Skip to main content

This section discusses the applications of digital sequences in acoustical system identification and characterization and describes Golay codes and binary maximum-length sequences (MLSs) in some detail. Legendre sequences and other coded signals are briefly described. Golay codes and MLS have been used for acoustic applications for years. Applications of Legendre sequences have also been reported. Digital sequences of other classes such as, e.g., binary Gold sequences and Kasami sequences have only recently found applications in acoustical system identification and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golay, M. J. E.: “Complementary series”, IRE Trans. Inform. Theory 7 (1961), pp. 82–87.

    Article  MathSciNet  Google Scholar 

  2. Foster, S.: “Impulse response measurement using Golay codes”, IEEE 1986, Conference on Acoustics, Speech, and Signal Processing 2 (IEEE New York, 1986), pp. 929–932.

    Google Scholar 

  3. Zhou, B., Green D. M. and Middlebrooks J. C.: “Characterization of external ear impulse responses using Golay codes”, J. Acoust. Soc. Am. 92 (1992), pp. 1169–1171.

    Article  ADS  Google Scholar 

  4. Zahorik, P.: “Limitations in using Golay codes for head-related transfer function measurement”, J. Acoust. Soc. Am. 107 (2000), pp. 1793–1796.

    Article  ADS  Google Scholar 

  5. Burgess, J.: “Chirp design for acoustical system identification”, J. Acoust. Soc. Am. 91 (1992), pp. 1525–1530.

    Article  ADS  Google Scholar 

  6. Schroeder, M. R.: Number Theory in Science and Communication, 2nd enl. ed. Springer-Verlag, Berlin (1991).

    Google Scholar 

  7. Colomb, S. W.: Shift Register Sequences, Aegean Park Press, Laguna Hills, CA (1982).

    Google Scholar 

  8. MacWilliams, F. J. and Sloane, N. J.: “Pseudo-random Sequences and Arrays”, Proc. IEEE, 64 (1976), pp. 1715–1729.

    Article  MathSciNet  Google Scholar 

  9. Schroeder, M. R.: “Integrated-impulse method measuring sound decay without using impulses”, J. Acoust. Soc. Am. 66 (1979), pp. 497–500.

    Article  ADS  Google Scholar 

  10. Burkard, R., Shi, Y. and Hecox K. E.: “A comparison of maximum length and Legendre sequences for the derivation of brain-stem auditory-evoked responses at rapid rates of stimulation”, J. Acoust. Soc. Am. 87 (1990), pp. 1656–1664.

    Article  ADS  Google Scholar 

  11. Lüke, H. D.: Korrelationssignale, Springer-Verlag, Berlin, New York (1992).

    Google Scholar 

  12. Borish, J. and Angell, J. B.: “An efficient algorithm for measuring the impulse response using pseudorandom noise”, J. Audio Eng. Soc. 31 (1983), pp. 478–488.

    Google Scholar 

  13. Shi, Y. and Hecox, K. E.: “Nonlinear system identification by m-pulse sequences: application to brainstem auditory evoked responses”, IEEE Trans. Biomed Eng., 38 (1988) pp. 834–845.

    Article  Google Scholar 

  14. Dunn, Ch. and Hawksford, M. O.: “Distortion immunity of MLS-derived impulse response measurements”, J. Audio Eng. Soc. 41 (1993), pp. 314–335.

    Google Scholar 

  15. Vanderkooy, J.: “Aspects of MLS measuring systems”, J. Audio Eng. Soc. 42 (1994), pp. 219–231.

    Google Scholar 

  16. Ream, N.: “Nonlinear identification using inverse repeat sequences”, J. Acoust. Soc. Am. 76 (1984), pp. 475–478.

    Article  Google Scholar 

  17. Xiang, N. and Genuit, K.: “Characteristic maximum-length sequences for the interleaved sampling method”, ACUSTICA 82 (1996), pp. 905–907.

    Google Scholar 

  18. Mommertz, E. and Bayer, G.: “PC-based high frequency range M-sequence measurements using an interleaved sampling method”, ACUSTICA, 81 (1995), pp. 80–83.

    Google Scholar 

  19. Simon, M. K., Omura, J. K., Scholtz, R. A. and Levitt, B. K.: Spread Spectrum Communications Handbook, McGraw-Hill (1994).

    Google Scholar 

  20. Wilson, D. K., Ziemann, A., Ostashev, V. E. and Voronovich, A. G.: “An overview of acoustic travel-time tomography in the atmosphere and its potential applications”, ACUSTICA 87 (2001), pp. 721–730.

    Google Scholar 

  21. Xiang, N., Daigle, J. N. and Kleiner, M.: “Simultaneous acoustic channel measurement via maximal-length-related sequences”, J. Acoust. Soc. Am. 117 (2005), pp. 1889–1894.

    Article  ADS  Google Scholar 

  22. Sarwate, D. V. and Pursley, M. B.: “Cross-correlation properties of pseudorandom and related sequences”, Proc. IEEE 68 (1980), pp. 593–619.

    Article  Google Scholar 

  23. Xiang, N. and Schroeder, M. R.: “Reciprocal maximum-length sequence pairs for acoustical dual source measurements”, J. Acoust. Soc. Am., 113 (2003), pp. 2754–2761.

    Article  ADS  Google Scholar 

  24. Cohn, M. and Lempel, A.: “On fast M-sequences transforms”, IEEE Trans. Inform. Theory 23 (1977), pp. 135–137.

    Article  MATH  MathSciNet  Google Scholar 

  25. Lempel, A.: “Hadamard and M-sequences transforms are permutationally similar”, Appl. Optics, 19 (1979), pp. 4064–4065.

    Article  ADS  Google Scholar 

  26. Sutter, E. E.: “The fast m-transform: a fast computation of crosscorrelations with binary m-sequences”, SIAM J. Comput. 20 (1991), pp. 686–694.

    Article  MATH  MathSciNet  Google Scholar 

  27. Birdsall, T. G. and Metzger Jr., K.: “Factor inverse matched filtering”, J. Acoust. Soc. Am. 79 (1986), pp. 91–99.

    Article  ADS  MathSciNet  Google Scholar 

  28. Daigle, J. N. and Xiang, N.: “A specialized fast cross-correlation for acoustical measurements using coded sequences”, J. Acoust. Soc. Am. 119 (2006), pp. 330–335.

    Article  ADS  Google Scholar 

  29. Rader, C. M.: “Discrete Fourier transforms when the number of data samples is prime”, Proc. IEEE 56 (1999), pp. 1107–1108.

    Article  Google Scholar 

  30. Rife, D. D. and Vanderkooy, J.: “Transfer-function measurement with maximum-length sequences”, J. Audio Eng. Soc. 37 (1989), pp. 419–444.

    Google Scholar 

  31. Schneider, T. and Jamieson D. G.: “A dual-channel MLS-based test system for hearing-aid characterization”, J. Audio Eng. Soc. 41 (1993), pp. 583–594.

    Google Scholar 

  32. Chu, W. T.: “Architectural acoustic measurements using periodic pseudo-random sequences and FFT”, J. Acoust. Soc. Am. 76 (1984), pp. 475–478.

    Article  ADS  Google Scholar 

  33. Chu, W. T.: “Room response measurements in a reverberation chamber containing a rotating diffuser”, J. Acoust. Soc. Am. 77 (1985), pp. 1252–1256.

    Article  ADS  Google Scholar 

  34. Garai, M. and Guidorzi P.: “European methodology for testing the airborne sound insulation characteristics of noise barriers in situ: experimental verification and comparison with laboratory data”, J. Acoust. Soc. Am. 108 (2000), pp. 1054–1067.

    Article  ADS  Google Scholar 

  35. Mommertz, E.: “Angle-dependent in-situ measurements of reflection coefficients using a subtraction technique”, Appl. Acoust. 46 (1995), pp. 251–263.

    Article  Google Scholar 

  36. Li, J. F. and Hodgson M.: “Use of pseudo-random sequences and a single microphone to measure surface impedance at oblique incidence”, J. Acoust. Soc. Am., 102 (1997), pp. 2200–2210.

    Article  ADS  Google Scholar 

  37. Schmitz, A. and Vorländer, M.: “Messung von Aussenohrstossantworten mit Maximalfolgen-Hadamard-Transformation und deren Anwendung bei Inversionversuchen”, ACUSTICA, 71 (1990), pp. 257–278.

    Google Scholar 

  38. Xiang, N. and Sabatier J. M.: “Laser-Doppler vibrometer-based acoustic landmine detection using the fast M-sequence transform”, IEEE Trans. Geosci. Remote Sens. 1 (2004), pp. 292–294.

    Article  Google Scholar 

  39. Ciric, D. G. and Milosevic M. A.: Transient noise influence in MLS measurement of room impulse response, ACUSTICA, 91 (2005), pp. 110–120.

    Google Scholar 

  40. Svensson, U. P. and Nielsen, J. L.: “Errors in MLS measurements caused by time variance in acoustic systems”, J. Audio Eng. Soc. 47 (1999), pp. 907–927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xiang, N. (2008). Digital Sequences. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_6

Download citation

Publish with us

Policies and ethics