Femtosecond Plasma-Mediated Nanosurgery of Cells and Tissues

  • Alfred Vogel
  • Joachim Noack
  • Gereon Hüttman
  • Günther Paltauf
Part of the Springer Series in Optical Sciences book series (SSOS, volume 129)


Femtosecond Laser Numerical Aperture Bubble Formation Femtosecond Laser Pulse Femtosecond Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammosov, M.V., Delone, N. B., and Krainov, V. P., 1986, Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field, Sov. Phys. JETP 64, 1191–1194.Google Scholar
  2. Amy, R. L., and Storb, R., 1965, Selective mitochondrial damage by a ruby laser microbeam: an electron microscopic study, Science 150, 756–758.CrossRefADSGoogle Scholar
  3. Arnold, C. L., Heisterkamp, A., Ertmer, W. and Lubatschowski, H., 2005, Streak formation as side effect od optical breakdown during processing the bulk of transparent Kerr media with ultrashort laser pulses, Appl. Phys. B 80, 247–253.CrossRefADSGoogle Scholar
  4. Arnold, D., and Cartier, E., 1992, Theory of laser-induced free-electron heating and impact ionization in wide-band-gap solids, Phys. Rev. B 46, 15102–15115.CrossRefADSGoogle Scholar
  5. Barnes, P. A., and Rieckhoff, K. E., 1968, Laser induced underwater sparks. Appl. Phys. Lett. 13, 282–284.CrossRefADSGoogle Scholar
  6. Berns, M. W., Olson, R. S., and Rounds, D. E., 1969, In vitro production of chromosomal lesions with an argon laser microbeam, Nature 221, 74–75.CrossRefADSGoogle Scholar
  7. Berns, M. W., Cheng, W. K., Floyd, A. D. and Ohnuki, Y., 1971, Chromosome lesions produced with an argon laser microbeam without dye sensitization, Science 171, 903–905.CrossRefADSGoogle Scholar
  8. Berns, M. W., Aist, J., Edwards, J., Strahs, K., Girton, J., McNeil, P., Kitzes, J. B., Hammer-Wilson, M., Liaw, L.-H., Siemens, A., Koonce, M., Peterson, S., Brenner, S., Burt, J., Walter, R., Bryant, P. J., van Dyk, D., Coulombe, J., Cahill, T. and Berns, G. S., 1981, Laser Microsurgery in cell and developmental biology, Science 213, 505–513.CrossRefADSGoogle Scholar
  9. Bessis, M., and Nomarski, G., 1960, Irradiation ultra-violette des organites cellulaires avec observation continue en contraste en phase, J. Biophys. Biochem. Cytol. 8, 777–792.CrossRefGoogle Scholar
  10. Bessis, M., Gires, F., Mayer, G., and Nomarski, G., 1962, Irradiation des organites cellulaires à l’aide d’un laser a rubis, C. R. Acad. Sci. III-Vie 255, 1010.Google Scholar
  11. Bessis, M., 1971, Selective destruction of cell organelles by laser beam. Theory and practical applications, Adv. Biol. Med. Phys. 13, 209–213.Google Scholar
  12. Bloembergen, N., 1974, Laser-induced electric breakdown in solids, IEEE J. Quantum Electr. QE-10, 375–386.CrossRefADSGoogle Scholar
  13. Boal, D., 2002, Mechanics of the cell, Cambridge Univ. Press, Cambridge, UK.Google Scholar
  14. Born, M., and Wolf, E., 1970, Principles of Optics, Pergamon Press, Oxford, 1970.Google Scholar
  15. Botvinick, E. L., Venugopalan, V., Shah, J. V., Liaw, L. H., and Berns, M., 2004, Controlled ablation of microtubules using a picosecond laser, Biophys. J. 87, 4203–4212.CrossRefGoogle Scholar
  16. Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M. A., and Sanche, L., 2000, Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons, Science 287, 1658–1660.CrossRefADSGoogle Scholar
  17. Chapyak, E. J., Godwin, R. P., and Vogel, A., 1997, A comparison of numerical simulations and laboratory studies of shock waves and cavitation bubble growth produced by optical breakdown in water, Proc. SPIE 2975, 335–342.Google Scholar
  18. Chung, S. H., Clark, D. A., Gabel, C. V., Mazur, E., and Samuel, A. D. T., 2005, Mapping thermosensation to a dendrite in C. elegans using femtosecond laser dissetion, J. Neurosci. 25 (at press)Google Scholar
