Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 131))

Abstract

Careful staging and treatment planning using a multidisciplinary approach is required to determine optimal treatment of patients with Hodgkin’s disease (HD) and aggressive subtypes of non-Hodgkin’s lymphoma (NHL). The advent of more sensitive imaging modalities have increased staging and restaging accuracy and provided more effective means to evaluate response to therapy. In the post-therapy setting, the unnecessary use of aggressive chemotherapy and external beam radiation could lead to development of secondary malignancies and various organ toxicity. Poor prognosis associated with some second malignancies warrants better and less harmful screening strategies (1). Hence, the early identification of high-risk and low-risk patients can effectively select subpopulations that would benefit from more intensive chemotherapy protocols and can avoid unwarranted further therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Yasuda S, Ide M, Fujii H, et al. Application of positron emission tomography imaging to cancer screening. Br J Cancer. 2000;83:1607–1611.

    PubMed  CAS  Google Scholar 

  2. Marshall WH Jr, Breiman RS, Harell GS, Glatstein E, Kaplan HS. Computed tomography of abdominal para-aortic lymph node disease:preliminary observation with a 6 second scanner. AJR Am J Roentgenol, 1977;128:759–764.

    PubMed  Google Scholar 

  3. Karimjee S, Brada M, Husband J, McCready VR. A comparison of gallium-67 single photon emission computed tomography and computed tomography in mediastinal Hodgkin’s disease. Eur J Cancer, 1992;28A:1856–1857.

    PubMed  CAS  Google Scholar 

  4. Castellino RA, Hopper RT, Blank N et al. Computed tomography, lymphography and staging laparotomy:correlations in initial staging of Hodgkin’s disease. Am J Roentgenol, 1984;143:37–41.

    CAS  Google Scholar 

  5. Janicek M, Kaplan W, Neuberg D, et al: Early restaging gallium scans predict outcome in poor-prognosis patients with aggressive non-Hodgkin’s lymphoma treated with high-dose CHOP chemotherapy. J Clin Oncol, 1997;15:1631–1637.

    PubMed  CAS  Google Scholar 

  6. Front D, Bar-Shalom R, Mor M, et al. Hodgkin’s disease: prediction of outcome with 67Ga scintigraphy after one cycle of chemotherapy. Radiology, 1999;210:487–491.

    PubMed  CAS  Google Scholar 

  7. Bendini M, Zuiani C, Bazzocchi M, Dalpiaz G, Zaja F, Englaro E. Magnetic resonance imaging and 67Ga scan versus computed tomography in the staging and in the monitoring of mediastinal malignant lymphoma: a prospective pilot study. MAGMA, 1996;4:213–224.

    PubMed  CAS  Google Scholar 

  8. Nyman R, Forsgren G, Glimelius B. Long-term follow-up of residual mediastinal masses in treated Hodgkin’s disease using MR imaging. Acta Radiol, 1996: 37:323–326.

    PubMed  CAS  Google Scholar 

  9. Zinzani PL. Lymphoma: Diagnosis, staging, natural history, and treatment strategies. Semin Oncol. 2005;32:4–10.

    Google Scholar 

  10. Hagemeister FB, Purugganan R, Podoloff DA, et al: The gallium scan predicts relapse in patients with Hodgkin’s disease treated with combined modality therapy. Ann Oncol, 1994;5:59–63.

    PubMed  Google Scholar 

  11. Salloum E, Brandt DS, Caride VJ, et al: Gallium scans in the management of patients with Hodgkin’s disease: a study of 101 patients. J Clin Oncol, 1997;15:518–527.

    PubMed  CAS  Google Scholar 

  12. Front D, Bar-Shalom R, Mor M, et al. Aggressive non-Hodgkin lymphoma: early prediction of outcome with 67Ga scintigraphy. Radiology, 2000;214:253–257.

    PubMed  CAS  Google Scholar 

  13. Frohlich DE, Chen JL, Neuberg D, Kehoe KM, Van den Abbeele AD. When is hilar uptake of 67Ga-citrate indicative of residual disease after CHOP chemotherapy? J Nucl Med, 2000,41:269–274.

    PubMed  CAS  Google Scholar 

  14. Waxman AD, Eller D, Ashook G, et al. Comparison of gallium-67-citrate and thallium-201 scintigraphy in peripheral and intrathoracic lymphoma. J Nucl Med, 1996;37:46–50.

    PubMed  CAS  Google Scholar 

  15. Ohta M; Isobe K; Kuyama J et al. Clinical role of Tc-99m-MIBI scintigraphy in non-Hodgkin’s lymphoma. Oncol Rep 2001, 8:841–845

    PubMed  CAS  Google Scholar 

  16. Som P, Atkins HL, Bandophadhyah D. A fluorinated glucose analog, 2-fluoro-2deoxy-D-glucose (F-18). J Nucl Med, 1980;21:670–675.

    PubMed  CAS  Google Scholar 

  17. Rodriguez M, Rehn S, Ahlstrom H, Sundstrom C, Glimelius B. Predicting malignancy grade with PET in non-Hodgkin’s lymphoma. J Nucl Med, 1995, 36:1790–1796.

    PubMed  CAS  Google Scholar 

  18. Jerusalem G, Warland V, Najjar F, Paulus P, Fassotte MF, Fillet G, Rigo P. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun, 1999;20:13–20.

    PubMed  CAS  Google Scholar 

  19. Hoh CK, Glaspy J, Rosen P, et al. Whole-body FDG-PET imaging for staging of Hodgkin’s disease and lymphoma. J Nucl Med, 1997, 38:343–348.

