Skip to main content

Beamforming for Speech and Audio Signals

  • Chapter

If microphone arrays instead of a single microphone are employed for sampling acoustic wavefields, signal processing of the sensor data can exploit the spatial diversity to better detect or extract desired source signals and to suppress unwanted interference. Beamforming represents a class of such multichannel signal processing algorithms and suggests a spatial filtering which points a beam of increased sensitivity to desired source locations while suppressing signals originating from all other locations. While beamforming techniques are also extensively used in other areas, e.g. in underwater acoustics, ultrasound diagnostics, and radio communications [1–3], the treatment is concentrating here on wideband acoustic signals in the audio frequency range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.D. Van Veen and K.M. Buckley. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Magazine, 5(2):4–24, April 1988.

    Article  ADS  Google Scholar 

  2. D.H. Johnson and D.E. Dudgeon. Array Signal Processing: Concepts and Techniques. Prentice Hall, Englewood Cliffs, NJ, 1993.

    MATH  Google Scholar 

  3. H.L. van Trees. Optimum Array Processing. Wiley, New York, NY, 2002.

    Book  Google Scholar 

  4. J.L. Flanagan, J.D. Johnston, R. Zahn, and G.W. Elko. Computer-steered microphone arrays for sound transduction in large rooms. Journal of Acoustical Society of America, 78(5):1508–1518, November 1985.

    Article  ADS  Google Scholar 

  5. G. Elko. Microphone array systems for hands-free telecommunication. Speech Communication, 20:229–240, 1996.

    Article  Google Scholar 

  6. T. Laakso, V. Välimäki, M. Karjalainen, and U.K. Laine. Splitting the unit delay. IEEE Signal Processing Magazine, 13(1):34–60, January 1996.

    Article  ADS  Google Scholar 

  7. C.L. Dolph. A current distribution for broadside arrays which optimizes the relationship between beamwidth and sidelobe level. Proceedings of the IRE, 34:335–348, June 1946.

    Article  Google Scholar 

  8. F.J. Harris. Use of windows for harmonic analysis. Proceedings of the IEEE, 66(1):51–83, January 1978.

    Article  ADS  Google Scholar 

  9. M. Goodwin. Constant beamwidth beamforming. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, I-169 to I-172, Minneapolis, MN. IEEE, April 1993.

    Google Scholar 

  10. T. Chou. Frequency-independent beamformer with low response error. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2995–2998, Detroit, MI. IEEE, May 1995.

    Google Scholar 

  11. D.B. Ward, R.A. Kennedy, and R.C. Williamson. Constant directivity beamforming. In M.S. Brandstein and D. Ward, editors, Microphone Arrays: Signal Processing Techniques and Applications, chapter 13, pp. 3–18. Springer, Berlin, May 2001.

    Google Scholar 

  12. J.L. Flanagan, D.A. Berkley, G.W. Elko, J.E. West, and M.M. Sondhi. Autodirective microphone systems. Acustica, 73:58–71, 1991.

    Google Scholar 

  13. H. Silverman, W.R. Patterson, J.L. Flanagan, and D. Rabinkin. A digital processing system for source location and sound capture by large microphone arrays. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 251–254, Munich, Germany. IEEE, April 1997.

    Google Scholar 

  14. G. Elko. Superdirectional microphone arrays. In S. Gay and J. Benesty, editors, Acoustic Signal Processing for Telecommunication, pp. 181–238. Kluwer, Dordrecht, 2000.

    Google Scholar 

  15. J. Bitzer and K.U. Simmer. Superdirective microphone arrays. In M.S. Brandstein and D. Ward, editors, Microphone Arrays: Signal Processing Techniques and Applications, chapter 13, pp. 19–38. Springer, Berlin, May 2001.

    Google Scholar 

  16. S. Doclo and M. Moonen. GSVD-based optimal filtering for multi-microphone speech enhancement. In M.S. Brandstein and D. Ward, editors, Microphone Arrays: Signal Processing Techniques and Applications, chapter 6, pp. 111–132. Springer, Berlin, May 2001.

    Google Scholar 

  17. W. Herbordt and W. Kellermann. Adaptive beamforming for audio signal acquisition. In J. Benesty and Y. Huang, editors, Adaptive Signal Processing: Application to Real-World Problems, chapter 6, pp. 155–194. Springer, Berlin, January 2003.

    Google Scholar 

  18. O.L. Frost. An algorithm for linearly constrained adaptive array processing. Proceedings of the IEEE, 60(8):926–935, August 1972.

    Google Scholar 

  19. L.J. Griffiths and C.W. Jim. An alternative approach to linear constrained adaptive beamforming. IEEE Transactions on Antennas and Propagation, 30(1):27–34, January 1982.

    Google Scholar 

  20. O. Hoshuyama and A. Sugiyama. A robust adaptive beamformer with a blocking matrix using constrained adaptive filters. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 925–928. IEEE, 1996.

    Google Scholar 

  21. J.-F. Cardoso and A. Souloumiac. Blind beamforming for non-gaussian signals. IEE Proceedings-F, 140(6):362–370, December 1993.

    Google Scholar 

  22. L. Parra and C. Fancourt. An adaptive beamforming perspective on convolutive blind source separation. In G. Davis, editor, Noise Reduction in Speech Applications. CRC Press LLC, 2002.

    Google Scholar 

  23. J.-F. Cardoso. Blind signal separation: Statistical principles. Proceedings of the IEEE, 86(10):2009–2025, October 1998.

    Google Scholar 

  24. L. Parra and C. Spence. Separation of non-stationary natural signals. In S. Roberts and R. Everson, editors, Independent Components Analysis, Principles and Practice, pp. 135–157. Cambridge University Press, 2001.

    Google Scholar 

  25. H. Buchner, R. Aichner, and W. Kellermann. Blind source separation for convolutive mixtures: A unified treatment. In Y. Huang and J. Benesty, editors, Audio Signal Processing for Next-Generation Multimedia Communication Systems, chapter 10, pp. 255–296. Kluwer, Dordrecht, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kellermann, W. (2008). Beamforming for Speech and Audio Signals. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_35

Download citation

Publish with us

Policies and ethics