Skip to main content

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 140))

Abstract

The intention of the article is to show the existence of inertial manifolds for random dynamical systems generated by infinite dimensional random evolution equations. To find these manifolds we formulate a random graph transform. This transform allows us to introduce a random dynamical system on graphs. A random fixed point of this system defines the graph of the inertial manifold. In contrast to other publications dealing with these objects we also suppose that the linear part of such an evolution equation contains random operators. To deal with these objects we apply th e multiplicative ergodic theorem. The key assumption for the existence of an inertial manifold is an ω-wise gap condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. AMANN. Linear and Quasilinear Parabolic Problems, Vol. I of Monographs in Mathematics. Birkhäuser, 1995.

    Google Scholar 

  2. L. ARNOLD. Random Dynamical Systems. Springer, New York, 1998.

    Book  Google Scholar 

  3. A. BENSOUSSAN AND F. FLANDOLI. Stochastic inertial manifold. Stoch. Stoch. Rep., 53(1–2): 13–39, 1995.

    Article  MathSciNet  Google Scholar 

  4. T. CARABALLO, J. DUAN, K. LU, AND B. SCHMALFUSS. Local manifolds for stochastic partial differential equations. In preparation.

    Google Scholar 

  5. T. CARABALLO, P. KLOEDEN, AND B. SCHMALFUSS. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optimization, 2003. To Appear.

    Google Scholar 

  6. C. CASTAING AND M. VALADIER. Convex Analysis and Measurable Multifunctions. LNM 580. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

    Book  Google Scholar 

  7. S.N. CHOW AND K. LU. Invariant manifolds for flows in Banach spaces. J. Differenial. Equations., 74: 285–317, 1988.

    Article  MathSciNet  Google Scholar 

  8. I.D. CHUESHOV. On determining functionals for the stochastic Navier Stokes equations. Stoch. Stoch. Rep., 68: 45–64, 1999.

    Article  MathSciNet  Google Scholar 

  9. I.D. CHUESHOV AND T.V. GIRYA. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems. Sb. Math., 186(1): 29–45, 1995.

    Article  MathSciNet  Google Scholar 

  10. I.D. CHUESHOV AND T.V. GIRYA. Inertial manifolds for stochastic dissipative dynamical systems. Dokl. Acad. Sci. Ukraine, 7: 42–45, 1994.

    MathSciNet  Google Scholar 

  11. I.D. CHUESHOV AND T.V. GIRYA. Inertial manifolds and forms for semilinear parabolic equations subjected to additive white noise. Lett. Math. Phys., 34: 69–76, 1995.

    Article  MathSciNet  Google Scholar 

  12. I.D. CHUESHOV AND M. SCHEUTZOW. Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations. J. Dynam. Differential Equations, 13: 355–380, 2001.

    Article  MathSciNet  Google Scholar 

  13. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO, AND R. TEMAM. Integral manifolds and inertial manifolds for dissipative partial differential equations. Springer-Verlag, New York, 1989.

    Book  Google Scholar 

  14. G. DA PRATO AND A. DEBUSSCHE. Construction of stochastic inertial manifolds using backward integration. Stoch. Stoch. Rep., 59(3–4): 305–324, 1996.

    Article  MathSciNet  Google Scholar 

  15. J. DUAN, K. LU, AND B. SCHMALFUSS. Invariant manifolds for stochastic partial differential equations. Ann. Prob., 31: 2109–2135, 2003.

    Article  MathSciNet  Google Scholar 

  16. J. DUAN, K. LU, AND B. SCHMALFUSS. Smooth stable and unstable manifolds for stochastic partial differential equations. J. Dynamics and Differential Equations, 2004. To appear.

    Google Scholar 

  17. C. FOIAS, G.R. SELL, AND R. TEMAM. Inertial manifolds for nonlinear evolutionary equations. J. Differential Equations, 73: 309–353, 1988.

    Article  MathSciNet  Google Scholar 

  18. N. KOKSCH AND S. SIEGMUND. Pullback attracting inertial manifolds for nonautonomous dynamical systems. J. Dynam. Differential Equations, 2002. To appear.

    Google Scholar 

  19. B. MASLOWSKI AND B. SCHMALFUSS. Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion. Stochastic Anal. Appl., 2004. To appear.

    Google Scholar 

  20. B. SCHMALFUSS. The random attractor of the stochastic Lorenz system. Z. Angew. Math. Phys., 48: 951–975, 1997.

    Article  MathSciNet  Google Scholar 

  21. B. SCHMALFUSS. A random fixed point theorem and the random graph transformation. J. Math. Anal. Appl., 225(1): 91–113, 1998.

    Article  MathSciNet  Google Scholar 

  22. B. SCHMALFUSS. Random and nonautonomous dynamical systems perturbed by impulses. Discrete Contin. Dyn. Sys. Ser. A, 9(3): 727-744, 2003.

    Google Scholar 

  23. R. TEMAM. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, Berlin-Heidelberg-New York, second edition, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Schmalfuss, B. (2005). Inertial Manifolds for Random Differential Equations. In: Waymire, E.C., Duan, J. (eds) Probability and Partial Differential Equations in Modern Applied Mathematics. The IMA Volumes in Mathematics and its Applications, vol 140. Springer, New York, NY. https://doi.org/10.1007/978-0-387-29371-4_14

Download citation

Publish with us

Policies and ethics