    PubMed  CAS  Google Scholar 

  20. Thill R, Neuerburg J, Fabry U, et al. Comparison of findings with 18-FDG PET and CT in pretherapeutic staging of malignant lymphoma. Nuklearmedizin, 1997;36:234–239.

    PubMed  CAS  Google Scholar 

  21. Mainolfi C, Maurea S, Varrella P, Alaia C, Imparato C, Alfano B, Aate G, Bazzicalupo L. Positron emission tomography with fluorine-18-deoxyglucose in the staging and control of patients with lymphoma. Comparison with clinico-radiologic assessment. Radiol Med, 1998;95:98–104.

    CAS  Google Scholar 

  22. Cremerius U, Fabry U, Neuerburg J, Zimny M, Osieka R, Buell. Positron emission tomography with 18F-FDG to detect residual disease after therapy for malignant lymphoma. Nucl Med Commun, 1998;19:1055–1063.

    PubMed  CAS  Google Scholar 

  23. Stumpe KD, Urbinelli M, Steinert HC, Glanzmann C, Buck A, von Schulthess GK. Whole-body positron emission tomography using fluorodeoxyglucose for staging of lymphoma:effectiveness and comparison with computed tomography. Eur J Nucl Med, 1998;25:721–728.

    PubMed  CAS  Google Scholar 

  24. Moog F, Bangerter M, Diederichs CG, Guhlmann A, Merkle E, Frickhofen N, Reske SN. Extranodal malignant lymphoma: detection with FDG PET versus CT. Radiology, 1998;206:475–481

    PubMed  CAS  Google Scholar 

  25. Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, Fillet G. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for post-treatment evaluation in Hodgkin’s disease and non-Hodgkin’s lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood, 1999;94:429–433.

    PubMed  CAS  Google Scholar 

  26. Bangerter M, Kotzerke J, Griesshammer M, Eisner K, Reske SN, Bergmann L. Positron emission tomography with 18-fluorodeoxyglucose in the staging and follow-up of lymphoma in the chest. Acta Oncol, 1999;38:799–804.

    PubMed  CAS  Google Scholar 

  27. Wiedmann E, Baican B, Hertel A, et al. Positron emission tomography (PET) for staging and evaluation of response to treatment in patients with Hodgkin’s disease. Leuk Lymphoma, 1999, 34:545–551.

    PubMed  CAS  Google Scholar 

  28. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology, 2002;225:575–581.

    PubMed  Google Scholar 

  29. Kostakoglu L, Leonard JP, Kuji I, et al: Comparison of fluorine-18 fluorodeoxyglucose positron emission tomography and Ga-67 scintigraphy in evaluation of lymphoma. Cancer 2002;94:879–888.

    PubMed  Google Scholar 

  30. Bragg DG. Radiology of the lymphomas. Curr Probl Diagn Radiol. 1987;16:177–206.

    PubMed  CAS  Google Scholar 

  31. Golding SJ..Use of imaging in the management of lymphoma. Br J Hosp Med. 1989;41:152–154.

    PubMed  CAS  Google Scholar 

  32. Musumeci R, Tesoro-Tess JD. New imaging techniques in staging lymphomas. Curr Opin Oncol. 1994 Sep;6:464–469.

    PubMed  CAS  Google Scholar 

  33. Halliday T, Baxter G. Lymphoma: pictorial review. Eur Radiol. 2003;13(6):1224–1234.

    PubMed  CAS  Google Scholar 

  34. Vinnicombe SJ, Reznek RH. Computerised tomography in the staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003 Jun;30Suppl 1:S42–55.

    PubMed  Google Scholar 

  35. Hopper KD, Diehl LF, Lesar M, Barnes M, Granger E, Baumann J. Hodgkin disease: clinical utility of CT in initial staging and treatment. Radiology. 1988;169:17–22

    PubMed  CAS  Google Scholar 

  36. Castellino RA. The non-Hodgkin lymphomas: practical concepts for the diagnostic radiologist. Radiology 1991; 178:315–321.

    PubMed  CAS  Google Scholar 

  37. Chim CS, Shek T, Ooi GC, Liang R. Unusual features of Hodgkin’s disease. J Clin Oncol 2000;18:1153–1155

    PubMed  CAS  Google Scholar 

  38. Fishman EK, Kuhlman JE, Jones RJ. CT of lymphoma: spectrum of disease. Radiographics. 1991;11:647–669.

    PubMed  CAS  Google Scholar 

  39. Erdag N, Rajeev MB, Alberico RA, Yousuf N, Patel MR. Primary lymphoma of the central nervous system: typical and atypical CT and MR imaging appearances. Am J Roentgenol 2001;176:1319–1326.

    CAS  Google Scholar 

  40. Gutman J, Kendall B. Unusual appearances of primary central nervous system non-Hodgkin’s lymphoma. Clin Radiol 1994;49:292–702.

    Google Scholar 

  41. Guermazi A, Brice P, de Kerviler EE, Ferme C, Hannequin C, Meignin V. Extranodal Hodgkin’s disease: spectrum of disease. Radiographics 2001; 21:161–179.

    PubMed  CAS  Google Scholar 

  42. Takashima S, Ikezoe J, Morimoto S, Arisawa J, Hamada S, Ikeda H et al. (1988) Primary thyroid lymphoma: evaluation with CT. Radiology 168:756–768

    Google Scholar 

  43. Kondo M, Hashimoto T, Shinga H et al. (1984) Computed tomography of sinonasal non-Hodgkin’s lymphoma. J Comput Assist Tomogr 8:216–219

    PubMed  CAS  Google Scholar 

  44. Diehl LF, Hopper KD, Giguere J, Granger E, Lesar M. The pattern of intrathoracic Hodgkin’s disease assessed by computed tomography. J Clin Oncol. 1991 Mar;9(3):438–43.

