Skip to main content

Stochastic Optimization in Telecommunications

  • Chapter
Handbook of Optimization in Telecommunications

Abstract

We survey different optimization problems under uncertainty which arise in telecommunications. Three levels of decisions are distinguished: design of structural elements of telecommunication networks, top level design of telecommunication networks, and design of optimal policies of telecommunication enterprise. Examples of typical problems from each level show that the stochastic programming paradigm is a powerful approach for solving telecommunication design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R.K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, algorithms, and applications. Prentice-Hall, New Jersey, 1993.

    Google Scholar 

  • R. Andrade, A. Lisser, N. Maculan, and G. Plateau. Planning network design under uncertainty with fixed charge, 2002. Submitted for publication.

    Google Scholar 

  • J.A. Audestad, A. Gaivoronski, and A. Werner. Modeling market uncertainty and competition in telecommunication environment: Network providers and virtual operators. Telektronikk, 97(4):46–64, 2002.

    Google Scholar 

  • D.P. Bertsekas. Network optimization: Continuous and discrete models. Athena Scientific, Fitchburg, MA, 1998.

    MATH  Google Scholar 

  • J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer, New York, 1997.

    MATH  Google Scholar 

  • M. Bonatti and A. Gaivoronski. Guaranteed approximation of Markov chains with applications to multiplexer engineering in ATM networks. Annals of Operations Research, 49:111–136, 1994a.

    Article  MATH  Google Scholar 

  • M. Bonatti and A. A. Gaivoronski. Worst case analysis of ATM sources with application to access engineering of broadband multiservice networks. In J. Labetoulle and J. W. Roberts, editors, Proceedings of 14th International Teletraffic Congress, pages 559–570. Elsevier, 1994b.

    Google Scholar 

  • M.A. Bonatti, A. Gaivoronski, P. Lemonche, and P. Polese. Summary of some traffic engineering studies carried out within RACE project R1044. European Transactions on Telecommunications, 5:207–218, 1994.

    Google Scholar 

  • M. De Prycker. Asynchronous transfer mode, Solution for broadband ISDN. Prentice Hall, New Jersey, 1995.

    Google Scholar 

  • M. Dempster and E. Medova. Evolving system architectures for multimedia network design. Annals of Operations Research, 104:163–180, 2001.

    Article  MathSciNet  Google Scholar 

  • J. Dupačkwá. Minimax approach to stochastic linear programming and the moment problem. Recent results. ZAMM, 58:T466–T467, 1978.

    Google Scholar 

  • Y. Ermoliev, A. Gaivoronski, and C. Nedeva. Stochastic programming problems with incomplete information on distribution functions. SIAM J.Control and Optimization, 23(5):697–716, 1986.

    Article  MathSciNet  Google Scholar 

  • Y. Ermoliev and R. J.-B. Wets, editors. Numerical techniques for stochastic optimization. Springer Verlag, Berlin, 1988.

    MATH  Google Scholar 

  • F. Fantauzzi, A. A. Gaivoronski, and E. Messina. Decomposition methods for network optimization problems in the presence of uncertainty. In P.M. Pardalos, D. Hearn, and W. Hager, editors, Network optimization, volume 450 of Lecture Notes in Economics and Mathematical Systems, pages 234–248. Springer, Berlin, 1997.

    Google Scholar 

  • B. Fortz, M. Labbé, and F. Maffioli. Solving the two-connected network with bounded meshes problem. Operations Research, 48(6):866–877, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Gaivoronski. Linearization methods for optimization of functionals which depend on probability measures. Mathematical Programming Study, 28:157–181, 1986.

    MATH  MathSciNet  Google Scholar 

  • A. A. Gaivoronski. Implementation of stochastic quasigradient methods. In Y. Ermoliev and R. J.-B. Wets, editors, Numerical techniques for stochastic Optimization, pages 313–352. Springer Verlag, Berlin, 1988.

    Google Scholar 

  • B. Gavish and I. Neuman. Routing in a network with unreliable components. IEEE Transactions on Telecommunications, 40(7): 1248–1258, 1992.

    Article  Google Scholar 

  • P. Kail and S. Wallace. Stochastic programming. John Wiley and Sons, New York, 1994.

    Google Scholar 

  • S. Karlin and W. J. Studden. Tchebycheff systems: With applications in analysis and statistics. Interscience Publishers, New York, 1966.

    MATH  Google Scholar 

  • J. H. B. Kemperman. The general moment problem: A geometric approach. Annals of Mathematical Statistics, 39:93–122, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  • W. A. Massey. The fundamental role of teletraffic in the evolution of telecommunications networks. In J. Labetoulle and J. W. Roberts, editors, Proceedings of the 14th International Teletraffic Congress, volume 1A, pages 145–154, Amsterdam, 1994. Elsevier.

    Google Scholar 

  • J. Medhi. Stochastic models in queueing theory. Academic Press, Boston, 1991.

    MATH  Google Scholar 

  • D. Mitra, K. G. Ramakrishnan, and Q. Wang. Combined economic modeling and traffic engineering: Joint optimization of pricing and routing in multi-service networks. In Proceedings of 17th International Teletraffic Congress, Salvador, Brazil, Amsterdam, 2001. Elsevier.

    Google Scholar 

  • S. Sen, R. D. Doverspike, and S. Cosares. Network planning with random demand. Journal of Telecommunications Systems, 3:11–30, 1994.

    Article  Google Scholar 

  • A. Tomasgard, J. Audestad, S. Dye, L. Stougie, M. V. der Vlerk, and S. Wallace. Modelling aspects of distributed processing in telecommunications networks. Annals of Operations Research, 82:161–184, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  • L. Trigeorgis. Real options: Managerial flexibility and strategy in resource allocation. MIT Press, Cambridge, MA, 1996.

    Google Scholar 

  • W. Whitt. On approximation for queues, I: Extremal distributions. AT&T Bell Laboratories Technical Journal, 63(1):115–138, 1984.

    MATH  MathSciNet  Google Scholar 

  • J. Yen, A. Schaefer, and C. Smith. A stochastic SONET network design problem. In 9th International Conference on Stochastic Programming, Berlin, August 25–31 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gaivoronski, A.A. (2006). Stochastic Optimization in Telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds) Handbook of Optimization in Telecommunications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30165-5_27

Download citation

Publish with us

Policies and ethics