  19. Colombelli, J., Grill, S. W., and Stelzer, E. H. K., 2004, Ultraviolett diffraction limited nanosurgery of live biological tissues, Rev. Sci. Instrum. 75, 472–478.CrossRefADSGoogle Scholar
  20. Colombelli, J., Reynaud, and Stelzer, E. H. K., 2005a, Subcellular nanosurgery with a pulsed subnanosecond UV-A laser, Med. Laser Appl. 20, 217–222.CrossRefGoogle Scholar
  21. Colombelli, J., Reynaud, E. G., Rietdorf, J., Pepperkork, R., and Stelzer, E. H. K., 2005b, Pulsed UV laser nanosurgery: retrieving the cytoskeleton dynamics in vivo, Traffic 6, 1093–1102.CrossRefGoogle Scholar
  22. Cox, B. T., and Beard, P. C., 2005, Fast calculation of pulsed photoacoustic fields in fluids using k-space methods, J. Acoust. Soc. Am. 117, 3616–3627.CrossRefADSGoogle Scholar
  23. Dayton, P. A., Chomas, J. E., Lunn, A. F. H., Allen, J. S., Lindner, J. R., Simon, S. I., and Ferrara, K. W., 2001, Optical and acoustical dynamics of microbubble contrast agents inside neutrophils, Biophys. J. 80, 1547–1556.CrossRefGoogle Scholar
  24. Debenedetti, P. G., 1996, Metastable Liquids: Concepts and Principles, Princeton University Press, Princeton.Google Scholar
  25. Ditlbacher, H., Krenn, J. R., Leitner, A., and Aussenegg, F. R., 2004, Surface plasmon polariton based optical beam profiler, Opt. Lett. 29, 1408–1410.CrossRefADSGoogle Scholar
  26. Docchio, F., Sachhi, C. A., and Marshall, J., 1986, Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations, Lasers Ophthalmol. 1, 83–93.Google Scholar
  27. Du, D., Squier, J., Kurtz, R., Elner, V., Liu, X., Güttmann, G., and Mourou, G., 1994, Damage threshold as a function of pulse duration in biological tissue, in P. F. Barbara, W. H. Knox, G. A. Mourou, and A. H. Zewail Ultrafast Phenomena IX, Springer, New York, pp. 254–255.Google Scholar
  28. Du, D., Liu, X., and Mourou, G., 1996, Reduction of multi-photon ionization in dielectrics due to collisions, Appl. Phys. B 63, 617–621.ADSGoogle Scholar
  29. Eggeling, C., Volkmer, A., and Seidel, C. A. M., 2005, Molecular photobleaching kinetics of Rhodamine 6G by one-and two-photon induced confocal fluorescence microscopy, Chem. Phys. Chem. 6, 791–804.Google Scholar
  30. Fan, C. H., Sun, J., and Longtin, J. P., 2002a, Breakdown threshold and localized electron density in water induced by ultrashort laser pulses, J. Appl. Phys. 91, 2530–2536.CrossRefADSGoogle Scholar
  31. Fan, C. H., Sun, J., and Longtin, J. P., 2002b, Plasma absorption of femtosecond laser pulses in dielectrics, J. Heat Transf.–T. ASME 124, 275–283.CrossRefGoogle Scholar
  32. Feit, M. D., Komashko, A. M., and Rubenchik, A. M., 2004, Ultra-short pulse laser interaction with transparent dielectrics, Appl. Phys. A 79, 1657–1661.CrossRefADSGoogle Scholar
  33. Feng, Q., Moloney, J. V., Newell, A. C., Wright, E. M., Cook, K., Kennedy, P. K., Hammer, D. X., Rockwell, B. A., and Thompson, C. R., 1997, Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses, IEEE J. Quantum Electron. 33, 127–137.CrossRefADSGoogle Scholar
  34. Garret, B. C., et al., 2005, Role of water in electron-initiated processes and radical chemistry; issues and scientific advances, Chem Rev. 105, 355–389.CrossRefGoogle Scholar
  35. Garrison, B., Itina, T. E., and Zhigilei, L. V., 2003, Limit of overheating and the threshold behavior in laser ablation. Phys. Rev. E 68, 041501.CrossRefADSGoogle Scholar
  36. Garwe, F., Csáki, A., Maubach, G., Steinbrück, A., Weise, A., König, K., Fritsche, W., 2005, Laser pulse energy conversion on sequence-specifically bound metal nanoparticles and its application for DNA manipulation, Med. Laser Appl. 20, 201–206.CrossRefGoogle Scholar
  37. Gilmore, F. R., 1952, Calif. Inst. Techn. Rep. 26-4.Google Scholar