    PubMed  CAS  Google Scholar 

  45. Ooi GC, Chim CS, Lie AKW, Tsang KWT (1999) Computed tomography features of primary pulmonary non-Hodgkin’s lymphoma. Clin Radiol 54:438–443

    PubMed  CAS  Google Scholar 

  46. Aquino SL, Chen MYM, Kuo WT, Chiles C (1999) The CT appearance of pleural and extrapleural disease in lymphoma. Clin Radiol 54:647–650

    PubMed  CAS  Google Scholar 

  47. Jung G, Heindel W, Bergwelt-Baildon M, Bredenfeld H, Gossmann A, Zahringer M, Tesch H (2000). Abdominal lymphoma staging: Is MR imaging with T2-weighted turbo-spin-echo sequence a diagnostic alternative to contrast-enhanced spiral CT? J Comput Assist Tomogr 24:783–787

    PubMed  CAS  Google Scholar 

  48. Gazelle GS, Lee MJ, Hahn PF, Goldberg MA, Rafaat N, Mueller PR (1994) US, CT and MRI of primary and secondary liver lymphoma. J Assist Comput Tomogr 18:412–415

    CAS  Google Scholar 

  49. Avlonitis VS, Linos D. Primary hepatic lymphoma: a review. Eur J Surg. 1999 Aug;165(8):725–9.

    PubMed  CAS  Google Scholar 

  50. Urban BA, Fishman EK. Renal lymphoma: CT patterns with emphasis on helical CT. Radiographics. 2000 Jan–Feb;20(1):197–212

    PubMed  CAS  Google Scholar 

  51. Chen HH, Panella JS, Rochester D, Ignatoff JM, McVary KT (1988) Non-Hodgkin lymphoma of the ureteral wall: findings. J Comput Assist Tomogr 12:157–158

    PubMed  CAS  Google Scholar 

  52. Neville A, Herts BR. CT characteristics of primary retroperitoneal neoplasms. Crit Rev Comput Tomogr. 2004;45(4):247–70.

    PubMed  Google Scholar 

  53. Turowski GA, Basson MD (1995) Primary malignant lymphoma of the intestine. Am J Surg 169:433–441

    PubMed  CAS  Google Scholar 

  54. Libson E, Mapp E, Dachman AH (1994) Hodgkin’s disease of the gastrointestinal tract. Clin Radiol 49:166–169

    PubMed  CAS  Google Scholar 

  55. Gossios K, Katsimbri P, Tsianos E (2000) CT features of gastric lymphoma. Eur Radiol 10:425–430

    PubMed  CAS  Google Scholar 

  56. Yoo CC, Levine MS, McLarney JK, Rubesin SE, Herlinger H (2000) Value of barium studies for predicting primary versus secondary non-Hodgkin’s gastrointestinal lymphoma. Abdom Imaging 25:368–372

    PubMed  CAS  Google Scholar 

  57. Chew FS, Schellingerhout D, Kee SB (1999) Primary lymphoma of skeletal muscle. Am J Roentgenol 172:1370

    CAS  Google Scholar 

  58. Malloy PC, Fishman EK, Magid D (1992) Lymphoma of bone, muscle, and skin: CT findings. Am J Roentgenol 159:805–809

    CAS  Google Scholar 

  59. Edeiken-Monroe B, Edeiken J, Kim EE. Radiologic concepts of lymphoma of bone. Radiol Clin North Am. 1990 Jul;28(4):841–64.

    PubMed  CAS  Google Scholar 

  60. Rehn SM, Nyman RS, Glimelius BL, Hagberg HE, Sundstrom JC. Non-Hodgkin lymphoma: predicting prognostic grade with MR imaging. Radiology. 1990;176:249–53.

    PubMed  CAS  Google Scholar 

  61. Rankin SC. Assessment of response to therapy using conventional imaging. Eur J Nucl Med Mol Imaging. 2003 Jun;30Suppl 1:S56–64.

    PubMed  Google Scholar 

  62. Nyman RS, Rehn SM, Glimelius BL, Hagberg HE, Hemmingsson AL, Sundstrom CJ. Residual mediastinal masses in Hodgkin disease: prediction of size with MR imaging. Radiology. 1989;170:435–440.

    PubMed  CAS  Google Scholar 

  63. McGowan KM, Long SD, Pekala PH. Glucose transporter gene expression: regulation of transcription and mRNA stability. Pharmacol Ther, 1995;66:465–505.

    PubMed  CAS  Google Scholar 

  64. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science, 1987: 235:1492–1495.

    PubMed  CAS  Google Scholar 

  65. Higashi K; Ueda Y; Sakuma T et al. Comparison of [(18)F]FDG PET and (201)Tl SPECT in evaluation of pulmonary nodules. J Nucl Med, 2001;42:1489–1496.

    PubMed  CAS  Google Scholar 

  66. Buck AC, Schirrmeister HH, Guhlmann CA, et al. Ki-67 immunostaining in pancreatic cancer and chronic active pancreatitis: does in vivo FDG uptake correlate with proliferative activity? J Nucl Med, 2001;42:721–725.

    PubMed  CAS  Google Scholar 

  67. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL. Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med, 1999;40:556–565.

    PubMed  CAS  Google Scholar 

  68. Newman JS, Francis IR, Kaminski MS, et al. Imaging of lymphoma with PET with 2-[18F] fluoro-2-deoxy-D-glucose: correlation with CT. Radiology, 1994;190:111–116.

    PubMed  CAS  Google Scholar 

  69. Leskinen-Kallio S, Ruotsalainen U, Nagren K, et al. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: A PET study. J Nucl Med, 1991;32:1211–1218.

    PubMed  CAS  Google Scholar 

  70. JNM abstract

    Google Scholar 

  71. Jerusalem G Ann Oncol, 2001;12:825

    PubMed  CAS  Google Scholar 

  72. Bastion Y, Berger F, Bryon PA, Felman P, Ffrench M, Coiffier B. Follicular lymphomas: assessment of prognostic factors in 127 patients followed for 10 years. Ann Oncol, 1991;2Suppl 2:123–129.

    PubMed  Google Scholar 

  73. JNM abst

    Google Scholar 

  74. Hoffmann M, Kletter K, Becherer A, et al: 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) for staging and follow-up of marginal zone B-cell lymphoma. Oncology, 2003;64:336–340.

    PubMed  CAS  Google Scholar 

  75. Najjar F, Hustinx R, Jerusalem G, et al: Positron emission tomography (PET) for staging low-grade non-Hodgkin’s lymphomas (NHL). Cancer Biother Radiopharm 2001;16:297–304.

    PubMed  CAS  Google Scholar 

  76. Bangerter M, Moog F, Buchmann I, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol, 1998: 9:1117–1122.

    PubMed  CAS  Google Scholar 

  77. Buchmann I, Reinhardt M, Eisner K, et al. 2-(fluorine-18)fluoro-2-deoxy-D-glucose positron emission tomography in the detection and staging of malignant lymphoma. A bicenter trial. Cancer, 2001: 91:889–899.

    PubMed  CAS  Google Scholar 

  78. Partridge S, Timothy A, O’doherty MJ, et al. 2-fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease:Influenceon paients management in asingle institution. Ann Oncol, 2000;11:1273–1279.

    PubMed  CAS  Google Scholar 

  79. Weihrauch MR; Re D; Bischoff S; et al Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol, 2002, 81:20–25.

    PubMed  CAS  Google Scholar 

  80. Rodriguez M, Ahlstrom H, Sundin A, Rehn S, Sundstrom C, Hagberg H, Glimelius B. 18FFDG PET in gastric non-Hodgkin’s lymphoma. Acta Oncol, 1997;36:577–584.

    PubMed  CAS  Google Scholar 

  81. Mauch P, Larson D, Osteen R, et al. Prognostic factors for positive surgical staging in patients with Hodgkin’s disease. J Clin Oncol, 1990;8:257–265.

    PubMed  CAS  Google Scholar 

  82. Leibenhaut MH, Hoppe RT, Efron B, et al. Prognostic indicators of laparotomy findings in clinical stage III supradiaphragmatic Hodgkin’s disease. J Clin Oncol, 1989;7:81–91.

    PubMed  CAS  Google Scholar 

  83. Neumann CH, Robert NJ, Canellos G, et al. Computed tomography of the abdomen and pelvis in non-Hodgkin lymphoma. J Comput Assist Tomogr, 1983;7:846–850.

    PubMed  CAS  Google Scholar 

  84. Hoffman JM, Waskin HA, Schifter T, et al. FDG-PET in differentiating lymphoma from non-malignant central nervous system lesions in patients with AIDS. J Nucl Med, 1993;34:567–575.

    PubMed  CAS  Google Scholar 

  85. Heald AE, Hoffman JM, Bartlett JA, Waskin HA. Differentiation of central nervous system lesions in AIDS patients using positron emission tomography (PET). Int J STD AIDS 1996;7:337–346.

    PubMed  CAS  Google Scholar 

  86. Shipp M, Mauch PM, Harris NL. Non-Hodgkin’s lymphomas. In: Devita VT, Hellman S, Rosenberg SA, eds. Cancer principles and practice of oncology. Philadelphia, PA: Lippincott; 1997:2165–2220.

    Google Scholar 

  87. Abdel-Dayem HM, Rosen G, El-Zeftawy H, Naddaf S, Kumar M, Atay S, Cacavio A. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation. Clin Nucl Med, 1999, 24:319–322.

    PubMed  CAS  Google Scholar 

  88. Gundlapalli S; Ojha B; Mountz JM. Granulocyte colony-stimulating factor: confounding F-18 FDG uptake in outpatient positron emission tomographic facilities for patients receiving ongoing treatment of lymphoma. Clin Nucl Med, 2002, 27:140–141.

    PubMed  Google Scholar 

  89. Carr R, Barrington SF, Madan B, O’Doherty MJ, Saunders CA, van der Walt J, Timothy AR. Detection of lymphoma in bone marrow by whole-body positron emission tomography. Blood, 1998;91:3340–3346.

    PubMed  CAS  Google Scholar 

  90. Moog F, Bangerter M, Kotzerke J, Guhlman A, Frickhofen N, Reske SN. 18-F-fluorodeoxyglucose-positron emision tomography as a new approach to detect lymphomatous bone marrow. J Clin Oncol, 1998;16:603–609.

    PubMed  CAS  Google Scholar 

  91. Jerusalem G, Warland V, Najjar F, Paulus P, Fassotte MF, Fillet G, Rigo P. Whole-body 18F-FDG PET for the evaluation of patients with Hodgkin’s disease and non-Hodgkin’s lymphoma. Nucl Med Commun, 1999;20:13–20.

    PubMed  CAS  Google Scholar 

  92. Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary Bone Lymphoma: Radiographic-MR Imaging Correlation. Radiographics. 2003;23:1371–1383

    PubMed  Google Scholar 

  93. Bar-Shalom R, Yefremov N, Haim N, et al. Camera-based FDG PET and 67Ga SPECT in Evaluation of Lymphoma: Comparative Study. Radiology 2003 227: 353–360

    PubMed  Google Scholar 

  94. Bar-Shalom R, Mor M, Yefremov N, Goldsmith SJ. The value of Ga-67 scintigraphy and F-18 fluorodeoxyglucose positron emission tomography in staging and monitoring the response of lymphoma to treatment. Semin Nucl Med 2001; 31:177–190.

