. 125420.Google Scholar
  29. Gonzalo, J., Fernández, H., Sanz, O., Solís J, and Fernández-Navarro, J.M., submitted, Nonlinear optical properties of lead niobium germanate glass films, Appl. Phys. Lett. Google Scholar
  30. Gottmann, J., and Kreutz, E.W:, 2000, Controlling crystal quality and orientation of pulsed-laser-deposited BaTiO3 thin-films by the kinetic energy of the film forming particles, Appl. Phys. A 70: 275–281.CrossRefADSGoogle Scholar
  31. Gupta, A., 1994, Novel pulsed laser deposition approaches, in: Pulsed Laser Deposition of Thin-films, D. B. Chrisey and G. K. Hubler, eds., John Wiley & Sons, New York, pp. 265–291.Google Scholar
  32. Hau, S.K., Wong, K.H., ChanS P.W., and Choy, C.L., 1995, Intrinsic resputtering in pulsed-laser deposition of lead-zirconate-titanate thin-films, Appl. Phys. Lett. 66: 245–247.CrossRefADSGoogle Scholar
  33. Henry, C.R., 1998, Surface studies of supported model catalysts, Surf. Sci. Reports 31, 231–326.CrossRefADSGoogle Scholar
  34. Hirao, K., Mitsuyu, T., Si, J., and Qiu J., 2001, Active glass for photonic devices, Springer, BerlinGoogle Scholar
  35. Kim, H.S., and Kwok, H.S., 1992, Correlation between target-substrate distance and oxygen pressure in pulsed laser deposition of YBa2Cu3O7, Appl. Phys. Lett. 61: 2234–2236.CrossRefADSGoogle Scholar
  36. Koinuma, H., Aiyer, H., and Matsumoto, Y., 2000, Combinatorial solid state materials science and technology, Sci. and Tech. of Advanced Materials 1, 1–10.CrossRefADSGoogle Scholar
  37. Koinuma, H. and Takeuchi, I., 2004, Combinatorial solid-state chemistry of inorganic materials, Nature Materials 3: 429–438.CrossRefADSGoogle Scholar
  38. Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H., and Aoyagi, Y., 2000, 1.54 µm emission dynamics of erbium-doped zinc-oxide thin-films, Appl. Phys. Lett. 76: 3935–3937.CrossRefADSGoogle Scholar
  39. Kools, J.C.S. 1994, Pulsed laser deposition of metals, in: Pulsed Laser Deposition of Thin-films, D. B. Chrisey and G. K. Hubler, eds., John Wiley & Sons, New York, pp. 455–471.Google Scholar
  40. Kozanecki, A., Przybylinska, H., Jantsch, W., and Palmetshofer, L., 1999, Room-temperature photoluminescence excitation spectroscopy of Er3+ ions in Er-and (Er plus Yb)-doped SiO2 films, Appl. Phys. Lett. 75: 2041–2043.CrossRefADSGoogle Scholar
  41. Krebs, H-U, Bremert, O., Luo, Y., Fähler, S., and Störmer M., 1996, Structure of laser-deposited metallic alloys and multilayers, Thin Solid Films 275, 18–21.CrossRefADSGoogle Scholar
  42. Kreibig, U., and Vollmer, M, 1995, Optical properties of metal clusters, Springer, Berlin.Google Scholar
  43. Lackner J.M., Wakdhauser, W., Ebner, R., Major, B., and Schoberl, T., 2004, Pulsed laser deposition of titanium oxide coatings at room temperature-structural, mechanical and tribological properties, Surf. Coat. & Tech. 180–81, 585–90.CrossRefGoogle Scholar
  44. Lancok, J., Garapon, C., Martinet, C., Mugnier, J., and Brenier, R., 2004, Influence of the PLD parameters on the crystalline phases and fluorescence of Eu:Y2O3 planar waveguides, Appl. Phys. A 79: 1263–1265.CrossRefADSGoogle Scholar
  45. Lanzerstorfer, S., Pedarnig, J. D., Gunasekaran, R. A., Bauerle, D., and Jantsch, W., 1998, 1.54 µm emission of pulsed-laser deposited Er-doped films on Si, J. Lumin. 80: 353–356.CrossRefGoogle Scholar
  46. Lazarouk, S. K., Mudryi, A. V., and Borisenko, V. E., 1998, Room-temperature formation of erbium-related luminescent centers in anodic alumina, Appl. Phys. Lett. 73: 2272–2274.CrossRefADSGoogle Scholar
  47. Lester, C., Bjarklev, A., Rasmussen, T., and Dinesen, P. G., 1995, Modeling of Yb3+-sensitized Er3+-doped silica wave-guide amplifiers, J. Lightwave Technol. 13: 740–743.CrossRefADSGoogle Scholar
  48. Lichtenwalner, D.J., Auciello, O., Dat, R., and Kingon A.I., 1993, Investigation of the ablated flux characteristics during pulsed laser ablation deposition of multicomponent oxides, J. Appl. Phys. 74: 7497–7505.CrossRefADSGoogle Scholar
  49. Lines, M.E., 1991, Oxide glasses for fast photonic switching: A comparative study, J. Appl. Phys. 69: 6876–6884.CrossRefADSGoogle Scholar
  50. Luo, Y., Biswas, A., Frauenglass, A., and Brueck S.R.J., 2004, Large second-harmonic signal in thermally poled lead glass-silica waveguides, Appl. Phys. Lett. 84: 4935–4937.CrossRefADSGoogle Scholar
  51. Mailis S., Riziotis Ch., Wang, J., Taylor E., Anderson A.A., Berrington S.J., Rutt H.N., Eason R.W., Vainos, N.A., and Grivas Ch., 1999, Growth and characterization of pulsed laser deposited lead germanate glass optical waveguides, Opt. Mat. 12:27–33.CrossRefGoogle Scholar
  52. Marine, W., Patrone, L., Luk’yanchuk, B., and Sentis, M., 2000, Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation, Appl. Surf. Sci. 154, 345–352.CrossRefADSGoogle Scholar
  53. Martino, M., Caricato A.P., Fernández, M., Leggieri, G., Jha A., Ferrari, M., and Mattarelli M., 2003, Pulsed laser deposition of active waveguides, Thin Solid Films 433: 39–44CrossRefADSGoogle Scholar
  54. Mazzoldi, P., and Righini, G.C., 1995. Glasses for Optoelectronic Devices, in: Insulating Materials for Optoelectronics: New Developments, F. Agulló-López, ed., World Scientific, Singapore, pp. 367–392.Google Scholar
  55. Miller, J.C. and Haglund, R.F., eds., 1998, Laser ablation and desorption, Academic Press, San Diego.Google Scholar
  56. Miniscalco, W.J., 1993 Optical and electronic properties of rareearth ions in glasses, in: Rare-Earth doped fiber lasers and amplifiers, ed. by M.J.F. Digonnet, Dekker, New York.Google Scholar
  57. Ohtomo, A. and Tsukazaki, A., 2005, Pulsed laser deposition of thin-films and superlattices based on ZnO, Sem. Sci. and Tech. 20, S1–S12.CrossRefADSGoogle Scholar
  58. Pignolet, A., Curran, C., Alexe, M., Senz, S., Hesse, D., and Gosele, U., 1998, Epitaxial and large area PLD ferroelectric thin-film heterostructures on silicon substrates, Integr. Ferroelectr. 21: 485–498.CrossRefGoogle Scholar
  59. Polman, A., 1997, Erbium implanted thin-film photonic materials, J. Appl. Phys. 1997, 1–39.CrossRefADSGoogle Scholar
  60. Prins, M.W. J., GrosseHolz, K.O., Muller, G., Cillessen, J.F.M., Giesbers, J.B., Weening, R.P., and Wolf, R.M., 1996, A ferroelectric transparent thin-film transistor, Appl. Phys. Lett. 68:3650–3652.CrossRefADSGoogle Scholar
  61. de Sande, J.C.G., Serna, R., Gonzalo, J., Afonso, C.N., Hole, D.E. and Naudon, A., 2002, Refractive index of Ag nanocrystals composite films in the neighborhood of the surface plasmon resonance, J. Appl. Phys. 91, 1536–41.CrossRefADSGoogle Scholar
  62. Saenger, K.L. 1994, Angular distribution of ablated material, in: Pulsed Laser Deposition of Thin-films, D. B. Chrisey and G. K. Hubler, eds., John Wiley & Sons, New York, pp. 199–227.Google Scholar
  63. Santran, S., Canioni, L., Sarger, L., Cardinal, Th., and Fargin, E., 2004, Precise and absolute measurements of the complex third-order optical susceptibility, J. Opt. Soc. Am. B 21: 2180–2189CrossRefADSGoogle Scholar
  64. Sanz, O., Gonzalo, J., Perea, A., Fernández-Navarro, J.M., Afonso, C.N., and Garcia Lopez, J., 2004, Wide transparency range and high refractive index and lead-niobium-germanate glass thin-films, Appl. Phys. A 79: 1907–1911CrossRefADSGoogle Scholar
  65. Serna, R., de Sande, J.C.G., Ballesteros, J.M., and Afonso, C.N., 1998a, Spectroscopic ellipsometry of composite thin-films with embedded Bi nanocrystals, J. Appl. Phys. 84: 4509–4516.CrossRefADSGoogle Scholar
  66. Serna, R., Ballesteros, J. M., de Castro, M. J., Solis, J., and Afonso, C. N., 1998b, Optically active Er-Yb doped glass films prepared by pulsed laser deposition, J. Appl. Phys. 84: 2352–2354.CrossRefADSGoogle Scholar
  67. Serna, R., Afonso, C.N., Ballesteros, J.M., Naudon, A., Babonneau, D., and Petford-Long, A.K., 1999, Size, shape anisotropy, and distribution of Cu nanocrystals prepared by pulsed laser deposition, Appl. Surf. Sci. 139: 1–5.CrossRefGoogle Scholar
  68. Serna, R., Afonso, C.N., Ricolleau, C., Wang, Y., Zheng, Y., Gandais, M., and Vickridge, I., 2000, Artificially nanostructured Cu:Al2O3 films produced by pulsed laser deposition, Appl. Phys. A 71, 583–586.CrossRefADSGoogle Scholar
  69. Serna, R., Gonzalo, J., Afonso, C.N., and de Sande, J.C.G., 2001a, Anomalous dispersion in nanocomposite films at the surface plasmon resonance, Appl. Phys. B 73: 339–343.CrossRefADSGoogle Scholar
  70. Serna, R., de Castro, M.J., Chaos, J.A., Suarez-Garcia, A., Afonso, C.N., Fernandez, M, and Vickridge, I., 2001b, Photoluminescence performance of pulsed-laser deposited Al2O3 thin-films with large erbium concentrations, J. Appl. Phys. 90: 5120–5125.CrossRefADSGoogle Scholar
  71. la Serra, E.R., Charbouillot, Y., Baudry, P., and Aegerter, M.A., 1990, Preparation and characterization of thin-films of TiO2-PbO and TiO2-Bi2O3 compositions, J. of Non Cryst. Solids 121: 323–328.CrossRefGoogle Scholar
  72. Serra, J., Liste, S., González P., Serra, C., Borrajo, J.P., Chiussi, S., León, B., and Pérez-Amor, M., 2004, The role of the temperature and laser fluence on the properties of PLD bioactive glass films, Appl. Phys. A 79: 983–986.ADSGoogle Scholar
  73. Singh R.K., and Narayan, J., 1990, Pulsed-laser evaporation technique for deposition of thin-films: Physics and theoretical model, Phys. Rev. B 41: 8843–8859.CrossRefADSGoogle Scholar
  74. Strikovski, M. and Miller Jr., J.H., 1998, Pulsed laser deposition of oxides: Why the optimum rate is about 1Å per pulse, Appl. Phys. Lett. 73: 1733–1735.CrossRefADSGoogle Scholar
  75. Strohhofer, C. and Polman, A., 2001, Relationship between gain and Yb3+ concentration in Er3+-Yb3+ doped waveguide amplifiers, J. Appl. Phys. 90: 4314–4320.CrossRefADSGoogle Scholar
  76. Suárez-García, A., del Coso, R., Serna, R., Solís, J. and Afonso C.N. 2003, Controlling the transmission at the surface plasmon resonance of nanocomposite films using photonic structures, Appl. Phys. Lett. 83, 1842–4.CrossRefADSGoogle Scholar
  77. Suarez-Garcia, A., Serna, R., de Castro, M.J., Afonso, C.N. and Vickridge, I., 2004, Nanostructuring the Er-Yb distribution to improve the photoluminescence response of thin-films, Appl. Phys. Lett. 84: 2151–2153.CrossRefADSGoogle Scholar
  78. Van den Hoven, G.N., Snoeks, E., Polman, A., Vanuffelen, J.W.M., Oei, Y.S., and Smit, M.K., 1993, Photoluminescence Characterization of Er-Implanted A12O3 Films, Appl. Phys. Lett. 62, 3065–3067.CrossRefADSGoogle Scholar
  79. da Vila, L. D., Gomes, L., Tarelho, L. V. G., Ribeiro, S. J. L. and Messadeq, Y., 2003, Mechanism of the Yb-Er energy transfer in fluorozirconate glass, J. Appl. Phys. 93: 3873–3880.CrossRefADSGoogle Scholar
  80. Voevodin, A.A., Donley, M.S., and Zabinski, J.S., 1997, Pulsed laser deposition of diamond-like carbon wear protective coatings: a review, Surf. & Coat. Tech. 92, 42–49.CrossRefGoogle Scholar
  81. Vogel, E.M., Chase, E.W., Jackel, J.L. and Wilkens, B.J., 1989, Fabrication of thin-film nonlinear optical glasses using pulsed excimer laser deposition, Appl. Opt. 28: 649–650.ADSCrossRefGoogle Scholar
  82. Vogel, E.M., Weber, M.J. and Krol D.M., 1991, Nonlinear optical phenomena in glass, Phys. Chem. Glasses 32: 231–254.Google Scholar
  83. Willmott, P.R. and Huber, J.R., 2000, Pulsed laser vaporization and deposition, Rev. Mod. Phys. 72: 315–328.CrossRefADSGoogle Scholar
  84. Wu, N. J., Chen, Y. S., Fan, J. Y. and Ignatiev, A., 1998, Infrared photoresponse of (Mn,Sb) doped Pb(Zr,Ti)O3/YBa2Cu3O7 heterostructure detectors, J. Appl. Phys. 83: 4980–4984.CrossRefADSGoogle Scholar
  85. Yan, Y.C., Faber, A.J., deWaal, H., Kik, P.G. and Polman, A., 1997, Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm, Appl. Phys. Lett. 71: 2922–2924.CrossRefADSGoogle Scholar
  86. Yilmaz, S., Gerhardmulthaupt, R., Bonner, W.A., Hwang, D.M., Inam, A., Martinez, J.A., Ravi, T.S., Sands, T., Wilkens, B.J., Wu, X. D. and Venkatesan, T., 1994, Electrooptic potassium-tantalate-niobate films prepared by pulsed-laser deposition from segmented pellets, J. Mat. Res. 9: 1272–1279.ADSCrossRefGoogle Scholar
  87. Yoshida, T., Takeyama, S., Yamada, Y. and Mutoh, K., 1996, Nanometer-sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas, Appl. Phys. Lett. 68: 1772–1774.CrossRefADSGoogle Scholar
  88. Xu, S.F., Tian, Y.J., Lü, H.B., Cui, D.F., Chen, Z.H., Li, L., and Yang G.Z., 1994, The effect of laser energy density and target-substrate distance on the quality of of YBa2Cu3O7−x thin-films, Supercond. Sci. Technol. 7: 435–437.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • C. N. Afonso
    • 1
  • J. Gonzalo
    • 1
  • R. Serna
    • 1
  • J. Solís
    • 1
  1. 1.Instituto de OpticaCSICMadridSpain

Personalised recommendations