  38. Gohlke, S., and Illenberger, E., 2002, Probing biomolecules: Gas phase experiments and biological relevance, Europhys. News 33, 207–209.ADSGoogle Scholar
  39. Grand, D., Bernas, A., and Amouyal, E., 1979, Photoionization of aqueous indole; conduction band edge and energy gap in liquid water, Chem. Phys. 44, 73–79.CrossRefGoogle Scholar
  40. Greulich, K. O., 1999, Micromanipulation by Light in Biology and Medicine, Birkhäuser, Basel, Boston, Berlin, 300pp.Google Scholar
  41. Grill, S. W., Howard, J., Schäffer, E., Stelzer, E. H. K. and Hyman, A. A., 2003, The distribution of active force generators controls mitotic spindle position, Science 301, 518–521.CrossRefADSGoogle Scholar
  42. Grill, S., and Stelzer, E. H. K., 1999, Method to calculate lateral and axial gain factors of optical setups with a large solid angle, J. Opt. Soc. Am. A 16, 2658–2665.ADSGoogle Scholar
  43. Hammer, D. X., Thomas, R. J., Noojin, G. D., Rockwell, B. A., Kennedy, P. A., and Roach, W. P., 1996, Experimental investigation of ultrashort pulse laser-induced breakdown thresholds in aqueous media, IEEE J. Quantum Electr. QE-3, 670–678.CrossRefADSGoogle Scholar
  44. Hammer, D. X., Jansen, E. D., Frenz, M., Noojin, G. D., Thomas, R. J., Noack, J., Vogel, A., Rockwell, B. A., and Welch, A. J., 1997, Shielding properties of laser-induced breakdown in water for pulse durations from 5 ns to 125 fs, Appl. Opt. 36, 5630–5640.ADSCrossRefGoogle Scholar
  45. Han, M., Zickler, L., Giese, G., Walter, M., Loesel, F. H., and Bille, J. F., 2004, Second-harmonic imaging of cornea after intrastromal femtosecond laser ablation, J. Biomed. Opt. 9, 760–766.CrossRefADSGoogle Scholar
  46. Heisterkamp, A., Ripken, T., Lubatschowski, H., Mamom, T., Drommer, W., Welling, H., and Ertmer, W., 2002, Nonlinear side-effects of fs-pulses inside corneal tissue during photodisruption, Appl. Phys. B 74, 419–425.CrossRefADSGoogle Scholar
  47. Heisterkamp, A., Mamom, T., Kermani, O., Drommer, W., Welling, H., Ertmer, W., and Lubatschowski, H., 2003, Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye, Graefes Arch. Clin. Exp. Ophthalmol. 241, 511–517.CrossRefGoogle Scholar
  48. Heisterkamp, A., Maxwell, I. Z., Mazur, E., Underwood, J. M., Nickerson, J. A., Kumar, S. and Ingber, D. E., 2005, Pulse energy dependence of subcellular dissection by femtosecond laser pulses, Opt. Expr. 13, 3690–3696.CrossRefADSGoogle Scholar
  49. Hopt, A., and Neher, E., 2001, Highly nonlinear photodamage in two-photon fluorescence microscopy, Biophys. J. 80, 2029–2036.ADSGoogle Scholar
  50. Hotop, H., 2001, Dynamics of low energy electron collisions with molecules and clusters, in: L.G. Christophorou, J.K. Olthoff (eds.): Proc. Int. Symp. on Gaseous Dielectrics IX 22–25 May 2001, Ellicott City, MD, USA, Kluwer Academic/Plenum Press, New York, pp. 3–14.Google Scholar
  51. Huels, M. A., Boudaiffa, B., Cloutier, P., Hunting, D., and Sanche, L., 2003, Single, double, and multiple double strand breaks induced in DNA by 3–100 eV electrons, J. Am. Chem. Soc. 125, 4467–4477.CrossRefGoogle Scholar
  52. Huettmann, G. and Birngruber, R., 1999, On the possibility of high-precision photothermal microeffects and the measurement of fast thermal denaturation of proteins, IEEE J. Sel. Topics Quantum Electron. 5, 954–962.CrossRefGoogle Scholar
  53. Jay, D. G., and Sakurai, T., 1999, Chromophore-assisted laser inactivation (CALI) to elucidate cellular mechanisms of cancer, Biochim. Biophys. Acta 1424, M39–M48.Google Scholar
  54. Joglekar, A. P., Liu, H., Meyhöfer, E., Mourou, G., and L. Hunt, A., 2004, Optics at critical intensity. Applications to nanomorphing, Proc. Nat. Acad. Sci. 101, 5856–5861.CrossRefADSGoogle Scholar