    PubMed  CAS  Google Scholar 

  95. Kostakoglu L, Goldsmith SJ. Positron emission tomography in lymphoma: comparison with computed tomography and gallium-67 single photon emission computed tomography. Clin Lymphoma 2000; 1:67–74.

    PubMed  CAS  Google Scholar 

  96. Wirth A, Seymour JF, Hicks RJ, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography, gallium-67 scintigraphy, and conventional staging for Hodgkin’s disease and non-Hodgkin’s lymphoma. Am J Med, 2002;112:262–268.

    PubMed  Google Scholar 

  97. Shen YY, Kao A, Yen RF. Comparison of 18F-fluoro-2-deoxyglucose positron emission tomography and gallium-67 citrate scintigraphy for detecting malignant lymphoma. Oncol Rep 2002: 9:321–325.

    PubMed  Google Scholar 

  98. Brandt L, Kimby E, Nygren P, Glimelius B. A systematic overview of chemotherapy effects in Hodgkin’s disease. Acta Oncol. 2001;40:185–197.

    PubMed  CAS  Google Scholar 

  99. Coiffier B, Gisselbrecht C, Vose JM, et al. prognostic factors in aggressive malignant lymphomas. Description and validation of prognostic index that could identify patients requiring a more intensive therapy. J Clin Oncol. 1991;9:211–219.

    PubMed  CAS  Google Scholar 

  100. Hueltenschmidt B, Sautter-Bihl ML, Lang O, Maul FD, Fischer J, Mergenthaler HG, Bihl H. Whole body positron emission tomography in the treatment of Hodgkin disease. Cancer, 2001;91:302–310.

    PubMed  CAS  Google Scholar 

  101. Cremerius U, Fabry U, Kroll U, Zimny M, Neuerburg J, Osieka R, Bull U. Clinical value of FDG PET for therapy monitoring of malignant lymphoma-results of a retrospective study in 72 patients. Nuklearmedizin, 1999, 38:24–30.

    PubMed  CAS  Google Scholar 

  102. Chelson MS, Herman TG, Stomper PC, et al. Planning mantle radiation therapy in patients with hodgkin’s disease:the role of gallium-67 scintigraphy. AJR Am J Roentgenol, 1988;151:1229–1232.

    Google Scholar 

  103. Surbone A, Longo DL, DeVita VT, et al. Residual abdominal masses in aggressive non-Hodgkin’s lymphoma after combination chemotherapy:significance and management. J Clin Oncol. 1988;6:1832–1837.

    PubMed  CAS  Google Scholar 

  104. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([I8F]FDG after first line chemotherapy in non-Hodgkins lymphoma: Is ([18F]FDG PET a valid alternative to conventional diagnostic methods? J Clin Oncol. 2001;19:414–419.

    PubMed  CAS  Google Scholar 

  105. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ. Positron emission tomography predicts prognosis after one cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med, 2002;43: 1018–1027.

    PubMed  Google Scholar 

  106. Mikhaeel NG, Mainwaring P, Nunan T, Timothy AR. Prognostic value of interim and post treatment FDG-PET scanning in Hodgkin lymphoma [abstract]. Ann Oncol 2002; 13(Suppl 2):21.

    Google Scholar 

  107. Spaepen K; Stroobants S; Dupont P; et al. Can positron emission tomography with [(18)F]-fluorodeoxyglucose after first-line treatment distinguish Hodgkin’s disease patients who need additional therapy from others in whom additional therapy would mean avoidable toxicity? Br J Haematol 2001;115:272–278

    PubMed  CAS  Google Scholar 

  108. Mikhaeel NG, Timothy AR, O’Doherty MJ, Hain S, Maisey T. 18-FDG PET as a prognostic indicator in the treatment of aggressive non-Hodgkin’s lymphoma-comoparison with CT. Leuk Lymphoma. 2000;39: 543–553.

    PubMed  CAS  Google Scholar 

  109. Zinzani PL, Magagnoli M, Chierichetti F, et al. The role of positron emission tomography (PET) in the management of lymphoma patients. Ann Oncol, 1999;10:1181–1184.

    PubMed  CAS  Google Scholar 

  110. Ng AK, Bernardo MV, Weller E, et al: Second malignancy after Hodgkin disease treated with radiation therapy with or without chemotherapy: long-term risks and risk factors. Blood 2002;100:1989–1996.

    PubMed  CAS  Google Scholar 

  111. de Wit M, Bohuslavizki KH, Buchert, Bumann D, Clausen M, Hossfeld DK. 18FDG-PET following treatment as valid predictor for disease-free survival in Hodgkin’s lymphoma. Ann Oncol, 2001;12:29–37.

    PubMed  Google Scholar 

  112. Weihrauch MR, Re D, Scheidhauer K, et al. Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease. Blood. 2001;98:2930–2934.

    PubMed  CAS  Google Scholar 

  113. Armitage JO, Weisenburger DD, Hutchins M, et al. Chemotherapy for diffuse large-cell lymphoma-rapidly responding patients have more durable remissions. J Clin Oncol 1986; 4:160–164.

    PubMed  CAS  Google Scholar 

  114. Haw R, Sawka CA, Franssen E, Berinstein HL. Significance of a partial or slow response to front-line chemotherapy in the management of intermediate-grade or high-grade non-Hodgkin’s lymphoma: a literature review. J Clin Oncol 1994;12:1074–1084

    PubMed  CAS  Google Scholar 

  115. Romer W, Hanauske A-R, Ziegler S, et al. Positron emission tomography in non-Hodgkin’s lymphoma: assesment o chemotherapy with fluorodeoxyglucose. Blood, 1998;91:4464–4471.

    PubMed  CAS  Google Scholar 

  116. Jerusalem G, Beguin Y, Fassotte MF, et al. Persistent tumor 18F-FDG uptake after a few cycles of polychemotherapy is predictive of treatment failure in non-Hodgkin’s lymphoma. Haematologica. 2000;85:613–618.

    PubMed  CAS  Google Scholar 

  117. Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 2002; 13:1356–1363

    PubMed  CAS  Google Scholar 

  118. Kostakoglu L, Coleman M, Somrov S, Leonard JP, Verma S, Sherman CH,. Goldsmith SJ. FDG-PET after one cycle of chemotherapy accurately predicts response to therapy in large cell (aggressive) non-Hodgkin’s lymphoma (NHL) and Hodgkin’s disease (HD). J Nucl Med, 2004;45: 316P.

    Google Scholar 

  119. Becherer A, Mitterbauer M, Jaeger U et al. Positron emission tomography with [18F]2-fluoro-D-2-deoxyglucose (FDG-PET) predicts relapse of malignant lymphoma after high-dose therapy with stem cell transplantation. Leukemia, 2002;16:260–267.

    PubMed  CAS  Google Scholar 

  120. Cremerius U, Fabry U, Wildberger JE, et al. Pre-transplant positron emission tomography using fluorine-18-fluoro-deoxyglucose predicts outcome in patients treated with high-dose chemotherapy and autologous stem cell transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant 2002; 30:103–111.

    PubMed  CAS  Google Scholar 

  121. Hoekstra O, Ossenkoppele GJ, Golding R, et al. Early treatment response in malignant lymphoma, as determined by planar fluorine-18-fluorodeoxyglucose scintigraphy. J Nucl Med, 1993;34:1706–1710.

    PubMed  CAS  Google Scholar 

  122. Townsend DW and Beyer T. A combined PET/CT scanner: the path to true image fusion. Br J Radiol, 2002;75:S24–30.

    PubMed  Google Scholar 

  123. Schaefer NG, Hany TF, Taverna C, Seifert B, Stumpe KD, Von Schulthess GK, Goerres GW. Non-Hodgkin Lymphoma and Hodgkin Disease: Coregistered FDG PET and CT at Staging and Restaging-Do We Need Contrast-enhanced CT? Radiology. 2004 Jul 23 [Epub ahead of print].

    Google Scholar 

  124. Larson SM; Rasey JS; Allen DR; Nelson NJ; Grunbaum Z; Harp GD; Williams DL Common pathway for tumor cell uptake of gallium-67 and iron-59 via a transferrin receptor. J Natl Cancer Inst 1980, 64:41–53

    PubMed  CAS  Google Scholar 

  125. Vallabhajosula S; Goldsmith SJ; Lipszyc H; Chahinian AP; Ohnuma T. 67Ga-transferrin and 67Ga-lactoferrin binding to tumor cells: specific versus nonspecific glycoprotein-cell interaction. Eur J Nucl Med, 1983: 8354–357

    Google Scholar 

  126. Nejmeddine F, Caillat-Vigneron N, Escaig F, Moretti JL, Raphael M, Galle P. Mechanism involved in gallium-67 (Ga-67) uptake by human lymphoid cell lines. Cell Mol Biol (Noisy-le-grand). 1998;44:1215–20.

    CAS  Google Scholar 

  127. Gallamini A, Biggi A, Fruttero A, et al. Revisiting the prognostic role of gallium scintigraphy in low-grade non-Hodgkin’s lymphoma. Eur J Nucl Med, 1997;24:1499–1506.

    PubMed  CAS  Google Scholar 

  128. Kostakoglu L, Yeh SD, Portlock C, Heelan R, Yao TJ, Niedzwiecki D, Larson SM. Validation of gallium-67-citrate single-photon emission computed tomography in biopsy-confirmed residual Hodgkin’s disease in the mediastinum. J Nucl Med. 1992;33:345–50

    PubMed  CAS  Google Scholar 

  129. Front D, Israel O, Epelbaum R, et al. Ga-67 SPECT before and after treatment of lymphoma. Radiology 1990; 175:515–519.

    PubMed  CAS  Google Scholar 

  130. Mansberg R, Wadhwa SS, Mansberg V. Tl-201 and Ga-67 scintigraphy in non-Hodgkin’s lymphoma. Clin Nucl Med, 1999, 24:239–242

    PubMed  CAS  Google Scholar 

  131. Johnston G, Benua RS, Teates CD, Edwards CL, Kniseley RM. 67Ga-citrate imaging in untreated Hodgkin’s disease: preliminary report of Cooperative Group. J Nucl Med, 1974, 15:399–403.

    PubMed  CAS  Google Scholar 

  132. Cabanillas F, Zornoza J, Haynie TP. Comparison of lymphangiograms and gallium scans in the non-Hodgkin’s lymphomas. Cancer, 1977: 39:85–88.

    PubMed  CAS  Google Scholar 

  133. Setoin FJ, Pons F, Herranz R, et al. Ga-67 scintigraphy for the evaluation of recurrences and residual masses in patients with lymphoma. Nuc Med Commun, 1997;18:405–411.

    Google Scholar 

  134. Ben-Haim S, Bar-Shalom R, Israel O, et al. Utility of gallium-67 scintigraphy in low-grade non-Hodgkin’s lymphoma. J Clin Oncol, 1996, 14:1936–1942

    PubMed  CAS  Google Scholar 

  135. Bastion Y, Berger F, Bryon PA, Felman P, Ffrench M, Coiffier B. Follicular lymphomas: assessment of prognostic factors in 127 patients followed for 10 years. Ann Oncol, 1991;2Suppl 2:123–129.

    PubMed  Google Scholar 

  136. Mclaughlin AF, Southee AE. Gallium scintigraphy in tumor diagnosis and management, in Murray IPC, Ell PJ (eds): Nuclear Medicine in clinical diagnosis and treatment. Vol1. New York, Churchill Livingstone, 1994:711–727.

    Google Scholar 

  137. Turner DA, Fordham EW, Ali A. Gallium-67 imaging in the management of Hodgkin’s disease and other malignant lymphomas. Semin Nucl Med, 1978;8:205–218.

    PubMed  CAS  Google Scholar 

  138. Devizzi L, Maffioli L, Bonfante V, et al. Comparison of gallium scan, computed tomography, and magnetic resonance in patients with mediastinal Hodgkin’s disease. Ann Oncol, 1997, 8Suppl 1 53–56.

    PubMed  Google Scholar 

  139. Brascho DJ. Hodgkin’s disease and non-Hodgkin’s lymphoma. In: Abdominal ultrasound in the cancer patient. D.J. Brasco and T.H. Strawber (eds). Wiley, New York 1980. Hussain R, Christie DR, Gebski V, Barton MB, Gruenewald SM. The role of the gallium scan in primary extranodal lymphoma. J Nucl Med, 1998, 39:95–98

    Google Scholar 

  140. Hussain R, Christie DR, Gebski V, Barton MB, Gruenewald SM. The role of the gallium scan in primary extranodal lymphoma. J Nucl Med, 1998, 39:95–98

    PubMed  CAS  Google Scholar 

  141. Zornoza J; Ginaldi S. Computed Tomography in hepatic lymphoma. Radiology, 1981;138:405–410.

    PubMed  CAS  Google Scholar 

  142. Ora Israel JNM 2002. Front D, Bar-Shalom R, Israel O. The continuing clinical role of gallium 67 scintigraphy in the age of receptor imaging. Semin Nucl Med, 1997, 27:68–74.

    PubMed  CAS  Google Scholar 

  143. Kostakoglu L, Goldsmith SJ. [F-18] Fluorodeoxyglucose positron emission tomography in staging and follow-up of lymphoma. Is it time to shift gears? Eur J Nucl Med, 2000;27:564–1578.

    Google Scholar 

  144. Stroszczynski C, Amthauer H, Hosten N, et al. Use of Ga-67 SPECT in patients with malignant lymphoma after primary chemotherapy for further treatment planningxomparison with spiral CT. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr, 1997;167:458–466.

    PubMed  CAS  Google Scholar 

  145. Devizzi L, Maffioli L, Bonfante V, et al. Comparison of gallium scan, computed tomography, and magnetic resonance in patients with mediastinal Hodgkin’s disease. Ann Oncol, 1997, 8Suppl 1 53–56.

    PubMed  Google Scholar 

  146. Ha CS, Choe JG, Kong JS, Allen PK, Oh YK, Cox JD, Edmund E. Agreement rates among single photon emission computed tomography using gallium-67, computed axial tomography and lymphangiography for Hodgkin’s disease and correlation of image findings with clinical outcome. Cancer, 2000; 89:1371–1379.

    PubMed  CAS  Google Scholar 

  147. Front D, Ben-Haim S, Israel O, Epelbaum R, Haim N, Even-Sapir E, Kolodny GM, Robinson E Lymphoma. predictive value of Ga-67 scintigraphy after treatment. Radiology, 1992, 182:359–363.

    PubMed  CAS  Google Scholar 

  148. Even-Sapir E, Bar-Shalom R, Israel O, et al. Single-photon emission computed tomography quantitation of gallium citrate uptake for the differentiation of lymphoma from benign hilar uptake. J Clin Oncol. 1995 Apr;13(4):942–6.

    PubMed  CAS  Google Scholar 

  149. Ionescu I, Brice P, Simon D, et al. Restaging with gallium scan identifies chemosensitive patients and predicts survival of poor-prognosis mediastinal Hodgkin’s disease patients. Med Oncol, 2000, 17:127–134.

    PubMed  CAS  Google Scholar 

  150. Gasparini MD, Balzarini L, Castellani MR, et al. Current role of gallium scan and magnetic resonance imaging in the management of mediastinal Hodgkin lymphoma. Cancer, 1993, 72:577–582.

    PubMed  CAS  Google Scholar 

  151. Bogart JA, Chung CT, Mariados NF, Vermont AI, Lemke SM, Grethlein S, Graziano SL. The value of gallium imaging after therapy for Hodgkin’s disease. Cancer, 15 1998, 82:754–759.

    Google Scholar 

  152. Vose JM, Bierman PJ, Anderson JR, Harrison KA, Dalrymple GV, Byar K, Kessinger A, Armitage JO. Single-photon emission computed tomography gallium imaging versus computed tomography: predictive value in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation for non-Hodgkin’s lymphoma. J Clin Oncol, 1996;14:2473–2479.

    PubMed  CAS  Google Scholar 

  153. Kaplan WD; Jochelson MS; Herman T et al. Gallium-67 imaging: a predictor of residual tumor viability and clinical outcome in patients with diffuse large-cell lymphoma. J Clin Oncol, 1990, 8:1966–1070.

    PubMed  CAS  Google Scholar 

  154. Shipp MA. Prognostic factors in aggressive non-Hodgkin’s lymphoma: who has “high-risk” disease? Blood 1994; 83:1165–1173.

    PubMed  CAS  Google Scholar 

  155. Israel O, Mor M, Epelbaum R, et al. Clinical pretreatment risk factors and Ga-67 scintigraphy early during treatment for prediction of outcome of patients with aggressive non-Hodgkin lymphoma. Cancer, 2002: 94:873–878.

    PubMed  Google Scholar 

  156. Waxman AD. Thallium 201 in nuclear oncology. In: Freeman LM, ed. Nuclear Mediine Annual. New York: Raven, 1991:193

    Google Scholar 

  157. Abdel-Dayem HM, et al. Role of Tl-201 chloride and Tc-99m-sestamibi in tumor imaging. Nucl Med Annual 1994; 181–234.

    Google Scholar 

  158. Lin J, Leung WT, Ho SKW, et al. Quantitative evaluation of thallium-201 uptake in predicting chemotherapeutic response of osteosarcoma. Eur J Nucl Med 1995; 22:553–555.

    PubMed  CAS  Google Scholar 

  159. Elgazzar AH, Fernandes-Ulloa M, Silberstein EB. Tl-201 as a tumour-localizing agent: current status and future considerations. Nucl Med Commun 1993; 14: 96–103

    PubMed  CAS  Google Scholar 

  160. Piwnica-Worms D; Rao VV; Kronauge JF; Croop JM Characterization of multidrug resistance P-glycoprotein transport function with an organotechnetium cation. Biochemistry, 26 1995, 34(38) p12210–20

    Google Scholar 

  161. Del-Vecchio S, et al. Fractional retention of Tc-99m-Sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med 1997; 38: 1348–1351

    PubMed  CAS  Google Scholar 

  162. Kostakoglu L, et al. Clinical validation of the influence of P-glycoprotein on Tc-99m-sestamibi uptake in malignant tumors. J Nucl Med 1997; 38: 1003–1008

    PubMed  CAS  Google Scholar 

  163. Roach P.J., Cooper R.A, Arthur C.K,. Ravich R.B, Comparison of thallium-201 and gallium-67 scintigraphy in the evaluation of non-Hodgkin’s lymphoma. Aust N Z J Med 1998: 28:33–38.

    PubMed  CAS  Google Scholar 

  164. Haas RL, Valdes-Olmos RA, Hoefnagel CA, Verheij M, de Jong D, Hart AA, Bartelink H. Thallium-201-chloride scintigraphy in staging and monitoring radiotherapy response in follicular lymphoma patients. Radiother Oncol. 2003;69 (:323–328.

    PubMed  Google Scholar 

  165. Skiest DJ, Erdman W, Chang WE, Oz OK, Ware A, Fleckenstein J. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infect. 2000;40:274–81.

    PubMed  CAS  Google Scholar 

  166. Kao CH, Tsai SC, Wang JJ, Ho YJ, Ho ST, Changlai SP. Technetium-99m-sestamethoxyisobutylisonitrile scan as a predictor of chemotherapy response in malignant lymphomas compared with P-glycoprotein expression, inultidrug resistance-related protein expression and other prognosis factors. Br J Haematol 2001, 113:369–374

    PubMed  CAS  Google Scholar 

  167. Liang JA; Shiau YC; Yang SN; Lin FJ; Kao A; Lee CC Prediction of chemotherapy response in untreated malignant lymphomas using technetium-99m methoxyisobutylisonitrile scan: comparison with P-glycoprotein expression and other prognostic factors. A preliminary report. Jpn J Clin Oncol 2002, 32(4) p140–5

    PubMed  Google Scholar 

  168. Ohta M; Isobe K; Kuyama J et al. Clinical role of Tc-99m-MIBI scintigraphy in non-Hodgkin’s lymphoma. Oncol Rep 2001, 8(4):841–845.

    PubMed  CAS  Google Scholar 

  169. Nadel HR. Thallium-201 for oncologic imaging in children. Semin Nucl Med 1993;23: 243–254.

    PubMed  CAS  Google Scholar 

  170. Leners N, Jamar F, Fiasse R, Ferrant A, Pauwels S. Indium-111-pentetreotide uptake in endocrine tumors and lymphoma. J Nucl Med. 1996;37:916–22.

    PubMed  CAS  Google Scholar 

  171. Van Hagen PM, Krenning EP, Reubi JC, et al. Somatostatin analogue scintigraphy of malignant lymphomas. Br J Haematol. 1993;83:75–79

    Google Scholar 

  172. Lipp RW, Silly H, Ranner G, et al. Radiolabeled octreotide for the demonstration of somatostatin receptors in malignant lymphoma and lymphadenopathy. J Nucl Med. 1995;36:13–18

    PubMed  CAS  Google Scholar 

  173. Lugtenburg PJ, Krenning EP, Valkema R, Oei HY, Lamberts SW, Eijkemans MJ, van Putten WL, Lowenberg B. Somatostatin receptor scintigraphy useful in stage I-II Hodgkin’s disease: more extended disease identified. Br J Haematol. 2001 Mar;112(4):936–44.

    PubMed  CAS  Google Scholar 

  174. Dalm VA, Hofland LJ, Mooy CM et al, Somatostatin receptors in malignant lymphomas: targets for radiotherapy? J Nucl Med 2004: 45: 8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kostakoglu, L., Goldsmith, S.J. (2006). Lymphoma Imaging: Nuclear Medicine. In: Leonard, J.P., Coleman, M. (eds) Hodgkin’s and Non-Hodgkin’s Lymphoma. Cancer Treatment and Research, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29346-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-29346-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29345-5

  • Online ISBN: 978-0-387-29346-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics