Skip to main content

The FFT and Tone Identification

  • Chapter
  • 1453 Accesses

Practical signal processing is based on the fast Fourier transform (FFT), an efficient algorithm for computing a discrete Fourier transform (DFT). While the FFT has a speed advantage, it is limited to data record lengths that are powers of 2. The slower DFT can operate on data records of any length. Except for the restriction on an FFT, FFT and DFT are interchangeable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    MATH  Google Scholar 

  2. R. Bracewell, The Fast Fourier Transform and Its Applications, 2nd Ed., Rev. McGraw-Hill Book Company, New York, NY, 1986.

    Google Scholar 

  3. J. C. Burgess, “Practical considerations in signal processing”, in Encyclopedia of Acoustics (M. Crocker, ed.), vol. 3, ch. 101, pp. 1261–1279. Wiley, New York, 1997.

    Google Scholar 

  4. J. C. Burgess, “Chirp design for acoustical system identification”, J. Acoust. Soc. Am., vol. 91, pp. 1525–1530, 1992.

    Article  ADS  Google Scholar 

  5. J. Proakis and D. Manolakis, Introduction to Digital Signal Processing. Macmillan, New York, 1988.

    Google Scholar 

  6. G. Jenkins and D. Watts, Spectral Analysis and Its Applications. Holden-Day, San Francisco, 1969.

    Google Scholar 

  7. F. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform”, Proc. IEEE, vol. 66, pp. 51–83, 1978.

    Article  ADS  Google Scholar 

  8. C. Dolph, “A current distribution for broadside arrays which optimizes the relationship between beam width and side-lobe level”, Proc. I.R.E, vol. 34, pp. 335–348, June 1946.

    Google Scholar 

  9. H. Helms, “Nonrecursive digital filters: design methods for achieving specifications on frequency response”, IEEE Trans. Audio Electroacoust., vol. AU-16, pp. 336–342, 1968.

    Article  Google Scholar 

  10. R. A. Roberts and C. T. Mullis, Digital Signal Processing. Addison-Wesley, Reading, MA, 1987.

    MATH  Google Scholar 

  11. L. Rabiner, B. Gold, and C. McGonegal, “An approach to the approximation problem for nonrecursive digital filters”, IEEE Trans. Audio Electroacoust., vol. AU-18, pp. 83–106, 1970.

    Article  Google Scholar 

  12. J. C. Burgess, “Optimum approximations to Dolph–Chebyshev data windows”, IEEE Trans. Signal Process, vol. 40, no. 10, pp. 2592–2594, 1992.

    Article  ADS  Google Scholar 

  13. A. Nuttall, “Some windows with very good sidelobe behavior”, IEEE Trans. Acoust., Speech Signal Process, vol. ASSP-29, pp. 84–91, 1981.

    Article  ADS  Google Scholar 

  14. J. C. Burgess, “Accurate analysis of multitone signals using a DFT”, J. Acoust. Soc. Am., vol. 116, pp. 369–395, 2004.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burgess, J.C. (2008). The FFT and Tone Identification. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_4

Download citation

Publish with us

Policies and ethics