  55. Juhasz, T., Loesel, R H., Kurtz, R. M., Horvath, C., Bille, J. R, and Mourou, G., 1999, Corneal refractive surgery with femtosecond lasers, IEEE J. Sel. Topics Quantum Electron. 5, 902–910.CrossRefGoogle Scholar
  56. Kaiser, A., Rethfeld, B., Vicanek, M., and Simon, G., 2000, Microscopic processes in dielectrics under irradiation by subpicosecond pulses, Phys. Rev. B 61, 11437–11450.CrossRefADSGoogle Scholar
  57. Kasparian, J., Solle, J., Richard, M., and Wolf, J.-P., 2004, Ray-tracing simulation of ionization-free filamentation, Appl. Phys. B. 79, 947–951.CrossRefADSGoogle Scholar
  58. Keldysh, L. V., 1960, Kinetic theory of impact ionization in semiconductors, Sov. Phys. JETP 11, 509–518.Google Scholar
  59. Keldysh, L. V., 1965, Ionization in the field of a strong electromagnetic wave, Sov. Phys. JETP 20, 1307–1314.MathSciNetGoogle Scholar
  60. Kennedy, P. K., 1995, A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media: Part I — Theory, IEEE J. Quantum Electron. QE-31, 2241–2249.CrossRefADSGoogle Scholar
  61. Kennedy, P. K., Hammer, D. X., and Rockwell, B. A., 1997, Laser-induced breakdown in aqueous media, Progr. Quantum Electron. 21, 155–248.CrossRefADSGoogle Scholar
  62. Kiselev, S. B., 1999, Kinetic boundary of metastable states in superheated and stretched liquids, Physica A 269, 252–268.CrossRefADSGoogle Scholar
  63. Knapp, R. T., Daily, J. W., and Hammitt, F. G., 1971, Cavitation, McGraw-Hill, New York, 1971, pp. 117–131.Google Scholar
  64. Koester, H. J., Baur, D., Uhl, R., and Hell, S. W., 1999, Ca2+ fluorescence imaging with pico-and femtosecond two-photon excitation: signal and photodamage, Biophys. J. 77, 2226–2236.Google Scholar
  65. Kolesik, M., Wright, E. M., and Moloney, J. V., 2004, Dynamic nonlinear X-waves for femtosecond pulse propagation in water, Phys. Rev. Lett. 92, 253901.CrossRefADSGoogle Scholar
  66. König, K., Riemann, I., Fischer, P., and Halbhuber, K., 1999, Intracellular nanosurgery with near infrared femtosecond laser pulses, Cell. Mol. Biol. 45, 195–201.Google Scholar
  67. König, K., Riemann, I., and Fritsche, W., 2001, Nanodissection of human chromosomes with near-infrared femtosecond laser pulses, Opt. Lett. 26, 819–821.ADSGoogle Scholar
  68. König, K., Krauss, O., and Riemann, I., 2002, Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared, Opt. Express 10, 171–176.ADSGoogle Scholar
  69. König, K., Riemann, I., Stracke, F., and Le Harzic, R., 2005, Nanoprocessing with nanojoule near-infrared femtosecond laser pulses, Med. Laser Appl. 20, 169–184.CrossRefGoogle Scholar
  70. Köstli, K. P., Frenz, M., Bebie, H., and Weber, H. P., 2001, Temporal Backward Projection of Optoacoustic Pressure Transients Using Fourier Transform Methods, Physics in Medicine and Biology 46, 1863–1872.CrossRefADSGoogle Scholar
  71. Kotaidis, V., and Plech, A., 2005, Cavitation dynamics on the nanoscale, Appl. Phys. Lett. 87, 213102.CrossRefADSGoogle Scholar
  72. Krasieva, T. B., Chapman, C. F., LaMorte, V. J., Venugopalan, V., Berns, M. W. and Tromberg, B. J., 1998, Cell permeabilization and molecular transport by laser microirradiation, Proc. SPIE 3260, 38–44.ADSGoogle Scholar
  73. Lenzner, M., Krüger, J., Sartania, S., Cheng, Z., Spielmann, Ch., Mourou, G., Kautek, W., and Krausz, F., 1998, Femtosecond optical breakdown in dielectrica, Phys. Rev. Lett. 80, 4076–4079.CrossRefADSGoogle Scholar
  74. Leszczynski, D., Pitsillides, C. M., Pastila, R. K., Anderson, R. R., and Lin, C. P., 2001, Laser-beam triggered microcavitation: a novel method for selective cell destruction, Radial. Res. 156, 399–407.CrossRefGoogle Scholar
  75. Liang, H., Wright, W. H., Cheng, S., He, W., and Berns, M. W., 1993, Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers), Exp. Cell Res. 204, 110–120.CrossRefGoogle Scholar
  76. Lin, C. P., Kelly, M. W., Sibayan, S. A. B., Latina, M. A., and Anderson, R. R., 1999, Selective cell killing by microparticle absorption of pulsed laser radiation, IEEE J. Set. Top. Quantum Electron. 5, 963–968.CrossRefGoogle Scholar
  77. Liu, W., Kosareva, O., Golubtsov, I. S., Iwasaki, A., Becker, A., Kandidov, V. P. and Chin, S. L., 2003, Femtosecond laser pulse fiolamentation versus optical breakdown in H2O, Appl. Phys. B 76, 215–229.CrossRefADSGoogle Scholar
  78. Mao, S. S., Quéré, F., Guizard, S., Mao, X. Russo, R. E., Petite, G., and Martin, P., 2004, Dynamics of femtosecond laser interactions with dielectrics, Appl. Phys. A 79, 1695–1709.CrossRefADSGoogle Scholar
  79. Masters, B. R., So, P. T. C., Buehler, C., Barry, N., Sutin, J. D., Mantulin, W. W., and Gratton, E., 2004, Mitigating thermal mechanical damage potential during two-photon dermal imaging, J. Biomed. Opt. 9, 1265–1270.CrossRefADSGoogle Scholar
  80. Maxwell, I., Chung, S., and Mazur, E., 2005, Nanoprocessing of subcellular targets using femtosecond laser pulses, Med. Laser Appl. 20, 193–200.CrossRefGoogle Scholar
  81. Meier-Ruge, W., Bielser, W., Remy, E., Hillenkamp, F., Nitsche, R., and Unsold, R., 1976, The laser in the Lowry technique for microdissection of freeze-dried tissue slices, Histochem J. 8, 387–401.CrossRefGoogle Scholar
  82. Meldrum, R. A., Botchway, S. W., Wharton, C. W., and Hirst, G. J., 2003, Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption, EMBO Rep. 12, 1144–1149.CrossRefGoogle Scholar
  83. Minoshima, K., Kowalevicz, A. M., Hartl, I., Ippen, E., and Fujimoto, J. G., 2001, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Opt. Lett. 26, 1516–1518.ADSGoogle Scholar
  84. Nahen, K., and Vogel, A., 1996, Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Part II: Transmission, scattering, and reflection, IEEE J. Selected Topics Quantum Electron. 2, 861–871.CrossRefGoogle Scholar
  85. Needham, D., and Nunn, R. S., 1990, Elastic deformation and failure of liquid bilayer membranes containing cholesterol, Biophys. J. 58, 997–1009.Google Scholar
  86. Neumann, J., and Brinkmann, R., 2005a, Boiling nucleation on melanosomes and microbeads transiently heated by nanosecond and microsecond laser pulses, J. Biomed. Opt. 10, 024001.CrossRefADSGoogle Scholar
  87. Neumann, J. and Brinkmann, R., 2005b, Nucleation and dynamics of bubbles forming around laser heated microabsorbers, Proc. SPIE 5863, 586307, 1–9.Google Scholar
  88. NIST, 2005, National Institute of Standards Chemistry Web Book, Thermophysical Properties of Fluid Systems, Scholar
  89. Niyaz, Y., and Sägmüller, B., 2005, Non-contact laser microdissection and pressure catapulting: Automation via object-oriented image processing, Med. Laser Appl. 20, 223–232.CrossRefGoogle Scholar
  90. Nikogosyan, D. N., Oraevsky, A. A., and Rupasov, V., 1983, Two-photon ionization and dissociation of liquid water by powerful laser UV radiation, Chem. Phys. 77, 131–143.CrossRefGoogle Scholar
  91. Noack, J., and Vogel, A., 1998a, Single shot spatially resolved characterization of laser-induced shock waves in water, Appl. Opt. 37, 4092–4099.ADSGoogle Scholar
  92. Noack, J., Hammer, D. X., Noojin, G. D., Rockwell, B. A., and Vogel, A., 1998b, Influence of pulse duration on mechanical effects after laser-induced breakdown in water, J. Appl. Phys. 83, 7488–7495.CrossRefADSGoogle Scholar
  93. Noack, J., 1998c, Optischer Durchbruch in Wasser mit Laserpulsen zwischen 100 ns und 100 fs, PhD Dissertation, University of Lübeck, Lübeck, 237 pp..Google Scholar
  94. Noack, J., and Vogel, A., 1999, Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density, IEEE J. Quantum Electron. 35, 1156–1167.CrossRefADSGoogle Scholar
  95. Nolte, S., Momma, C., Jacobs, H., Tünnermann, A., Chikov, B. N., Wellegehausen, B., and Welling, H., 1997, Ablation of metals by ultrashort laser pulses, J. Opt. Soc. Am. B 14, 2716–2722.ADSGoogle Scholar
  96. Oehring, H., Riemann, I., Fischer, P., Halbhuber, K. J., and König, K., 2000, Ultrastructure and reproduction behavior of single CHO-K1 cells exposed to near-infrared femtosecond laser pulses, Scanning 22, 263–270.CrossRefGoogle Scholar
  97. Oraevsky, A. A., Da Silva, L. B., Rubenchik, A. M., Feit, M. D., Glinsky, M. E., Perry, M. D. Mammini, B. M., Small IV, W., and Stuart, B., 1996, Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption, IEEE J. Sel. Top. Quantum Electron. 2, 801–809.CrossRefGoogle Scholar
  98. Paltauf, G., and Schmidt-Kloiber, H., 1996, Microcavity dynamics during laser-induced spallation of liquids and gels, Appl. Phys. A 62, 303–311.ADSGoogle Scholar
  99. Paltauf, G. and Schmidt-Kloiber, H., 1999, Photoacoustic cavitation in spherical and cylindrical absorbers, Appl. Phys. A 68, 525–531.CrossRefADSGoogle Scholar
  100. Paltauf, G. and Dyer, P., 2003, Photomechanical processes and effects in ablation, Chem Rev. 103, 487–518.CrossRefGoogle Scholar
  101. Paterson, L., Agate, B., Comrie, M., Ferguson, R., Lake, T. K., Morris, J. E., Carruthers, A. E., Brown, C. T. A., Sibbett, W., Bryant, P. E., Gunn-Moore, F., Riches, A. C. and Dholakia, K., 2005, Photoporation and cell transfection using a violet diode laser, Opt. Express 13, 595–600.CrossRefADSGoogle Scholar
  102. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., and Lin, C. P., 2003, Selective cell targeting with light absorbing microparticles and nanoparticles, Biophys. J. 84, 4023–4032.Google Scholar
  103. Ratkay-Traub, I., Ferincz, I. E., Juhasz, T., Kurtz, R. ML, and Krueger, R. R., 2003, First clinical results with the femtosecond neodymium-glass laser in refractive surgery, J. Refract. Surg. 19, 94–103.Google Scholar
  104. Rayner, D. M., Naumov, A., and Corkum, P. B., 2005, Ultrashort pulse non-linear optical absorption in transparent media, Opt. Expr. 13, 3208–3217.CrossRefADSGoogle Scholar
  105. Rethfeld, B., 2004, Unified model for the free-electron avalanche in laser-irradiated dielectrics, Phys. Rev. Lett. 92, 187401.CrossRefADSGoogle Scholar
  106. Rice, M. H., and Walsh, J. M., 1957, Equation of state of water to 250 kilobars, J. Chem. Phys. 26, 824–830.CrossRefADSGoogle Scholar
  107. Ridley, B. K., 1999, Quantum Processes in Semiconductors, Oxford University Press, Oxford, 436 pp..Google Scholar
  108. Riemann, I., Anhut, T., Stracke, F., Le Harzic, R., and König, K., 2005, Multiphoton nanosurgery in cells and tissues. Proc. SPIE 5695, 216–224.ADSGoogle Scholar
  109. Roegener, J., Brinkmann, R., and Lin, C. P., 2004, Pump-probe detection of laser-induced microbubble formation in retinal pigment epithelium cells, J. Biomed. Opt. 9, 367–371.CrossRefADSGoogle Scholar
  110. Sacchi, C. A., 1991, Laser-induced electric breakdown in water, J. Opt. Soc. Am. B. 8, 337–345.MathSciNetADSGoogle Scholar
  111. Sacconi, L., Tolic-Norrelyke, I M., Antolini, R., and F. S. Pavone, 2005, Combined intracellular three-dimensional imaging and selective nanosurgery by a nonlinear microscope, J. Biomed. Opt. 10, 014002.CrossRefADSGoogle Scholar
  112. Saul, A., and Wagner, W., 1989, A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25 000 MPa, J. Phys. Chem. Ref. Data 18, 1537–1564.ADSCrossRefGoogle Scholar
  113. Schaffer, C. B., Brodeur, A., García, J. F., and Mazur, E., 2001, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt. Lett. 26, 93–95.ADSGoogle Scholar
  114. Schütze, K., and Clement-Sengewald, A., 1994, Catch and move — cut or fuse, Nature 368, 667–668.CrossRefADSGoogle Scholar
  115. Schütze, K., and Lahr, G., 1998, Identification of expressed genes by laser-mediated manipulation of single cells, Nat Biotechnol. 16, 737–742.CrossRefGoogle Scholar
  116. Schütze, K., Pösl, H., and Lahr, G., 1998, Laser micromanipulation systems as universal tools in molecular biology and medicine, Cell. Mol. Biol. 44, 735–746.Google Scholar
  117. Shen, N., Datta, D., Schaffer, C. B., LeDuc, P., Ingber, D. E., and Mazur, E., 2005, Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanocissor, MCB Mech. Chem. Biosystems 2, 17–25.Google Scholar
  118. Shen, Y. R., 1984, The Principles of Nonlinear Optics, Wiley, New York, 563 pp.Google Scholar
  119. Sigrist, M. W., and Kneubühl, F. K., 1978, Laser-generated stress waves in liquids, J. Acoust. Soc. Am. 64, 1652–1663.CrossRefADSGoogle Scholar
  120. Sims, C. E., Meredith, G. D., Krasieva, T. B., Berns, M. W., Tromberg, B. J., and Allbritton, N. L., 1998, Laser-micropipet combination for single-cell analysis, Anal. Chem. 700, 4570–4577.CrossRefGoogle Scholar
  121. Skripov, V. P., Sinitsin, E. N., Pavlov, P. A., Ermakov, G. V., Muratov, G. N., Bulanov N. V., and Baidakov, V. G., 1988, Thermophysical properties of liquids in the metastable (superheated) state, Gordon and Breach, New York, 1988.Google Scholar
  122. Smith, N. I., Fujita, K., Kaneko, T., Katoh, K., Nakamura, O., Kawata, S., and S. Takamatsu, S. Generation of calcium waves in living cells by pulsed laser-induced photodisruption, Appl. Phys. Lett. 79, 1208–1210.Google Scholar
  123. Soughayer, J. S., Krasieva, T., Jacobson, S. C., Ramsey, J. M., Tromberg, B. C. and Albritton, N. L., 2000, Caracterization of cellular optoporation with distance, Anal. Chem. 72, 1342–1347.CrossRefGoogle Scholar
  124. Steinert, R. F., and Puliafito, C. A., 1986, The Nd:YAG Laser in Ophthalmology, W. B. Saunders, Philadelphia, 154 pp.Google Scholar
  125. Stolarski, J., Hardman, J., Bramlette, C. G., Noojin, G. D., Thomas, R. J., Rockwell, B. A., and Roach, W. P.,1995, Integrated light spectroscopy of laser-induced breakdown in aqueous media, Proc. SPIE 2391, 100–109.ADSGoogle Scholar
  126. Stuart, B. C., Feit, M. D., Hermann, S., Rubenchik, A. M., Shore, B. W., and Perry, M. D., 1996, Nanosecond to femtosecond laser-induced breakdown in dielectrics, Phys. Rev. B 53, 1749–1761.CrossRefADSGoogle Scholar
  127. Sun, Q., Jiang, H., Liu, Y., Wu, Z., Yang, H., and Gong, Q., 2005, Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica, Opt. Lett. 30, 320–322.CrossRefADSGoogle Scholar
  128. Supatto, W., Dèbarre, D., Moulia, B., Brouzés, E., Martin, J.-L., Farge, E., and Beaurepaire, E., 2005a, In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses, Proc. Nat. Acad. Sci. USA 102, 1047–1052.CrossRefADSGoogle Scholar
  129. Supatto, W., Dèbarre, D., Farge, E., and Beaurepaire, E., 2005b, Femtosecond pulse-induced microprocessing of live Drosophila embryos, Med. Laser Appl. 20, 207–216.CrossRefGoogle Scholar
  130. Tao, W., Wilkinson, J., Stanbridge, E., and Berns, M. W., 1987, Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane, Proc. Natl. Acad. Sci. USA 84, 4180–4184.CrossRefADSGoogle Scholar
  131. Thornber, K. K., 1981, Applications of scaling to problems in high-field electronic transport, J. Appl. Phys. 52, 279–290.CrossRefADSGoogle Scholar
  132. Tien, A. C., Backus, S., Kapteyn, H., Murnane, M., and Mourou, G., 1999, Short-pulse laser damage in transparent materials as a function of pulse duration, Phys. Rev. Lett. 82, 3883–3886.CrossRefADSGoogle Scholar
  133. Tirlapur, U. K., König, K., Peuckert, C., Krieg, R., and Halbhuber, K.-J., 2001, Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death, Exp. Cell Res. 263, 88–97.CrossRefGoogle Scholar
  134. Tirlapur, U. K., and König, K., 2002, Targeted transfection by femtosecond laser, Nature 418, 290–291.CrossRefADSGoogle Scholar
  135. Tschachotin, S., 1912, Die mikroskopische Strahlenstichmethode, eine Zelloperationsmethode, Biol. Zentralbl. 32, 623–630.Google Scholar
  136. Tsukakoshi, M., Kurata, S., Nomiya, Y., Ikawa, Y., and Kasuya, T., 1984, A novel method of DNA tranfection by laser-microbeam cell surgery, Appl. Phys. B 35, 135–140.CrossRefADSGoogle Scholar
  137. Venugopalan, V., Guerra, A., Nahen, K., and A. Vogel, 2002, The role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation, Phys. Rev. Lett. 88, 078103, 1–4.CrossRefADSGoogle Scholar
  138. Vogel, A., Hentschel, W., Holzfuss, J., and W. Lauterborn, 1986, Cavitation buble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium: YAG lasers, Ophthalmology 93, 1259–1269.Google Scholar
  139. Vogel, A., Nahen, K., and Theisen, D., 1996a, Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses-Part I: Optical breakdown at threshold and superthreshold irradiance, IEEE J. Selected Topics Quantum Electron. 2, 847–860.CrossRefGoogle Scholar
  140. Vogel, A., Busch, S., and Parlitz, U., 1996b, Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water, J. Acoust. Soc. Am. 100, 148–165.CrossRefADSGoogle Scholar
  141. Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Nojin, G. D., Rockwell, B. A., and Birngruber, R., 1999, Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271–280.CrossRefADSGoogle Scholar
  142. Vogel, A., and Noack, J., 2001, Numerical simulation of optical breakdown for cellular surgery at nanosecond to femtosecond time scales, Proc. SPIE 4260, 83–93.ADSGoogle Scholar
  143. Vogel, A., Noack, J., Hüttmann, G., and Paltauf, G., 2002, Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold, Proc. SPIE 4633, 23–37.ADSGoogle Scholar
  144. Vogel, A., and Venugopalan V, 2003, Mechanisms of pulsed laser ablation of biological tissues, Chem Rev. 103, 577–644.CrossRefGoogle Scholar
  145. Vogel, A., Noack, J., Hüttmann, G., and Paltauf, G., 2005, Mechanisms of femtosecond laser nanosurgery of cells and tissues, Appl. Phys. B 81, 1015–1046.CrossRefADSGoogle Scholar
  146. von der Linde, D., and Schüler, H., 1996, Breakdown threshold and plasma formation in femtosecond laser-solid interaction, J. Opt. Soc. Am. B 13, 216–222.ADSGoogle Scholar
  147. Watanabe, W., Arakawa, N., Matsunaga, S., Higashi, T., Fukui, K., Isobe, K. and Itoh, K., 2004, Femtosecond laser disruption of subcellular organelles in a living cell, Opt. Express 12, 4203–4213.CrossRefADSGoogle Scholar
  148. Watanabe, W., 2005, Femtosecond laser disruption of mitochondria in living cells, Med. Laser Appl. 30, 185–192.CrossRefGoogle Scholar
  149. Yanik, M. F., Cinar, H., Cinar, H. N., Chisholm, A. D., Jin, Y., and Ben-Yakar, A., 2004, Functional regeneration after laser axotomy, Nature 432, 822.CrossRefADSGoogle Scholar
  150. Yao, C. P., Rahmanzadeh, R., Endl, E., Zhang, Z., Gerdes, J., and Hüttmann, G., 2005, Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles, J. Biomed. Optics 10, 064012.CrossRefADSGoogle Scholar
  151. Zeira, E., Manevitch, A., Khatchatouriants, A., Pappo, O., Hyam, E., Darash-Yahana, M., Tavor, E., Honigman, A., Lewis, A., and Galun, E., 2003, Femtosecond infrared laser — an afflcient and safe in vivo gene delivery system for prolonged expression, Mol. Ther. 8, 342–350.CrossRefGoogle Scholar
  152. Zohdy, M. J., Tse, C., Ye, J. Y., and O’Donnell, M., 2005, Optical and acoustic detection of laser-generated microbubbles in single cells, IEEE Trans. Ultrason. Ferr. 52 (at press).Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Alfred Vogel
    • 1
  • Joachim Noack
    • 1
  • Gereon Hüttman
    • 1
  • Günther Paltauf
    • 2
  1. 1.Institut für Biomedizinische OptikUniversität zu LübeckLübeckGermany
  2. 2.Institut für PhysikKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations