Advertisement

Class IV. Deltaproteobacteriaclass nov.

  • Jan Kuever
  • Fred A. Rainey
  • Friedrich Widdel

Abstract

Del.ta.pro.te.o.bac.te′ri.a. Gr. n. delta name of fourth letter of Greek alphabet; Gr. n. Proteus ocean god able to change shape; Gr. n. bakterion a small rod; M.L. fem. pl. n. Deltaproteobacteria class of bacteria having 16S rRNA gene sequences related to those of the members of the order Myxococcales.

Further Reading

  1. Postgate, J.R. 1984. The Sulfate-Reducing Bacteria, 2nd ed., Cambridge University Press, Cambridge; New York.Google Scholar

Further Reading

  1. Ollivier, B., C.E. Hatchikian, G. Prensier, J. Guezennec and J.-L. Garcia. 1991. Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41: 74–81.CrossRefGoogle Scholar

Further Reading

  1. Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of Desulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.Google Scholar
  2. Zhilina, T.N., G.A. Zavarzin, F.A. Rainey, E.N. Pikuta, G.A. Osipov and N.A. Kostrikina. 1997. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 47: 144–149.CrossRefPubMedGoogle Scholar

Further Reading

  1. Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F.A. Rainey, H.W.Jannasch and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.CrossRefPubMedGoogle Scholar

Further Reading

  1. Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of Desulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.Google Scholar
  2. Pikuta, E.V., T.N. Zhilina, G.A. Zavarzin, N.A. Kostrikina, G.A. Osipov and F.A. Rainey. 1998. Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya 67: 105–113.Google Scholar

Further Reading

  1. Widdel, F. andN. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.CrossRefPubMedGoogle Scholar

Further Reading

  1. Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1987. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.CrossRefGoogle Scholar

Further Reading

  1. Bak, F. and F. Widdel. 1986. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacteriumindolicumgen. nov., sp. nov. Arch. Microbiol. 146: 170–176.CrossRefGoogle Scholar
  2. Kuever, J., M. Könneke, A. Galushko and O. Drzyzga. 2001. Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.PubMedGoogle Scholar
  3. Rabus, R., R. Nordhaus, W. Ludwig and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451.PubMedGoogle Scholar

Further Reading

  1. Platen, H., A. Temmes and B. Schin. 1990. Anaerobic degradation of acetone by Desulfosarcina biacutus spec. nov. Arch. Microbiol. 154: 355–361.CrossRefPubMedGoogle Scholar

Further Reading

  1. Knoblauch, C, K. Sahm and B.B. Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desul-fotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.CrossRefPubMedGoogle Scholar

Further Reading

  1. Knoblauch, C, K. Sahm and B.B.Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.CrossRefPubMedGoogle Scholar

Further Reading

  1. Fukui, M., A. Teske, B. Assmus, G. Muyzer and F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.CrossRefPubMedGoogle Scholar
  2. Widdel, F 1983. Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134: 282–285.CrossRefGoogle Scholar
  3. Widdel, F, G.-W. Kohring and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limnicola gen. nov. sp. nov., and Desulfonema magnumsp. nov. Arch. Microbiol. 134: 286–294.CrossRefGoogle Scholar

Further Reading

  1. Galushko, A.S. and E.P. Rosanova. 1991. Desulfobacterium cetonicum spec. nov., a sulfate-reducing bacterium oxidizing fatty acids and ketones. Mikrobiologiya 60: 102–107.Google Scholar

Further Reading

  1. Kuever, J., M. Konneke, A. Galushko and O. Drzyzga. 2001. Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticumgen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.PubMedGoogle Scholar

Further Reading

  1. Widdel, F. and N. Pfennig. 1982. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty-acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131: 360–365.CrossRefGoogle Scholar

Further Reading

  1. Finster, K., W. Liesack and B. Thamdrup. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfexigens sp. nov., anew anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64: 119–125.PubMedGoogle Scholar
  2. Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1996. Dispropor-tionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166: 184–192.CrossRefGoogle Scholar

Further Reading

  1. Isaksen, M.F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168.CrossRefGoogle Scholar

Further Reading

  1. Knoblauch, C, K. Sahm and B.B. Jørgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov, Desulfotalea psychrophila gen. nov, sp. nov. and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.CrossRefPubMedGoogle Scholar

Further Reading

  1. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov. a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28: 283–288.CrossRefGoogle Scholar

Further Reading

  1. Finster, K. and F. Bak. 1993. Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, Gram-negative, sulfur-reducing eu-bacteria. Appl. Environ. Microbiol. 59: 1452–1640.PubMedGoogle Scholar
  2. Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of Gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov. and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44: 753–758.CrossRefGoogle Scholar

Further Reading

  1. Dehning, I. and B. Schink. 1989. Malonomonas rubra gen. nov. sp. nov., a microaerotolerant anaerobic bacterium growing by decarboxylation of malonate. Arch. Microbiol. 151: 427–433.CrossRefGoogle Scholar

Further Reading

  1. Schink, B. 1984. Fermentation of 2,3-butanediol by Pelobacter carbinolicus, new species and Pelobacter propionicus, new species and evidence for propionate formation from C-2 compounds. Arch. Microbiol. 137: 33–41.CrossRefGoogle Scholar
  2. Schink, B. 1985. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus, new species. Arch. Microbiol. 142: 295–301.CrossRefGoogle Scholar
  3. Schink, B., D.R. Kremer and T.A. Hansen. 1987. Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch. Microbiol. 147: 321–327.CrossRefGoogle Scholar
  4. Schink, B. and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici, new genus new species: a new strictly anaerobic, non-spore-forming bacterium. Arch. Microbiol. 133: 195–201.CrossRefGoogle Scholar
  5. Schink, B. and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus, sp. nov. Appl. Environ. Microbiol. 45: 1905–1913.PubMedGoogle Scholar
  6. Stackebrandt, E., U. Wehmeyer and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.CrossRefGoogle Scholar
  7. Widdel, F. and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.CrossRefPubMedGoogle Scholar

Further Reading

  1. Oude Elferink, S.H J.W., A. Visser, L.W. Hulshoff Pol and A.J.M. Stams. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–126.Google Scholar
  2. Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.PubMedGoogle Scholar
  3. Stams, A.M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66: 271–294.CrossRefPubMedGoogle Scholar

Further Reading

  1. Rees, G., G.N. Grassia, A.J. Sheehy, P.P. Dwivedi and B.K.C. Patel. 1995. Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85–89.CrossRefGoogle Scholar
  2. Sievert, S.M. and J. Kuever. 2000. Desulfacinum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int. J. Syst. Bacteriol. 50: 1239–1246.Google Scholar

Further Reading

  1. Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1995. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124.CrossRefPubMedGoogle Scholar

Further Reading

  1. Tanaka, K., E. Stackebrandt, S. Tohyama andT. Eguchi. 2000. Desulfovirga adipica gen. nov., sp. nov. an adipate-degrading, Gram-negative, sulfate-reducing bacterium. Int. J. Syst. Evol. Bacteriol. 50: 639–644.CrossRefGoogle Scholar

Further Reading

  1. Baer, M.L., J. Ravel, S.A. Pineiro, D. Guether-Borg and H.N. Williams. 2004. Reclassification of salt-water Bdellovibrio spp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int. J. Syst. Evol. Microbiol. 54:: 1011–1016.CrossRefPubMedGoogle Scholar
  2. Guerrero, R., C. Pedros-Alio, I. Esteve, J. Mas, D. Chase and L. Margulis. 1986. Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. U.S.A. 83: 2138–2142.CrossRefPubMedGoogle Scholar
  3. Jurkevitch E. 2000. The genus Bdellovibrio. In Dworkin., Flakow, Rosenberg, Schleifer and Stackebrandt (Editors), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd Ed., release 3.1, Springer-Verlag, New York.Google Scholar
  4. Rittenberg, S.C. 1983. Bdellovibrio: attack, penetration, and growth on its prey. ASM News. 49: 435–439.Google Scholar
  5. Ruby, E.G. 1991. The genus Bdellovibrio. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes, 2nd Ed., Vol. 4, Springer-Verlag, New York. pp. 3400–3415.Google Scholar

Further Reading

  1. Baer, M.L., J. Ravel, S.A. Pineiro, D. Guether-Borg and H.N. Williams. 2004. Reclassification of salt-water Bdellovibrio spp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int. J. Syst. Evol. Microbiol. 54:: 1011–1016.CrossRefPubMedGoogle Scholar

References

  1. Aamand, J., T. Ahl and E. Spieck. 1996. Monoclonal antibodies recognizing nitrite oxidoreductase of Nitrobacter hamburgensis, N winogradskyi, and N. vulgaris. Appl. Environ. Microbiol. 62: 2352–2355.PubMedGoogle Scholar
  2. Abadie, M. 1967. Formations intracytoplasmique du type “mésome ”chez Chondromyces crocatus Berkeley et Curtis. C.R. Acad. Sci. Paris 265: 2132–2134.Google Scholar
  3. Abadie, M. 1968. Sur l ’organisation des masses cellulairesvégétativeschez les Chondromyces: Importance de la “matrice ” initiale et de la trame muqueuse résiduelle. C.R. Acad. Sci. Paris 267: 2037–2040.Google Scholar
  4. Abadie, M. 1971. Contribution a la connaissance des myxobactéries supérieures. II. Données ultrastructurales et morphogénétiques sur le Chondromyces crocatus. Ann. Sci. Nat. Bot. Biol. Veg. 12: 345–428.Google Scholar
  5. Abram, D., J. Castro e Melo and D. Chou. 1974. Penetration of Bdellovibrio bacteriovorus into host cells. J. Bacteriol. 118: 663–680.PubMedGoogle Scholar
  6. Afinogenova, A.V, S.M. Konovalova and VA. Lambina. 1986. The loss of monospecificity of exoparasitic bacteria of the Micavibrio genus. Mikrobiologiya 55: 487–489.Google Scholar
  7. Agnihothrudu, V, G.C.S. Barua and K.C. Barua. 1959. Occurrence of Chondromyces in the rhizosphere of plants. Indian Phytopathol. 12: 158–160.Google Scholar
  8. Ahring, B.K., N. Christiansen, I. Mathrani, H.V. Hendriksen, A.J.L. Macario and E. Conway De Macario. 1992. Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei. Appl. Environ. Microbiol. 58: 3677–3682.PubMedGoogle Scholar
  9. Akoum, A., R. Guidoin, M.W. King, Y. Marois, M. Sigot and M.F. Sigotluizard. 1992. A new bioactive molecule for improving vascular graft patency—exploratory trials in dogs. Med. Clin. Exp. 15: 318–330.Google Scholar
  10. Althauser, M., W.A. Samsonoff, C. Anderson and S.F. Conti. 1972. Isolation and preliminary characterization of bacteriophages for Bdellovibrio bacteriovorus. J. Virol. 10: 516–523.PubMedGoogle Scholar
  11. Andrews, K.T. and B.K.C. Patel. 1996. Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int. J. Syst. Bacteriol. 46: 265–269.CrossRefPubMedGoogle Scholar
  12. Arendsen, A.F., M.F.J.M. Verhagen, R.B.G. Wolbert, A.J. Pierik, A.J.M. Stams, M.S.M. Jetten and W.R. Hagen. 1993. The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S /2 iron-sulfur clusters. Biochemistry 32: 10323–10330.CrossRefPubMedGoogle Scholar
  13. Arnold, J.W. and L.J. Shimkets. 1988. Cell-surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170: 5771–5777.PubMedGoogle Scholar
  14. Auburger, G. and J. Winter. 1995. Isolation and physiological characterization of Syntrophus buswellii strain GA from a syntrophic benzoate degrading strictly anaerobic coculture. Appl. Microbiol. Biotechnol. 44: 241–248.CrossRefGoogle Scholar
  15. Auburger, G. and J. Winter. 1996. Activation and degradation of benzoate, 3-phenylpropianate and crotonate by Syntrophus buswellii strain GA. Evidence for electron transport phosphorylation during crotonate respiration. Appl. Microbiol. Biotechnol. 44: 807–815.PubMedGoogle Scholar
  16. Bacon, K. and F.A. Eiserling. 1967. A unique structure in microcysts of Myxococcus xanthus. J. Ultrastruct. Res. 21: 378–382.CrossRefPubMedGoogle Scholar
  17. Baena, S., M.L. Fardeau, M. Labat, B. Ollivier, J.L. Garcia and B.K.C. Patel. 1998. Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic dairy wastewater lagoon. Syst. Appl. Microbiol. 21: 498–504.CrossRefPubMedGoogle Scholar
  18. Baer, M.L. 1998. Molecular Characterization of the Bacterial Predator Bdellovibrio, Doctoral thesis, University of Maryland, Baltimore, Maryland.Google Scholar
  19. Baer, M.L.,J. Ravel, J. Chun, R.T. Hill and H.N. Williams. 2000. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 50: 219–224.CrossRefPubMedGoogle Scholar
  20. Baer, M.L., J. Ravel, A.J. Schoeffield, R.T. Hill and H.N. Williams. 1998. Analysis of Bdellovibrio spp. by arbitrarily primed PCR, pulsed field electrophoresis, ribotyping and 16S rDNA analysis. 98th Annual Meeting of the American Society for Microbiology, p. 481.Google Scholar
  21. Baer, M.L., A.J. Schoeffield, D. Serio, C. Frederick, W. Buchanan, M. Challmes and H.N. Williams. 1994. Interaction of halophilic bdello-vibrios with an attached Vibrio vulnificus community. 94th Annual Meeting of the American Society for Microbiology, p. 322.Google Scholar
  22. Bak, F. and N. Pfennig. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans, new species by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147: 184–189.CrossRefGoogle Scholar
  23. Bak, F and N. Pfennig. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 24. Int. J. Syst. Bacteriol. 38: 136–137.CrossRefGoogle Scholar
  24. Bak, F and F. Widdel. 1986. Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfo-bacterium indolicum gen. nov., sp. nov. Arch. Microbiol. 146: 170–176.CrossRefGoogle Scholar
  25. Bak, F and F Widdel. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 24. Int. J. Syst. Bacteriol. 38: 136–137.CrossRefGoogle Scholar
  26. Balch, W.E. and R.S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-de-pendent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl. Environ. Microbiol. 32: 781–791.PubMedGoogle Scholar
  27. Bale, S.J., K. Goodman, P.A. Rochelle, J.R. Marchesi, J.C. Fry, A.J. Weightman and R.J. Parkes. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47: 515–521.CrossRefPubMedGoogle Scholar
  28. Balsalobre, J.M., R.M. Ruizvazquez and F.J. Murillo. 1987. Light induction of gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 84: 2359–2362.CrossRefPubMedGoogle Scholar
  29. Barel, G. and E. Jurkevitch. 2001. Analysis of phenotypic diversity among hostindependent mutants of Bdellovibrio bacteriovorus 109 J. Arch. Microbiol. 176: 211–216.CrossRefGoogle Scholar
  30. Baron, E.J. 1997. Bilophila wadsworthia: a unique gram-negative anaerobic rod. Anaerobe 3: 83–86.CrossRefPubMedGoogle Scholar
  31. Baron, E.J., G. Ropers, P. Summanen and R.J. Courcol. 1993. Bactericidal activity of selected antimicrobial agents against Bilophila wadsworthia and Bacteroides gracilis. Clin. infect. Dis. 16: S339–S343.CrossRefPubMedGoogle Scholar
  32. Baron, E.J., P. Summanen, J. Downes, M.C. Roberts, H. Wexler and S.M. Finegold. 1989. Bilophila wadsworthia, gen. nov. and sp. nov., a unique Gram-negative anaerobic rod recovered from appendicitis specimens and human faeces. J. Gen. Microbiol. 135: 3405–3411.PubMedGoogle Scholar
  33. Bartosch, S., I. Wolgast, E. Spieck and E. Bock. 1999. Identification of nitrite-oxidizing bacteria with monoclonal antibodies recognizing the nitrite oxidoreductase. Appl. Environ. Microbiol. 65: 4126–4133.PubMedGoogle Scholar
  34. Baur, E. 1905. Myxobakterien studien. Arch. Protistenkd. 5: 92–121.Google Scholar
  35. Beeder, J., T. Torsvik and T. Lien. 1995. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164: 331–336.CrossRefPubMedGoogle Scholar
  36. Beeder, J., T. Torsvik and T. Lien. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 57. Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  37. Behmlander, R.M. and M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173: 7810–7821.PubMedGoogle Scholar
  38. Behrens, H., J. Flossdorf and H. Reichenbach. 1976. Base composition of deoxyribonucleic acid from Nannocystis exedens (Myxobacterales). Int. J. Syst. Bacteriol. 26: 561–562.CrossRefGoogle Scholar
  39. Beijerinck, M.W. 1895. Uber Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Orig. 1: 1–9; 49–59; 104–114.Google Scholar
  40. Bell, R.G. and D.J. Latham. 1975. Influence of NaCl, Ca2+. and Mg2+ on the growth of marine Bdellovibrio spp. Estuar. Coast. Mar. Sci. 3: 381–384.CrossRefGoogle Scholar
  41. Bender, H. 1963. Untersuchungen an Myxococcus xanthus. II. Mitteilung. Partielle Lyse von Pullularia pullulans und einigen echten Hefen durch ein extracelluläres Enzymsystem. Arch. Microbiol. 45: 407–422.Google Scholar
  42. Berkeley, M.J. 1857. Introduction to Cryptogamic Botany, H. Bailliere, London. 313, 315.Google Scholar
  43. Berkeley, M.J. 1874. Notices of North American fungi. Grevillea 3: 4–64.Google Scholar
  44. Berkeley, M.J. and C.E. Broome. 1873. Enumeration of the fungi of Ceylon. J. Linn. Soc. Lond. Bot. 14: 96.Google Scholar
  45. Bernard, D., G. Verschraegen, G. Claeys, S. Lauwers and P. Rosseel. 1994. Bilophila wadsworthia bacteremia in a patient with gangrenous appendicitis. Clin. Infect. Dis. 18: 1023–1024.CrossRefPubMedGoogle Scholar
  46. Bernheimer, J., A.J. Schoeffield, M. Baer and B.D. Tall. 1993. Predation of a biofilm community by halophilic bdellovibrios. 93rd Annual Meeting of the American Society for Microbiology, p. 301.Google Scholar
  47. Beyer, P. and H. Kleinig. 1985. In vitro synthesis of C15–C60 polyprenols in a cell-free system of Myxococcus fulvus and determination of chain length by high performance liquid chromatography. Methods En-zymol. 110: 299–303.CrossRefGoogle Scholar
  48. Biebl, H. and N. Pfennig. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112: 115–117.CrossRefPubMedGoogle Scholar
  49. Biebl, H. and N. Pfennig. 1978. Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch. Microbiol. 117: 9–16.CrossRefGoogle Scholar
  50. Bock, E. and H.-P., Koops. 1992. The genus Nitrobacter and related genera. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Pro-karyotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 3, Springer-Verlag, New York. pp. 2302–2309.Google Scholar
  51. Bock, E., H. Sundermeyer-Klinger and E. Stackebrandt. 1983. New facultative lithoautotrophic nitrite-oxidizing bacteria. Arch. Microbiol. 136: 281–284.CrossRefGoogle Scholar
  52. Bojary, M.R. and S.A. Dhala. 1989. Coagulase of Myxococcus fulvus NK-35. 1. Purification and partial characterization. Zentbl. Mikrobiol. 144: 347–354.Google Scholar
  53. Bonch-Osmolovskaya, E.A., T.G. Sokolova, N.A. Kostrikina and G.A. Zavarzin. 1990. Desulfurella acetivorans gen. nov. and sp. nov.—a new thermophilic sulfur-reducing eubacterium. Arch. Microbiol. 153: 151–155.CrossRefGoogle Scholar
  54. Bonch-Osmolovskaya, E.A., T.G. Sokolova, N.A. Kostrikina and G.A. Zavarzin. 1993. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. 46. Int. J. Syst. Bacteriol. 43: 624–625.CrossRefGoogle Scholar
  55. Boone, D.R. and M.P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626–632.PubMedGoogle Scholar
  56. Boone, D.R. and M.P. Bryant. 1984. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 15. Int. J. Syst. Bacteriol. 34: 355–357.CrossRefGoogle Scholar
  57. Boone, D.R., R.L. Johnson and Y. Liu. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl. Environ. Microbiol. 55: 1735–1741.PubMedGoogle Scholar
  58. Boone, D.R. and L. Xun. 1987. Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl. Environ. Microbiol. 53: 1589–1592.PubMedGoogle Scholar
  59. Borchers, M. 1982. Isolierung und charakterisierung hefelytischer Enzyme aus dem gleitenden Bakterium Myxococcus fulvus MX f80 (Myxobacterales), Thesis, Technical University Braunschweig, Germany, 90 pp..Google Scholar
  60. Brandis-Heep, A., N.A. Gebhardt, R.K. Thauer, F. Widdel and N. Pfennig. 1983. Anaerobic acetate oxidation to carbon dioxide by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch. Microbiol. 136: 222–229.CrossRefGoogle Scholar
  61. Brandt, K.K. and K. Ingvorsen. 1997. Desulfobacter halotolerans sp. nov., a halotolerant acetate-oxidizing sulfate-reducing bacterium isolated from sediments of Great Salt Lake, Utah. Syst. Appl. Microbiol. 20: 366–373.CrossRefGoogle Scholar
  62. Brandt, K.K. and K. Ingvorsen. 1998. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 64. Int. J. Syst. Bacteriol. 48: 327–328.CrossRefGoogle Scholar
  63. Brandt, K.K., F. Vester, A.N. Jensen and K. Ingvorsen. 2001. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb. Ecol. 41: 1–11.PubMedGoogle Scholar
  64. Brandt K., K., B.K.C. Patel and K. Ingvorsen. 1999. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfate-reducing bacterium isolated from sediments of the Great Salt Lake. Int. J. Syst. Bacteriol. 49: 193–200.CrossRefPubMedGoogle Scholar
  65. Brauman, A., J.F. Köenig, J. Dutreix and J.L. Garcia. 1990. Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, Cubitermes speciosus. Antonie Leeuwenhoek 58: 271–275.CrossRefPubMedGoogle Scholar
  66. Bremaud, L., S. Laalami, B. Derijard and Y. Cenatiempo. 1997. Translation initiation factor IF2 of the myxobacterium Stigmatella aurantiaca: Presence of a single species with an unusual N-terminal sequence. J. Bacteriol. 179: 2348–2355.PubMedGoogle Scholar
  67. Brentlinger, K.L., S. Hafenstein, C.R. Novak, B.A. Fane, R. Borgon, R. McKenna and M. Agbandje-McKenna. 2002. Microviradae, a family divided: Isolation, characterization and genome sequence of phiMH2K, a bacteriophage of the obligate intracellular parasite bacterium Bdellovibrio bacteriovorus. J. Bacteriol. 184: 1089–1094.CrossRefPubMedGoogle Scholar
  68. Breton, A.M. and J.F. Guespin-Michel. 1987. Escherichia coli pH 2.5 acid phosphate and β-lactamase TEM2 are secreted into the medium by Myxococcus xanthus. FEMS Microbiol. Lett. 40: 183–188.Google Scholar
  69. Breton, A.M., S. Jaoua and J. Guespin-Michel. 1985. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J. Bacteriol. 161: 523–528.PubMedGoogle Scholar
  70. Bretscher, A.P. and D. Kaiser. 1978. Nutrition of Myxococcus xanthus, a fruiting myxobacterium. J. Bacteriol. 133: 763–768.PubMedGoogle Scholar
  71. Breznak, J.A. and R.N. Costilow. 1994. Physiochemical factors in growth. In Gerhardt, Murray, Wood and Krieg (Editors), Methods for General and Molecular Bacteriology, American Society for Microbiology,Washington, D.C. pp. 137–154.Google Scholar
  72. Brown, N.L., R.P. Burchard, D.W. Morris, J.H. Parish, N.D. Stow and C. Tsopanakis. 1976. Phage and defective phage of strains of Myxococcus. Arch. Microbiol. 108: 271–279.CrossRefPubMedGoogle Scholar
  73. Brown, N.L. and J.H. Parish. 1976. Extrachromosomal DNA in chloramphenicol resistant Myxococcus strains. J. Gen. Microbiol. 93: 63–68.CrossRefPubMedGoogle Scholar
  74. Bryant, M.P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324–1328.PubMedGoogle Scholar
  75. Bryant, M.P. 1973. Nutritional requirements of the predominant rumen cellulolytic bacteria. Fed. Proc. 32: 1809–1813.PubMedGoogle Scholar
  76. Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1987. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov. Arch. Microbiol. 148: 264–274.CrossRefGoogle Scholar
  77. Brysch, K., C. Schneider, G. Fuchs and F. Widdel. 1988. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 26. Int. J. Syst. Bacteriol. 38: 328–329.CrossRefGoogle Scholar
  78. Burchard, R.P. and M. Dworkin. 1966. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91: 1305–1313.PubMedGoogle Scholar
  79. Burchard, R.P. and H. Voelz. 1972. Bacteriophage infection of Myxococcus xanthus during cellular differentiation and vegetative growth. Virology 48: 555–566..CrossRefPubMedGoogle Scholar
  80. Burger, A., G. Drews and R. Ladwig. 1968. Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch. Mikrobiol. 61: 261–279.CrossRefPubMedGoogle Scholar
  81. Burnham, J.C., S.A. Collart and M.J. Daft. 1984. Myxococcal predation of the cyanobacterium Phormidium luridum in aqueous environments. Arch. Microbiol. 137: 220–225.CrossRefGoogle Scholar
  82. Burnham, J.C., S.A. Collart and B.W. Highison. 1981. Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch. Microbiol. 129: 285–294.CrossRefGoogle Scholar
  83. Burnham, J.C. and S.F. Conti. 1984. Genus Bdellovibrio. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 118–124.Google Scholar
  84. Burnham, J.C., T. Hashimoto and S.F. Conti. 1968. Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into Gramnegative bacterial hosts. J. Bacteriol. 96: 1366–1381.PubMedGoogle Scholar
  85. Burnham, J.C., T. Hashimoto and S.F. Conti. 1970. Ultrastructure and cell division of a facultatively parasitic strain of Bdellovibrio bacteriovorus. J. Bacteriol. 101: 997–1004.PubMedGoogle Scholar
  86. Caccavo, F., Jr., D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz and M.J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60: 3752–3759.PubMedGoogle Scholar
  87. Caillon, E., B. Lubochinsky and D. Rigomier. 1983. Occurrence of dialkyl ether phospholipids in Stigmatella aurantiaca DW4. J. Bacteriol. 153: 1348–1351.PubMedGoogle Scholar
  88. Cammack, R., G. Fauque, J.J.G. Moura andJ. LeGall. 1984. ESR studies of cytochrome c 3 from Desulfovibrio desulfuricans strain Norway 4: midpoint potentials of the 4 hemes and interactions with ferredoxin and colloidal sulfur. Biochim. Biophys. Acta 784: 68–74.CrossRefGoogle Scholar
  89. Campbell, L.L., M.A. Kasprzycki and J.R. Postgate. 1966. Desulfovibrio africanus sp. n., a new dissimilatory sulfate-reducing bacterium. J. Bacteriol. 92: 1122–1127.PubMedGoogle Scholar
  90. Campos, J.M., J. Geisselsoder and D.R. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 167–178.CrossRefPubMedGoogle Scholar
  91. Campos, J.M. and D.R. Zusman. 1975. Regulation of development in Myxococcus xanthus: Effect of 3′:5′-cyclic AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. U.S.A. 72: 518–522.CrossRefPubMedGoogle Scholar
  92. Caumette, P. 1993. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia (Basel) 49: 473–481.CrossRefGoogle Scholar
  93. Chemeris, N.A., A.V. Afinogenova and T.S. Tsarikaeva. 1984. Role of carbohydrate-protein recognition in the process of Bdellovibrio attachment to host bacterial cells. Mikrobiologiya 53: 556–558.Google Scholar
  94. Christensen, B., T. Torsvik and T. Lien. 1992. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58: 1244–1248.PubMedGoogle Scholar
  95. Claros, M.C., U. Schumacher, M. Jacob, S. Hunt Gerardo, N. Kleinkauf, E.J.C. Goldstein, S.M. Finegold and A.C. Rodloff. 1999. Characterization of Bilophila wadsworthia isolates using PCR fingerprinting. Anaerobe 5: 589–593.CrossRefGoogle Scholar
  96. Claussen, P. 1942. Eduard Jahn. Ber. Dtsch. Bot. Gesellsch. 60: (164)–(176).Google Scholar
  97. Coates, J.D., V.K. Bhupathiraju, L.A. Achenbach, M.J. McInerney and D.R. Lovley. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae—three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 51: 581–588.PubMedGoogle Scholar
  98. Coates, J.D., D.J. Ellis, E.L. Blunt-Harris, C.V. Gaw, E.E. Roden and D.R. Lovley. 1998. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Environ. Microbiol. 64: 1504–1509.PubMedGoogle Scholar
  99. Coates, J.D., D.J. Lonergan, E.J. Philips, H. Jenter and D.R. Lovley. 1995. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 164: 406–413.CrossRefPubMedGoogle Scholar
  100. Coates, J.D., E.J. Phillips, D.J. Lonergan, H. Jenter and D.R. Lovley. 1996. Isolation of Geobacter species from diverse sedimentary environments. Appl. Environ. Microbiol. 62: 1531–1536.PubMedGoogle Scholar
  101. Coder, D.M. and L.J. Goff. 1986. The host range of the chlorellavorous bacterium (“Vampirovibrio chlorellavorus”). J. Phycol. 22: 543–546.CrossRefGoogle Scholar
  102. Coder, D.M. and M.P. Starr. 1978. Antagonistic association of the chlorellavorus bacterium (”Bdellovibrio” chlorellavorus) with Chlorella vulgaris. Curr. Microbiol. 1: 59–64.CrossRefGoogle Scholar
  103. Cohn, F. 1875. Untersuchungen uber Bakterien II. Beitr. Biol. Pflanz. 1875 1 (Heft 3): 141–207.Google Scholar
  104. Coletta, P.L. and P.G.G. Miller. 1986. The extracellular proteases of Myxo-coccus xanthus. FEMS Microbiol. Lett. 37: 203–207.CrossRefGoogle Scholar
  105. Collins, M.D. and F. Widdel. 1986. Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst. Appl. Microbiol. 8: 8–18.CrossRefGoogle Scholar
  106. Cook, A.M., H. Laue and F. Junker. 1999. Review — microbial desulfonation. FEMS Microbiol. Rev. 22: 399–419.CrossRefGoogle Scholar
  107. Cooper, D.M. and C.J. Gebhart. 1998. Comparative aspectsof proliferative enteritis. J. Am. Vet. Med. Assoc. 212: 1446–1451.PubMedGoogle Scholar
  108. Cooper, D.M., D.L. Swanson, S.M. Barns and C.J. Gebhart. 1997. Comparison of the 16S ribosomal DNA sequences from the interacellular agents of proliferative enteritis in a hamster, deer, and ostrich with the sequence of a porcine isolate of Lawsonia intracellularis. Int. J. Syst. Bacteriol. 47: 635–639.CrossRefPubMedGoogle Scholar
  109. Cord-Ruwisch, R., B. Ollivier and J.L. Garcia. 1986. Fructose degradation by Desulfovibrio sp. in pure culture and in coculture with Methanospirillum hungatei. Curr. Microbiol. 13: 285–289.CrossRefGoogle Scholar
  110. Coucke, P. and J.P. Voets. 1967. The mineral requirements of Polyangium cellulosum. Z. Allg. Mikrobiol. 7: 175–182.CrossRefPubMedGoogle Scholar
  111. Coucke, P.L. and J.P. Voets. 1968. Etude de la cellulolyse enzymatique par Sorangium compositum. Ann. Inst. Pasteur 115: 549–560.Google Scholar
  112. Daft, M.J., J.C. Burnham and Y. Yamamoto. 1985. Lysis of Phormidium luridum by Myxococcus fulvus in continuous flow cultures. J. Appl. Bacteriol. 59: 73–80.CrossRefGoogle Scholar
  113. Dale, C.J.H., E.K. Moses, C.C. Ong, C.J. Morrow, M.B. Reed, D. Hasse and R.A. Strugnell. 1998. Identification and sequencing of the groE operon and flanking genes of Lawsonia intracellularis: use in phylogeny. Microbiology 144: 2073–2084.CrossRefPubMedGoogle Scholar
  114. Dawid, W. 1977. Fruchtkörperbildende Myxobakterien. V. Die Polyangium-Arten: P. cellulosum, P. fumosum, P. sorediatum, P. vitellinum. Mikrokosmos 12: 364–373.Google Scholar
  115. Dawid, W. 1978. Fruchtkorperbildende Myxobacterien VI. Die Stigmatella-Arten: S. erecta, S. aurantiaca. Mikrokosmos 67: 43–50.Google Scholar
  116. Dawid, W. 1980. Fruchtkörperbildende Myxobakterien. VII. Die Chondromyces-Arten: Ch. apiculatus und Ch. lanuginosus. Mikrokosmos 69: 73–79.Google Scholar
  117. Dawid, W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 24: 403–427.CrossRefPubMedGoogle Scholar
  118. Dawid, W., C.A. Gallikowski and P. Hirsch. 1988. Psychrophilic myxobacteria from Antarctic soils. Polarforschung. 58: 271–278.Google Scholar
  119. de Bok, F.A.M., A.J.M. Stams, C. Dijkema and D.R. Boone. 2001. Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl. Environ. Microbiol. 67: 1800–1804.CrossRefPubMedGoogle Scholar
  120. de Kruyff, E. 1908. Die lebensgeschichte von Myxococcus javanensis sp.n. Zentbl. Bakteriol. 21: 385–386.Google Scholar
  121. De Soete, G. 1983. A least squares alogorithm for fitting additive trees to proximity data. Psychometrika. 48: 621–626.CrossRefGoogle Scholar
  122. De Wever, H., J.R. Cole, M.R. Fettig, D.A. Hogan and J.M. Tiedje. 2000. Reductive dehalogenation of trichloroacetic acid by Trichlorobacter thiogenes gen. nov., sp. nov. Appl. Environ. Microbiol. 66: 2297–2301.CrossRefPubMedGoogle Scholar
  123. Dehning, I. and B. Schink. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 34. Int. J. Syst. Bacteriol. 40: 320–321.CrossRefGoogle Scholar
  124. Dérijard, B., M. Benaissa, B. Lubochinsky and Y. Cenatiempo. 1989. Evidence for a membrane-associated GTP-binding protein in Stigmatella aurantiaca, a prokaryotic cell. Biochem. Biophys. Res. Commun. 158: 562–568.CrossRefPubMedGoogle Scholar
  125. DerVartanian, D.V. 1994. Desulforubidin: dissimilatory, high-spin sulfite reductase of Desulfomicrobium species. Methods Enzymol. 243: 270– 276.CrossRefPubMedGoogle Scholar
  126. Deutsch, A. 1999. Principles of biological pattern formation: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24: 115–120.CrossRefGoogle Scholar
  127. Devereux, R., M. Delaney, F. Widdel and D.A. Stahl. 1989. Natural relationships among sulfate-reducing eubacteria. J. Bacteriol. 171: 6689–6695.PubMedGoogle Scholar
  128. Devereux, R., S.H. He, C.L. Doyle, S. Orkland, D.A. Stahl, J. Le Gall and W.B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172: 3609–3619.PubMedGoogle Scholar
  129. Devereux, R., M.D. Kane, J. Winfrey and D.A. Stahl. 1992. Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15: 601–609.CrossRefGoogle Scholar
  130. Dhundale, A.R., T. Furuichi, S. Inouye and M. Inouye. 1985. Distribution of multicopy single-stranded-DNA among Myxobacteria and related species. J. Bacteriol. 164: 914–917.PubMedGoogle Scholar
  131. Dhundale, A., M. Inouye and S. Inouye. 1988. A new species of multicopy single-stranded-DNA from Myxococcus xanthus with conserved structural features. J. Biol. Chem. 263: 9055–9058.PubMedGoogle Scholar
  132. Diedrich, D.L., C.A. Portnoy and S.F. Conti. 1983. Bdellovibrio possesses a prey-derived OmpF protein in its outer membrane. Curr. Micriobiol. 8: 51–56.CrossRefGoogle Scholar
  133. Dill, D., H. Eckau and H. Budzikiewicz. 1985. Neuartige cerebroside aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. 40b: 1738–1746.Google Scholar
  134. Dilling, W. and H. Cypionka. 1990. Aerobic respirationin sulfate-reducing bacteria. FEMS Microbiol. Lett. 71: 123–127.Google Scholar
  135. Dong, X., C.M. Plugge and A.J.M. Stams. 1994. Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl. Environ. Microbiol. 60: 2834–2838.PubMedGoogle Scholar
  136. Donze, D., J.A. Mayo and D.L. Diedrich. 1991. Relationships among the Bdellovibrios revealed by partial sequences of 16S ribosomal RNA. Current Microbiology 23: 115–120.CrossRefGoogle Scholar
  137. Dowling, N.J.E., F. Widdel and D.C. White. 1986. Phospholipid esterlinked fatty acid biomarkers of acetate-oxidizing sulfate-reducers and other sulfide-forming bacteria. J. Gen. Microbiol. 132: 1815–1825.Google Scholar
  138. Downes, J., J.I. Mangels, J. Holden, M.J. Ferraro and E.J. Baron. 1990. Evaluation of two single-plate incubation systems and the anaerobic chamber for the cultivation of anaerobic bacteria. J. Clin. Microbiol. 28: 246–248.PubMedGoogle Scholar
  139. Drzyzga, O., A. Schmidt and K.-H. Blotevogel. 1996. Cometabolic transformation and cleavage of nitrodiphenylamines by three newly isolated sulfate-reducing bacterial strains. Appl. Environ. Microbiol. 62: 1710–1716.PubMedGoogle Scholar
  140. Dumont, L., B. Verneuil, R. Julien and J. Wallach. 1994. Elastolytic activity of Map1, a protease from Myxococcus xanthus. Biochem. Mol. Biol. Int. 33: 535–542.PubMedGoogle Scholar
  141. Dworkin, M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84: 250–257.PubMedGoogle Scholar
  142. Dworkin, M. 1966. Biology of the myxobacteria. Annu. Rev. Microbiol. 20: 75–106.CrossRefPubMedGoogle Scholar
  143. Dworkin, M. 1969. Sensitivity of gliding bacteria to actinomycin D. J. Bacteriol. 98: 851–852.PubMedGoogle Scholar
  144. Dworkin, M. 1983. Tactic behavior of Myxococcus xanthus. J. Bacteriol. 154: 452–459.PubMedGoogle Scholar
  145. Dworkin, M. 1996. Recent advances in the social and developmental biology of the myxobacteria. Microbiol. Rev. 60: 70–102.PubMedGoogle Scholar
  146. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact mediated cell-cell interactions in Myxococcus xanthus. Bioessays 21: 590–595.CrossRefPubMedGoogle Scholar
  147. Dworkin, M. and D. Eide. 1983. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154: 437–442.PubMedGoogle Scholar
  148. Dworkin, M. and S.M. Gibson. 1964. A system for studying microbial morphogenesis: rapid formation of microcysts in Myxococcus xanthus. Science (Wash. D. C.) 146: 243–244.CrossRefGoogle Scholar
  149. Dworkin, M. and D. Kaiser. 1993. Myxobacteria II, American Society for Microbiology, Washington, D.C.Google Scholar
  150. Dworkin, M. and D.J. Niederpruem. 1964. Electron transport system in vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 87: 316–322.PubMedGoogle Scholar
  151. Eckau, H., D. Dill and H. Budzikiewicz. 1984. Neuartige ceramide aus Cystobacter fuscus (Myxobacterales). Z. Naturforsch. 39c: 1–9. Eckersley, K. and C.S. Dow. 1980. Rhodopseudomonas blastica sp. nov.—a member of the Rhodospirillaceae. J. Gen. Microbiol. 119: 465–473.Google Scholar
  152. Ehrenreich, P. 1996. Anaerobes Wachstum neuartiger sulfatreduzierender und nitarreduzierender Bakterien auf n-Alkanen und Erdöl, University of Bremen. Shaker Verlag, Aachen.Google Scholar
  153. Ehrich, S., D. Behrens, E. Lebedeva, W. Ludwig and E. Bock. 1995. A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch. Microbiol. 164: 16–23.CrossRefPubMedGoogle Scholar
  154. Eksztejn, J. and M. Varon. 1977. Elongation and cell division in Bdellovibrio bacteriovorus. Arch. Microbiol. 114: 175–181.CrossRefPubMedGoogle Scholar
  155. El Fantroussi, S., J. Mahillon, H. Naveau and S.N. Agathos. 1997. Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested PCR monitoring. Appl. Environ. Microbiol.63: 806– 811.PubMedGoogle Scholar
  156. El Fantroussi, S., H. Naveau and S.N. Agathos. 1998. Anaerobic dechlor-inating bacteria. Biotechnol. Prog. 14: 167–188.CrossRefPubMedGoogle Scholar
  157. Evers, S., M. Weizenegger, W. Ludwig, B. Schink and K.H. Schleifer. 1993. The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus. Syst. Appl. Microbiol. 16: 216–218.CrossRefGoogle Scholar
  158. Falkler, W.A.J., H.N. Williams and C.N. Smoot. 1979. Antigenicity of marine and terrestrial bdellovibrios. 79th Annual Meeting of the American Society for Microbiology, p. 188.Google Scholar
  159. Fardeau, M.L., B. Ollivier, A. Soubrane, P. Sauve, G. Prensier, J.L. Garcia and J.P. Belaich. 1993. Determination of the G + C content of 2 Syntrophus buswellii strains by ultracentrifugation techniques. Curr. Microbiol. 26: 185–189.CrossRefGoogle Scholar
  160. Farez-Vidal, M.E., A. Fernandez-Vivas andJ.M. Arias. 1990. Amylase programming during the life cycle of Myxococcus coralloides. J. Appl. Bacteriol. 69: 119–124.CrossRefGoogle Scholar
  161. Fauque, G., D. Herve and J. LeGall. 1979. Structure-function relationship in hemoproteins: the role of cytochrome c 3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch. Microbiol. 121: 261–264.CrossRefPubMedGoogle Scholar
  162. Fautz, E., G. Rosenfelder and L. Grotjahn. 1979. Iso-branched 2-hydroxy and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J. Bacteriol. 140: 852–858.PubMedGoogle Scholar
  163. Feio, M.J., I.B. Beech, M. Carepo, J.M. Lopes, C.W.S. Cheung, R. Franco, J. Guezennec, J.R. Smith, J.I. Mitchell, J.J.G. Moura and A.R. Lino. 1998. Isolation and characterization of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe 4: 117–130.CrossRefPubMedGoogle Scholar
  164. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle.Google Scholar
  165. Fernandez-Vivas, A., C. de Haro, J.M. ARias and E. Montoya. 1983. Detection of guanosine 5′-diphosphate 3′-diphosphate in Myxococcus coralloides D vegetative cells. FEMS Microbiol. Lett. 20: 17–22.Google Scholar
  166. Filer, D., E. Rosenberg and S.H. Kindler. 1973. Aspartokinase of Myxococcus xanthus: “Feedback stimulation” by required amino acids. J. Bacteriol. 115: 23–28.PubMedGoogle Scholar
  167. Finck, G. 1950. Biologische und stoffwechselphysiologische Studien an Myxococcaceen. Arch. Microbiol. 15: 358–388.Google Scholar
  168. Fink, J.M. and J.F. Zissler. 1989. Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J. Bacteriol. 171: 2028–2032.PubMedGoogle Scholar
  169. Finster, K. and F. Bak. 1993. Complete oxidation of propionate, valerate, succinate, and other organic compounds by newly isolated types of marine, anaerobic, mesophilic, gram-negative, sulfur-reducing eubac-teria. Appl. Environ. Microbiol. 59: 1452–1460.PubMedGoogle Scholar
  170. Finster, K., F. Bak and N. Pfennig. 1994. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch. Microbiol. 161: 328–332.CrossRefGoogle Scholar
  171. Finster, K., W. Liesack and B. Thamdrup. 1998. Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl. Environ. Microbiol. 64: 119–125.PubMedGoogle Scholar
  172. Finster, K., W. Liesack and B. Thamdrup. 2000. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 76. Int. J. Syst. Bacteriol. 50: 1699–1700.Google Scholar
  173. Fluegel, W. 1963. Simple method for demonstrating myxobacterial slime. J. Bacteriol. 85: 1173–1174.PubMedGoogle Scholar
  174. Foster, H.A. andJ.H. Parish. 1973. Ribosomes, ribosomal subunits and ribosomal proteins from Myxococcus xanthus. J. Gen. Microbiol. 75: 391–400.CrossRefGoogle Scholar
  175. Fraleigh, P.C. and J.C. Burnham. 1988. Myxococcal predation on cyanobacterial populations—Nutrient effects. Limnol. Oceanogr. 33: 476– 483.CrossRefGoogle Scholar
  176. Freese, A., H. Reichenbach and H. Lünsdorf. 1997. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J. Bacteriol. 179: 1246–1252.PubMedGoogle Scholar
  177. Friedberg, D. 1977. Effect of light on Bdellovibrio bacteriovorus. J. Bacteriol. 131: 399–404.PubMedGoogle Scholar
  178. Friedrich, M. and B. Schink. 1995. Isolation and characterization of a desulforubidin-containing sulfate-reducing bacterium growing with glycolate. Arch. Microbiol. 164: 271–279.CrossRefGoogle Scholar
  179. Friedrich, M., N. Springer, W. Ludwig and B. Schink. 1996. Phylogentic positions of Desulfofustis glycolicus gen. nov., sp. nov., and Syntrophobotulus glycolicus gen. nov., sp. nov., two new strict anaerobes growing with glycolic acid. Int. J. Syst. Bacteriol. 46: 1065–1069.CrossRefPubMedGoogle Scholar
  180. Frisk, C.S. and J.E. Wagner. 1977. Experimental hamster enteritis: an electron microscopic study. Am. J. Vet. Res. 38: 1861–1868.PubMedGoogle Scholar
  181. Fründ, C. and Y. Cohen. 1992. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58: 70–77.PubMedGoogle Scholar
  182. Fry, J.C. and D.G. Staples. 1974. The occurrence and role of Bdellovibrio bacteriovorus in polluted river water. Water Res. 8: 1029–1035.CrossRefGoogle Scholar
  183. Fry, J.C. and D.G. Staples. 1976. Distribution of Bdellovibrio bacteriovorus in sewage works, river waters, and sediments. Appl. Environ. Microbiol. 31: 469–474.PubMedGoogle Scholar
  184. Fudou, R., Y. Jojima, T. Iizuka and S. Yamanaka. 2002. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol. 48: 109–116.CrossRefPubMedGoogle Scholar
  185. Fujitani, S., T. Komano and S. Inouye. 1991. A unique repetitive DNA sequence in the Myxococcus xanthus genome. J. Bacteriol. 173: 2125–2127.PubMedGoogle Scholar
  186. Fukui, M., A. Teske, B. Assmus, G. Muyzer and F. Widdel. 1999. Physiology, phylogenetic relationships, and ecology of filamentous sulfate-reducing bacteria (genus Desulfonema). Arch. Microbiol. 172: 193–203.CrossRefPubMedGoogle Scholar
  187. Gaitatzis, N., A. Hans, R. Müller and S. Beyer. 2001. The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3-1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J. Biochem. (Tokyo) 129: 119–124.CrossRefGoogle Scholar
  188. Galushko, A.S. and E.P. Rozanova. 1994. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 49. Int. J. Syst. Bacteriol. 44: 370–371.CrossRefGoogle Scholar
  189. Galván, A., F. de Castro and D. Fernandez-Galiano. 1987. Ultrastructure of the fruiting body of Stigmatella erecta (Myxobacterales). Trans Am. Microsc. Soc. 106: 89–93.CrossRefGoogle Scholar
  190. Galván, A., M.A. Marcotegui and F. Decastro. 1992. Ultrastructure of natural and induced myxospores of Archangium gephyra. Can. J. Microbiol. 38: 130–134.CrossRefGoogle Scholar
  191. Gebhardt, N.A., D. Linder and R.K. Thauer. 1983. Anaerobic acetate oxidation to carbon dioxide by Desulfobacterpostgatei. 2. Evidence from 14C-labeling studies of the operation of the citric acid cycle. Arch. Microbiol. 136: 230–233.CrossRefGoogle Scholar
  192. Gebhardt, N.A., R.K. Thauer, D. Linder, P.M. Kaulfers and N. Pfennig. 1985. Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch. Microbiol. 141: 392–398.CrossRefGoogle Scholar
  193. Gebhart, C.J., S.M. Barns, S. McOrist, G.-F. Lin and G.H.K. Lawson. 1993. Ileal symbiont intracellularis, an obligate intracellular bacterium of porcine intestines showing a relationship to Desulfovibrio species. Int. J. Syst. Bacteriol. 43: 533–538.CrossRefPubMedGoogle Scholar
  194. Gebhart, C.J., G.F. Lin, S.M. McOrist, G.H. Lawson and M.P. Murtaugh. 1991. Cloned DNA probes specific for the intracellular Campylobacter-like organism of porcine proliferative enteritis. J. Clin. Microbiol. 29: 1011–1015.PubMedGoogle Scholar
  195. Gebhart, C.J., S. McOrist, G.H. Lawson, J.E. Collins and G.E. Ward. 1994. Specific in situ hybridization of the intracellular organism of porcine proliferative enteropathy. Vet. Pathol. 31: 462–467.CrossRefPubMedGoogle Scholar
  196. Geisselsoder, J., J.M. Campos and D.R. Zusman. 1978. Physical characterization of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119: 179–189.CrossRefPubMedGoogle Scholar
  197. Geitler, L. 1925. Uber Polyangium parasiticum n.sp., eine submerse, parasitische Myxobacteriacee. Arch. Protistenkd. 50: 67–88.Google Scholar
  198. Gelvan, I., M. Varon and E. Rosenberg. 1987. Cell-density-dependent killing of Myxococcus xanthus by Autocide Amv. J. Bacteriol. 169: 844– 849.PubMedGoogle Scholar
  199. Gerardo, S.H., M. Marina, D.M. Citron, M.C. Claros, M.K. Hudspeth and E.J. Goldstein. 1997. Bilophila wadsworthia clinical isolates compared by polymerase chain reaction fingerprinting. Clin. Infect. Dis. 25: S291–S294.CrossRefGoogle Scholar
  200. Gerth, K., N. Bedorf, G. Hofle, H. Irschik and H. Reichenbach. 1996. Epothilons A and B: antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria). Production, physico-chemical and biological properties. J. Antibiot. 49: 560–563.CrossRefPubMedGoogle Scholar
  201. Gerth, K., N. Bedorf, H. Irschik, G. Hofle and H. Reichenbach. 1994. The soraphens—a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). 1. Soraphen a(1-Alpha) -fermentation, isolation, biological properties. J. Antibiot. 47: 23–31.CrossRefPubMedGoogle Scholar
  202. Gerth, K., R. Metzger and H. Reichenbach. 1993. Induction of myxos-pores in Stigmatella aurantiaca (Myxobacteria)—Inducers and inhibitors of myxospore formation, and mutants with a changed sporulation behavior. J. Gen. Microbiol. 139: 865–871.CrossRefGoogle Scholar
  203. Gerth, K. and H. Reichenbach. 1978. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales). 1. General characterization of system. Arch. Microbiol. 117: 173–182.CrossRefGoogle Scholar
  204. Gerth, K. and H. Reichenbach. 1986. Determination of bacterial am-monia pools using Myxococcus virescens as an example. Anal. Biochem. 152: 78–82.CrossRefPubMedGoogle Scholar
  205. Gerth, K. and H. Reichenbach. 1994. Induction of myxospores in Stigmatella aurantiaca (Myxobacteria)—Analysis of inducer–inducer and inducer-inhibitor interactions by dose-response curves. Microbiology 140: 3241–3247.CrossRefGoogle Scholar
  206. Gerth, K., W. Trowitzsch, G. Piehl, R. Schultze and J. Lehmann. 1984. Inexpensive media for mass cultivation of myxobacteria. Appl. Microbiol. Biotechnol. 19: 23–28.CrossRefGoogle Scholar
  207. Gherna, R.L. 1994. Culture preservation. In Gerhardt, Murray, Wood and Krieg (Editors), Methods for General and Molecular Bacteriology, 2nd Ed., American Society for Microbiology, Washington, D.C. pp. 278–292.Google Scholar
  208. Glomp, I., P. Saulnier, J. Guespinmichel and H.U. Schairer. 1988. Transfer of IncP plasmids into Stigmatella aurantiaca leading to insertional mutants affected in spore development. Mol. Gen. Genet. 214: 213–217.CrossRefPubMedGoogle Scholar
  209. Gnosspelius, G. 1978. Purification and properties of an extracellular protease from Myxococcus virescens. J. Bacteriol. 133: 17–25.PubMedGoogle Scholar
  210. Gogotova, G.I. and M.B. Vainshtein. 1989. Description of sulfate reducing bacterium Desulfobacterium macestii sp. nov., which is capable of autotrophic growth. Mikrobiologiya 58: 64–68.Google Scholar
  211. González, F., J.M. Arias and E. Montoya. 1987. Phosphatase activities in the life cycle of Myxococcus coralloides D. J. Gen. Microbiol. 133: 2327–2332.CrossRefGoogle Scholar
  212. González, F., A. Fernández-Vivas, J.M. Arias and E. Montoya. 1990. Poly-phosphate glucokinase and ATP glucokinase activities in Myxococcus coralloides D. Arch. Microbiol. 154: 438–442.CrossRefGoogle Scholar
  213. González, F., A. Vargas, J.M. Arias and E. Montoya. 1991. Phosphatase activity during development cycle of Myxococcus xanthus. Can. J. Microbiol. 37: 74–77.CrossRefGoogle Scholar
  214. Gray, K.M. and E.G. Ruby. 1990. Prey-derived signals regulating duration of the developmental growth phase of Bdellovibrio bacteriovorus. J. Bacteriol. 172: 4002–4007.PubMedGoogle Scholar
  215. Grilione, P. 1968. Serological reactions of some higher myxobacteria. J. Bacteriol. 95: 1202–1204.PubMedGoogle Scholar
  216. Grimm, K. 1967. Clone cultures of Archangium violaceum. Arch. Mikrobiol. 57: 283–284.CrossRefPubMedGoogle Scholar
  217. Grimm, K. 1978. Comparison of spontaneous, UV-induced, and nitro-soguanidine-induced mutability to drug resistance in myxobacteria. J. Bacteriol. 135: 748–753.PubMedGoogle Scholar
  218. Grimm, K. 1980. Mutation to acriflavine resistance in some myxobacteria. Microbios. 27: 193–206.PubMedGoogle Scholar
  219. Guether, D.L., G.J. Osterhout, J.D. Dick and H.N. Williams. 1993. Analysis of fatty acid composition of Bdellovibrio isolates. 93rd Annual Meeting of the American Society for Microbiology, p. 391.Google Scholar
  220. Guether, D.L. and H.N. Williams. 1992. Reactions of Bdellovibrio isolates in miniature rapid test systems. 92nd Annual Meeting of the American Society for Microbiology, 372.Google Scholar
  221. Guether, D.L. and H.N. Williams. 1993. Antibiogram characterization of aquatic and terrestrial Bdellovibrio isolates. 93rd Annual Meeting of the American Society for Microbiology, 391.Google Scholar
  222. Harmsen, H.J.M., H.M.P. Kengen, A.D.L. Akkermans and A.J.M. Stams. 1995. Phylogenetic analysis of two syntrophic propionate oxidizing bacteria in enrichments cultures. Syst. Appl. Microbiol. 18: 67–73.CrossRefGoogle Scholar
  223. Harmsen, H.J.M., B.L.M. van Kuijk, C.M. Plugge, A.D.L. Akkermans, W.M. De Vos and A.J.M. Stams. 1998. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 48: 1383–1387.CrossRefPubMedGoogle Scholar
  224. Harmsen, H.J.M., B. Wullings, A.D.L. Akkermans, W. Ludwig and A.J.M. Stams. 1993. Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch. Microbiol. 160: 238– 240.PubMedGoogle Scholar
  225. Hartzell, P. and D. Kaiser. 1991. Upstream gene of the Mgl operon controls the level of MglA protein in Myxococcus xanthus. J. Bacteriol. 173: 7625–7635.PubMedGoogle Scholar
  226. Hashimoto, T., D.L. Diedrich and S.F Conti. 1970. Isolation of a bacteriophage for Bdellovibrio bacteriovorus. J. Virol. 5: 97–98.PubMedGoogle Scholar
  227. Heidelbach, M., H. Skladny and H.U. Schairer. 1992. Purification of the DNA-dependent RNA polymerase from the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 174: 2733–2735.PubMedGoogle Scholar
  228. Heidelbach, M., H. Skladny and H.U. Schairer. 1993. Heat-shock and development induce synthesis of a low molecular weight stress-responsive protein in the myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175: 7479–7482.PubMedGoogle Scholar
  229. Hensgens, C.M.H., M.E. Nienhuis-Kuiper and T.A. Hansen. 1994. Effects of tungstate on the growth of Desulfovibrio gigas NCIMB 9332 and other sulfate-reducing bacteria with ethanol as a substrate. Arch. Microbiol. 162: 143–147.CrossRefGoogle Scholar
  230. Hentschel, U., J. Hopke, M. Horn, A.B. Friedrich, M. Wagner, J. Hacker and B.S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68: 4431–4440.CrossRefPubMedGoogle Scholar
  231. Heppner, B., G. Zellner and H. Diekmann. 1992. Start-up and operation of a propionate-degrading fluidized-bed reactor. Appl. Microbiol. Biotechnol. 36: 810–816.CrossRefGoogle Scholar
  232. Hespell, R.B., G.F. Miozzari and S.C. Rittenberg. 1975. Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 123: 481–491.PubMedGoogle Scholar
  233. Hespell, R.B., B.J. Paster, T.J. Macke and C.R. Woese. 1983. The origin and phylogeny of the bdellovibrios. Syst. Appl. Microbiol. 5: 196–203.CrossRefGoogle Scholar
  234. Hirsch, H.J., H. Tsai and I. Geffers. 1978. Purification and effects of fulvocin-C, a bacteriocin from Myxococcus fulvus MX-F16. Arch. Microbiol. 119: 279–286.CrossRefPubMedGoogle Scholar
  235. Hodgkin, J. and D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales). 2 gene systems control movement. Mol. Gen. Genet. 171: 177–191.CrossRefGoogle Scholar
  236. Hodgson, D.A. 1993. Light-induced carotenogenesis in Myxococcus xanthus: genetic analysis of the carR region. Mol. Microbiol. 7: 471–488.CrossRefPubMedGoogle Scholar
  237. Höfle, G. and H. Reichenbach. 1995. The biosynthetic potential of the myxobacteria. In Kuhn, W. and H.P. Fiedler (Editors), Sekundär-metabolismus bei Mikroorganismen. Beiträge zur Forschung, Attempto Verlag, Tübingen, pp. 61–78.Google Scholar
  238. Hofmann, D.U. 1989. Physiologisch Studien an Sorangium cellulosum, So ce12, Thesis, Technical University Braunschweig, Germany. 160 pp.Google Scholar
  239. Holdeman, L., R.W. Kelly and W.E.C. Moore. 1984. Family I. Bacteroidaceae. In Krieg and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 1, The Williams & Wilkins Co., Baltimore. pp. 602–631.Google Scholar
  240. Homma, Y. 1984. Perforation and lysis of hyphae of Rhizoctonia solani and conidia of Cochliobolus miyabeanus by soil myxobacteria. Phytopathology 74: 1234–1239.CrossRefGoogle Scholar
  241. Hook, L.A., J.M. Larkin and E.R. Brockman. 1980. Isolation, characterization, and emendation of description of Angiococcus disciformis (Thaxter 1904) Jahn 1924 and proposal of a neotype strain. Int. J. Syst. Bacteriol. 30: 135–142.CrossRefGoogle Scholar
  242. Horbach, S., H. Sahm and R. Welle. 1993. Isoprenoid biosynthesis in bacteria-2 different pathways. FEMS Microbiol. Lett. 111: 135–140.CrossRefPubMedGoogle Scholar
  243. Houwen, F.P., C. Dijkema, C.H.H. Schoenmakers, A.J.M. Stams and A.J.B. Zehnder. 1987. C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol. Lett. 41: 269–274.CrossRefGoogle Scholar
  244. Houwen, F.P., J. Plokker, C. Kijkema and A.J.M. Stams. 1990. Syntrophic propionate oxidation. In Bélaich, Bruschi and Garcia (Editors), Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, Plenum Press, New York.Google Scholar
  245. Hsu, M.Y., S. Inouye and M. Inouye. 1989. Structural requirements of the RNA precursor for the biosynthesis of the branched RNA-linked multicopy single-stranded DNA of Myxococcus xanthus. J. Biol. Chem. 264: 6214–6219.PubMedGoogle Scholar
  246. Hu, H.L., J.E. Peterson and E.R. Brockman. 1985. Stalked sporangia of Polyangium rugiseptum. Int. J. Syst. Bacteriol. 35: 362–363.CrossRefGoogle Scholar
  247. Hu, L.T., L. Binyang and S. Qin. 1990. Isolation of Bdellovibrio bacteriovorus from human stool. J. Chinese Microbiol. Epidemiol. 10: 95–98.Google Scholar
  248. Humphrey, B.A., M.R. Dickson and K.C. Marshall. 1979. Physicochemical and in situ observations on the adhesion of gliding bacteria to surfaces. Arch. Microbiol. 120: 231–238.CrossRefGoogle Scholar
  249. Hungate, R.E. 1969. A roll tube method for the cultivation of strict anaerobes. Methods Microbiol. 3B: 117–132.CrossRefGoogle Scholar
  250. Hüttermann, A. 1969. Studies on a bacteriolytic enzyme of Archangium violaceum(Myxobacteriales). II. Partial purification and properties of the enzyme. Arch. Mikrobiol. 67: 306–317.CrossRefPubMedGoogle Scholar
  251. Iizuka, T., Y. Jojima, R. Fudou and S. Yamanaka. 1998. Isolation of myxobacteria from the marine environment. FEMS Microbiol. Lett. 169: 317–322.CrossRefPubMedGoogle Scholar
  252. Imachi, H., Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi and H. Harada. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1729–1735.CrossRefPubMedGoogle Scholar
  253. Imhoff-Stuckle, D. and N. Pfennig. 1983. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini, sp. nov. Arch. Microbiol. 136: 194–198.CrossRefGoogle Scholar
  254. Impey, C.S. and B.A. Phillips. 1991. Maintenance of anaerobic bacteria. In Kirsop and Doyle (Editors), Maintenance of Microorganisms and Cultured Cells, A Manual of Laboratory Methods, 2nd Ed., Academic Press Ltd., London. pp. 71–80.Google Scholar
  255. Imshenetski, A.A. and L. Solntseva. 1936. On aerobic cellulose decomposing bacteria. Izv. Akad. Nauk S.S.S.R. Ser. Viol. 6: 1115–1172.Google Scholar
  256. Inouye, S. 1984. Identification of a development specific promoter of Myxococcus xanthus. J. Mol. Biol. 174: 113–120.CrossRefPubMedGoogle Scholar
  257. Inouye, S. 1990. Cloning and DNA sequence of the gene coding for the major sigma factor from Myxococcus xanthus. J. Bacteriol. 172: 80–85.PubMedGoogle Scholar
  258. Inouye, S., M.Y. Hsu, S. Eagle and M. Inouye. 1989. Reverse transcriptase associated with the biosynthesis of the branched RNA Linked msDNA in Myxococcus xanthus. Cell 56: 709–717.CrossRefPubMedGoogle Scholar
  259. Irschik, H. and H. Reichenbach. 1985. An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides(Myxobacterales). Arch. Microbiol. 142: 40–44.CrossRefGoogle Scholar
  260. Isaksen, M.F. and A. Teske. 1996. Desulforhopalus vacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166: 160–168.CrossRefGoogle Scholar
  261. Isaksen, M.F. and A. Teske. 1999. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 70. Int. J. Syst. Bacteriol. 49: 935–936.CrossRefGoogle Scholar
  262. Jackson, B.E., V.K. Bhupathiraju, R.S. Tanner, C.R. Woese and M.J. McInerney. 1999. Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch. Microbiol. 171: 107–114.CrossRefPubMedGoogle Scholar
  263. Jacobi, C.A., B. Assmus, H. Reichenbach and E. Stackebrandt. 1997. Molecular evidence for association between the sphingobacterium-like organism “ Candidatus comitans” and the myxobacterium Chondromyces crocatus. Appl. Environ. Microbiol. 63: 719–723.PubMedGoogle Scholar
  264. Jacobi, C.A., H. Reichenbach, B.J. Tindall and E. Stackebrandt. 1996. “ Candidatus comitans” a bacterium living coculture with Chondromyces crocatus (myxobacteria). Int. J. Syst. Bacteriol. 46: 119–122.CrossRefPubMedGoogle Scholar
  265. Jahn, E. 1911. Myxobacteriales. Kryptogamenflora der Mark Brandenburg 5: 187–206.Google Scholar
  266. Jahn, E. 1924. Beitrage zur botanischen Protistologie I. Die Polyangiden, Verlag Gebruder Borntraeger, Leipzig. 107 pp. + 102 plates.Google Scholar
  267. Janssen, G.R., J.W. Wireman and M. Dworkin. 1977. Effect of temperature on the growth of Myxococcus xanthus. J. Bacteriol. 130: 561–562.PubMedGoogle Scholar
  268. Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1996. Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch. Microbiol. 166: 184–192.CrossRefGoogle Scholar
  269. Janssen, P.H., A. Schuhmann, F. Bak and W. Liesack. 1997. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 61. Int. J. Syst. Bacteriol. 47: 601–602.CrossRefGoogle Scholar
  270. Jaoua, S., J.F. Guespinmichel and A.M. Breton. 1987. Mode of insertion of the broad host range plasmid RP4 and Its derivatives into the chromosome of Myxococcus xanthus. Plasmid 18: 111–119.CrossRefPubMedGoogle Scholar
  271. Jaoua, S., S. Neff and T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellosum and evidence for their integration into the chromosome. Plasmid 28: 157–165.CrossRefPubMedGoogle Scholar
  272. Jennings, D., P. Volpe and J.J. Tudor. 1998. Characterization and complementation of temperature-sensitive mutants of Bdellovibrio bacteriovorus 109J. 98th Annual Meeting of the American Society for Microbiology, p. 321.Google Scholar
  273. Johnson, E.A. and R.O. Jacoby. 1978. Transmissible ileal hyperplasia. II. Ultrastructure. Am. J. Pathol. 91: 451–468.PubMedGoogle Scholar
  274. Johnson, J.L. and E.J. Ordal. 1969. Deoxyribonucleic acid homology among the fruiting myxobacteria. J. Bacteriol. 3: 319–320.Google Scholar
  275. Jones, G.F., G.E. Ward, M.P. Murtaugh, G. Lin and C.J. Gebhart. 1993. Enhanced detection of intracellular organism of swine proliferative enteritis, ileal symbiont intracellularis, in feces by polymerase chain reaction. J. Clin. Microbiol. 31: 2611–2615.PubMedGoogle Scholar
  276. Jones, M.V. and V.E. Wells. 1980. S-Adenosylmethionine biosynthesis in Myxococcus xanthus. FEBS Lett. 117: 103–106.CrossRefPubMedGoogle Scholar
  277. Jones, W.J., J.P. Guyot and R.S. Wolfe. 1984. Methanogenesis from sucrose by defined immobilized consortia. Appl. Environ. Microbiol. 47: 1–6.PubMedGoogle Scholar
  278. Jukes, T.H. and R.R. Cantor. 1969. Evolution of protein molecules. In Munzo (Editor), Mammalian Protein Metabolism, Academic Press, New York. pp. 21–132.Google Scholar
  279. Kaiser, D. 1979. Social gliding Is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. U.S.A. 76: 5952–5956.CrossRefPubMedGoogle Scholar
  280. Kaiser, D. 1991. Genetic systems in myxobacteria. Method Enzymol. 204: 357–372.CrossRefGoogle Scholar
  281. Kaiser, D. 1998. How and why myxobacteria talk to each other. Curr. Opin. Microbiol. 1: 663–668.CrossRefPubMedGoogle Scholar
  282. Kaiser, D. and M. Dworkin. 1975. Gene transfer to a myxobacterium by Escherichia coli phage P1. Science 187: 653–654.CrossRefPubMedGoogle Scholar
  283. Kaiser, D. and L. Kroos. 1993. Intercellular signalling. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 257–283.Google Scholar
  284. Kalchbrenner, C. and M.C. Cooke. 1880. South African fungi. Grevillea 9: 2.Google Scholar
  285. Kasten, M.J., J.E. Rosenblatt and D.R. Gustafson. 1992. Bilophila wadsworthia bacteremia in two patients with hepatic abscesses. J. Clin. Microbiol. 30: 2502–2503.PubMedGoogle Scholar
  286. Kelley, J.I., B.F. Turng, H.N. Williams and M.L. Baer. 1997. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic Bdellovibrios. Appl. Environ. Microbiol. 63: 84–90.PubMedGoogle Scholar
  287. Kelley, J.I. and H.N. Williams. 1992. Bdellovibrios in Callinectes sapidus, the blue crab. Appl. Environ. Microbiol. 58: 1408–1410.PubMedGoogle Scholar
  288. Kessel, M. and M. Shilo. 1976. Relationship of Bdellovibrio elongation and fission to host cell size. J. Bacteriol. 128: 477–480.PubMedGoogle Scholar
  289. Kim, Y.J., K. Furihata, S. Yamanaka, R. Fudo and H. Seto. 1991. Isolation and structural elucidation of stipiamide, a new antibiotic effective to multidrug-resistant cancer cells. J. Antibiot. 44: 553–555.CrossRefPubMedGoogle Scholar
  290. Klein, D.A. and L.E. Casida. 1967. Occurrence and enumeration of Bdellovibrio bacteriovorus in soil capable of parasitizing Escherichia coli and indigenous soil bacteria. Can. J. Microbiol. 13: 1235–1241.CrossRefPubMedGoogle Scholar
  291. Kleinig, H. 1972. Membranes from Myxococcus fulvus (Myxobacterales) containing carotenoid glucosides. I. Isolation and composition. Biochim. Biophys. Acta 274: 489–498.CrossRefPubMedGoogle Scholar
  292. Kleinig, H. and H. Reichenbach. 1973. A new carotenoid glucoside ester from Chondromyces apiculatus. Phytochemistry (Oxf) 12: 2483–2485.CrossRefGoogle Scholar
  293. Kleinig, H., H. Reichenbach and H. Achenbach. 1970. Carotenoid pigments of Stigmatella aurantiaca (Myxobacterales). II. Acylated carotenoid glucosides. Arch. Mikrobiol. 74: 223–234.CrossRefPubMedGoogle Scholar
  294. Kleinig, H., H. Reichenbach, H. Achenbach and J. Stadler. 1971. Carotenoid pigments of Sorangium compositum (Myxobacterales) including two new carotenoid glucoside esters and two new carotenoid rhamnosides. Arch. Mikrobiol. 78: 224–233.CrossRefPubMedGoogle Scholar
  295. Knittel, J.P., D.I. Larson, D.L. Harris, M.B. Roof and S. McOrist. 1996. United States isolates of Lawsonia intracellularis from porcine proliferative enteropathy resemble European isolates. Swine Health Prod. 3: 118–122.Google Scholar
  296. Knoblauch, C., K. Sahm and B.B. Jorgensen. 1999. Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigrus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov and Desulfotalea arctica sp. nov. Int. J. Syst. Bacteriol. 49: 1631–1643.CrossRefPubMedGoogle Scholar
  297. Kofler, L. 1913. Die Myxobakterien der Umgebung von Wien. Sitzungs-ber. Akad. Wiss. Math. Naturwiss. Kl. Abt. I. 122: 845–876.Google Scholar
  298. Kohl, W., A. Gloe and H. Reichenbach. 1983. Steroids from the myxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.Google Scholar
  299. Kohring, L.L., D.B. Ringelberg, R. Devereux, D.A. Stahl, M.W. Mittelman and D.C. White. 1994. Comparison of phylogenetic-relationships based on phospholipid fatty-acid profiles and ribosomal-RNA sequence similarities among dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 119: 303–308.CrossRefPubMedGoogle Scholar
  300. Kolb, S., S. Seeliger, N. Springer, W. Ludwig and B. Schink. 1998. The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers. Syst. Appl. Microbiol. 21: 340– 345.CrossRefPubMedGoogle Scholar
  301. Komano, T., N. Brown, S. Inouye and M. Inouye. 1982. Phosphorylation and methylation of proteins during Myxococcus xanthus spore formation. J. Bacteriol. 151: 114–118.PubMedGoogle Scholar
  302. Kottel, R.H., K. Bacon, D. Clutter and D. White. 1975. Coats from Myxococcus xanthus: characterization and synthesis during myxospore differentiation. J. Bacteriol. 124: 550–557.PubMedGoogle Scholar
  303. Kottel, R. and D. White. 1974. Autolytic activity associated with myxospore formation in Myxococcus xanthus. Arch. Microbiol. 95: 91–95.CrossRefGoogle Scholar
  304. Kramer, T.T. and J.M. Westergaard. 1977. Antigenicity of bdellovibrios. Appl. Environ. Microbiol. 33: 967–970.PubMedGoogle Scholar
  305. Kreke, B. and H. Cypionka. 1995. Energetics of sulfate transport in Desulfomicrobium baculatum. Arch. Microbiol. 163: 307–309.CrossRefGoogle Scholar
  306. Krekeler, D., P. Sigalevich, A. Teske, H. Cypionka and Y. Cohen. 1997. A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.CrossRefGoogle Scholar
  307. Krumholz, L.R. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47: 1262–1263.CrossRefGoogle Scholar
  308. Krumholz, L.R., S.H. Harris, S.T. Tay and J.M. Suflita. 1999. Characterization of two subsurface hydrogen utilizing bacteria: Desulfomicrobium hypogeium sp. nov., Acetobacterium psammolithicum sp. nov. and their ecological roles. Appl. Environ. Microbiol. 65: 2300–2306.PubMedGoogle Scholar
  309. Krzemieniewska, H. and S. Krzemieniewski. 1926. Miksobakterje Polski (Die Myxobakterien von Polen). Acta Soc. Bot. Pol. 4: 1–54.Google Scholar
  310. Krzemieniewska, H. and S. Krzemieniewski. 1927. Miksobakterje Polski. Uzupelnienie. Acta Soc. Bot. Pol. 5: 79–98.Google Scholar
  311. Krzemieniewska, H. and S. Krzemieniewski. 1928. Morfologja komórki miksobacteryi (Zur Morphologie der Myxobakterienzelle). Acta Soc. Bot. Pol. 5: 46–90.Google Scholar
  312. Krzemieniewska, H. and S. Krzemieniewski. 1930. Miksobakterje Polski. Crtrzecia. Acta Soc. Bot. Pol. 7: 250–173.Google Scholar
  313. Krzemieniewska, H. and S. Krzemieniewski. 1946. Myxobacteria of the species Chondromyces Berkeley and Curtis. Bull. Int. Acad. Cracovie (Acad. Pol. Sci.) Ser. B. Sci. Nat. I: 31–48.Google Scholar
  314. Kuenen, J.G. and S.C. Rittenberg. 1975. Incorporation of long-chain fatty acids of the substrate organism by Bdellovibrio bacteriovorus during intraperiplasmic growth. J. Bacteriol. 121: 1145–1157.PubMedGoogle Scholar
  315. Kuever, J., M. Könneke, A. Galushko and O. Drzyzga. 2001. Reclassifi-cation of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 51: 171–177.PubMedGoogle Scholar
  316. Kühlwein, H. and E. Gallwitz. 1958. Polyangium violaceum nov. spec. ein Beitrag zur Kenntnis der Myxobakterien. Arch. Mikrobiol. 31: 139–145.CrossRefGoogle Scholar
  317. Kühlwein, H. and H. Reichenbach. 1964. Ein neuer Vertreter der Myxobakteriengattung Archangium Jahn. Arch. Mikrobiol. 48: 179–184.CrossRefGoogle Scholar
  318. Kuner, J.M. and D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. U.S.A. 78: 425–429.CrossRefPubMedGoogle Scholar
  319. Kunze, B., N. Bedorf, W. Kohl, G. Höfle and H. Reichenbach. 1989. Myxochelin-a, a new iron-chelating compound from Angiococcus disciformis (Myxobacterales)—Production, isolation, physicochemical and biological properties. J. Antibiot. 42: 14–17.CrossRefPubMedGoogle Scholar
  320. Kunze, B., R. Jansen, G. Höfle and H. Reichenbach. 1994. Crocacin, a new electron transport inhibitor from Chondromyces crocatus (Myxobacteria)—Production, isolation, physicochemical and biological properties. J. Antibiot. 47: 881–886.CrossRefPubMedGoogle Scholar
  321. Kunze, B., R. Jansen, L. Pridzun, E. Jurkiewicz, G. Hunsmann, G. Höfle and H. Reichenbach. 1993. Thiangazole, a new thiazoline antibiotic from Polyangium sp. (Myxobacteria)—Production, antimicrobial activity and mechanism of action. J. Antibiot. 46: 1752–1755.CrossRefPubMedGoogle Scholar
  322. Kunze, B., W. Trowitzsch-Kienast, G. Höfle and H. Reichenbach. 1992. Nannochelins A, B and C, new iron-chelating compounds from Nannocystis exedens (myxobacteria). Production, isolation, physico-chemical and biological properties. J. Antibiot. 45: 147–150.CrossRefPubMedGoogle Scholar
  323. Kuspa, A., D. Vollrath, Y. Cheng and D. Kaiser. 1989. Physical mapping of the Myxococcus xanthus genome by random cloning in yeast artificial chromosomes. Proc. Natl. Acad. Sci. U.S.A. 86: 8917–8921.CrossRefPubMedGoogle Scholar
  324. Kützing, F.T. 1847. Diagnosen und Bemerkungen zu oder kritischen Algen. Bot. Ztg. 5: 22–25.Google Scholar
  325. Laanbroek, H.J., T. Abee and I.L. Voogd. 1982. Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch. Microbiol. 133: 178–184.CrossRefGoogle Scholar
  326. Laanbroek, H.J. and H.J. Geerligs. 1983. Influence of clay particles (illite) on substrate utilization by sulfate-reducing bacteria. Arch. Microbiol. 134: 161–163.CrossRefGoogle Scholar
  327. Laanbroek, H.J. and N. Pfennig. 1981. Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch. Microbiol. 128: 330–335.CrossRefPubMedGoogle Scholar
  328. Laanbroek, H.J., L.J. Stal and H. Veldkamap. 1978. Utilization of hydrogen and formate by Campylobacter spec. under aerobic and anaerobic conditions. Arch. Microbiol. 119: 99–102.CrossRefPubMedGoogle Scholar
  329. Lambina, V.A., A.V. Afinogenova, S.R. Penabad, S.M. Konovalova and L.V. Andreev. 1983. A new species of the exoparasitic bacterium, Micavibrio, destroying gram-negative bacteria. Mikrobiologiya 52: 777–780.Google Scholar
  330. Lambina, V.A., A.V. Afinogenova, S. Romai Penabad, S.M. Konovalova and A.P. Pushkareva. 1982. Micavibrio admirandus gen. et sp. nov. Mikrobiologiya 51: 114–117.Google Scholar
  331. Lampky, J.R. 1976. Ultrastructure of Polyangium cellulosum. J. Bacteriol. 126: 1278–1284.PubMedGoogle Scholar
  332. Lampky, J.R. and E.R. Brockman. 1977. Fluorescence of Myxococcus stipitatus. Int. J. Syst. Bacteriol. 27: 161–161.CrossRefGoogle Scholar
  333. Lampson, B.C. 1993. Retroelements of the myxobacteria. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington. D.C. pp. 109–128.Google Scholar
  334. Lampson, B.C., M. Inouye and S. Inouye. 1991. Survey of multicopy single-stranded DNAs and reverse transcriptase genes among natural isolates of Myxococcus xanthus. J. Bacteriol. 173: 5363–5370.PubMedGoogle Scholar
  335. Lampson, B.C. and S.A. Rice. 1997. Repetitive sequences found in the chromosome of the myxobacterium Nannocystis exedens are similar to msDNA: A possible retrotransposition event in bacteria. Mol. Microbiol. 23: 813–823.CrossRefPubMedGoogle Scholar
  336. Langendijk, P.S., E.M. Kulik, H. Sandmeier, J. Meyer and J.S. van der Hoeven. 2001. Isolation of Desulfomicrobium orale sp. nov. and Desulfovibrio strain NY682, oral sulfate-reducing bacteria involved in human periodontal disease. Int. J. Syst. Evol. Bacteriol. 51: 1035–1044.CrossRefGoogle Scholar
  337. Laue, B.E. and R.E. Gill. 1994. Use of a phase variation-specific promoter of Myxococcus xanthus in a strategy for isolating a phase-locked mutant. J. Bacteriol. 176: 5341–5349.PubMedGoogle Scholar
  338. Laue, H., K. Denger and A.M. Cook. 1997. Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl. Environ. Microbiol. 63: 2016–2021.PubMedGoogle Scholar
  339. Laue, H., M. Friedrich, J. Ruff and A.M. Cook. 2001. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J. Bacteriol. 183: 1727–1733.CrossRefPubMedGoogle Scholar
  340. Lawson, G.H., R.A. Mackie, D.G. Smith and S. McOrist. 1995. Infection of cultured rat enterocytes by ileal symbiont intracellularis depends on host cell function and actin polymerisation. Vet. Microbiol. 45: 339–350.CrossRefPubMedGoogle Scholar
  341. Lawson, G.H., S. McOrist, S. Jasni and R.A. Mackie. 1993. Intracellular bacteria of porcine proliferative enteropathy: cultivation and maintenance in vitro. J. Clin. Microbiol. 31: 1136–1142.PubMedGoogle Scholar
  342. Le Gall, J. 1963. A new species of Desulfovibrio. J. Bacteriol. 86: 1120.Google Scholar
  343. Lee, J.P., C.S. Yi, J. LeGall and H.D. Peck, Jr. 1973. Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J. Bacteriol. 115: 453–455.PubMedGoogle Scholar
  344. Letouvet-Pawlak, B., S. Barray, K. Lavalfavre and J.F. Guespin-Michel. 1993. Kinetics of secretion of recombinant acid phosphatase by Myxococcus xanthus—a sensitive probe for the assay of protein translocation through the envelopes. J. Gen. Microbiol. 139: 3243–3252.CrossRefGoogle Scholar
  345. Li, X.Z., J. Liu and P.J. Gao. 1996. A simple method for the isolation of cellulolytic myxobacteria and cytophagales. J. Microbiol. Methods 25: 43–47.CrossRefGoogle Scholar
  346. Lie, T.J., M.L. Clawson, W. Godchaux and E.R. Leadbetter. 1999. Sulfidogenesis from 2-aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate-reducing bacterium, Desulforhopalus singaporensis sp. nov. Appl. Environ. Microbiol. 65: 3328–3334.PubMedGoogle Scholar
  347. Lie, T.J., M.L. Clawson, W. Godchaux and E.R. Leadbetter. 2000. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 76. Int. J. Syst. Bacteriol. 50: 1699–1700.Google Scholar
  348. Lien, T. and J. Beeder. 1997. Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 1124–1128.CrossRefPubMedGoogle Scholar
  349. Lien, T., M. Nadsen, I.H. Steen and K. Gjerdevik. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48: 469–474.CrossRefPubMedGoogle Scholar
  350. Liesack, W. and K. Finster. 1994. Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int. J. Syst. Bacteriol. 44: 753–758.CrossRefGoogle Scholar
  351. Lièvre, H. 1927. Les myxobactéries de l’Afrique du Nord. Bull. Soc. Hist. Nat. Afrique Nord. 18: 186–189.Google Scholar
  352. Link, H.F. 1809. Observationes in Ordines plantarum naturales. Dissertatio Ima complectens Amandarum ordines Epiphytas, Mucedines, Gastromycos et Fungos. Magaz. Ges. Nat. Freunde Berlin 3: 3–42.Google Scholar
  353. Lipski, A., E. Spieck, A. Makolla and K. Altendorf. 2001. Fatty acid profiles of nitrite-oxidizing bacteria reflect their phylogenetic heterogeneity. Syst. Appl. Microbiol. 24: 377–384.CrossRefPubMedGoogle Scholar
  354. Liu, Y., D.L. Balkwill, H.C. Aldrich, G.R. Drake and D.R. Boone. 1999. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49: 545–556.CrossRefPubMedGoogle Scholar
  355. Ljungdahl, L.G. and J. Wiegel. 1986. Working with anaerobic bacteria. In Demain and Solomon (Editors), Manual of Industrial Microbiology and Biotechnology, American Society for Microbiology, Washington, D.C. pp. 84–96.Google Scholar
  356. Loebeck, M.E. and E.J. Ordal. 1957. The nuclear cycle of Myxococcus fulvus. J. Gen. Microbiol. 16: 76–85.CrossRefPubMedGoogle Scholar
  357. Lonergan, D.J., H.L. Jenter, J.D. Coates, E.J.P. Phillips, T.M. Schmidt and D.R. Lovely. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402–2408.PubMedGoogle Scholar
  358. Loubinoux, J., F. Mory, I.A.C. Pereira and A.E. Le Faou. 2000. Bacteremia caused by a strain of Desulfovibrio related to the provisionally named Desulfovibrio fairfieldensis. J. Clin. Microbiol. 38: 931–934.PubMedGoogle Scholar
  359. Loubinoux, J., F.M.A. Valente, I.A.C. Pereira, A. Costa, P.A.D. Grimont and A.E. Le Faou. 2002. Reclassification of the only species of the genus Desulfomonas, Desulfomonas pigra, as Desulfovibrio piger comb. nov. Int. J. Syst. Evol. Microbiol. 52: 1305–1308.CrossRefPubMedGoogle Scholar
  360. Louie, T.M., S. Ni, L. Xun and W.W. Mohn. 1997. Purification, characterization and gene sequence analysis of a novel cytochrome c coinduced with reductive dechlorination activity in Desulfomonile tiedjei DCB-1. Arch. Microbiol. 168: 520–527.CrossRefPubMedGoogle Scholar
  361. Lovley, D.R. 2000. Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. In Dworkin, Falkow, Rosenberg, Schleifer and Stackebrandt (Editors), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3 Ed., Vol. release 3.4, Springer-Verlag, New York. www.prokaryotes.com.Google Scholar
  362. Lovley, D.R. and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51: 683–689.PubMedGoogle Scholar
  363. Lovley, D.R. and E.J.P. Phillips. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472–1480.PubMedGoogle Scholar
  364. Lovley, D.R. and E.J.P. Phillips. 1992. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58: 850–856.PubMedGoogle Scholar
  365. Lovley, D.R., J.F. Stolz, G.L. Nord and E.J.P. Phillips. 1987. Anaerobic production of magnetite by a dissimilatory iron- reducing microorganism. Nature 330: 252–254.CrossRefGoogle Scholar
  366. Ludwig, W., K.H. Schleifer, H. Reichenbach and E. Stackebrandt. 1983. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobacter fuscus, Sorangium cellulosum, and Nannocystis exedens. Arch. Microbiol. 135: 58–62.CrossRefGoogle Scholar
  367. Lünsdorf, H. and H. Reichenbach. 1989. Ultrastructural details of the apparatus of gliding motility of Myxococcus fulvus (Myxobacterales). J. Gen. Microbiol. 135: 1633–1641.Google Scholar
  368. Lünsdorf, H. and H.U. Schairer. 2001. Frozen motion of gliding bacteria outlines inherent features of the motility apparatus. Microbiology 147: 939–947.PubMedGoogle Scholar
  369. Lünsdorf, H., H.U. Schairer and M. Heidelbach. 1995. Localization of the stress protein SP21 in indole-induced spores, fruiting bodies, and heat-shocked cells of Stigmatella aurantiaca. J. Bacteriol. 177: 7092–7099.PubMedGoogle Scholar
  370. Magot, M., P. Caumette, J.M. Desperrier, R. Matheron, C. Dauga, F. Grimont and L. Carreau. 1992. Desulfovibrio longus sp. nov., a sulfatereducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42: 398–403.CrossRefPubMedGoogle Scholar
  371. Magrini, V., D. Salmi, D. Thomas, S.K. Herbert, P.L. Hartzell and P. Youderian. 1997. Temperate Myxococcus xanthus phage Mx8 encodes DNA adenine methylase, Mox. J. Bacteriol. 179: 4254–4263.Google Scholar
  372. Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. McCaughey and C.R. Woese. 1996. The ribosomal database project (RDP). Nucleic Acids Res. 24: 82–85.CrossRefPubMedGoogle Scholar
  373. Maidak, B.L., G.J. Olsen, N. Larsen, R. Overbeek, M.J. McCaughey and C.R. Woese. 1997. The RDP (Ribosomal Database Project). Nucleic Acids Res. 25: 109–111.CrossRefPubMedGoogle Scholar
  374. Mamkaeva, K.A. 1966. Observations on the lysis of cultures of the genus Chlorella. Mikrobiologiya 35: 853–859.Google Scholar
  375. Mandel, M. and E.R. Leadbetter. 1965. Deoxyribonucleic acid base composition of myxobacteria. J. Bacteriol. 90: 1795–1796.PubMedGoogle Scholar
  376. Manz, W., M. Eisenbrecher, T.R. Neu and U. Szewzyk. 1998. Abundance and spatial organization of Gram-negative sulfate- reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43–61.CrossRefGoogle Scholar
  377. Marbach, A., M. Varon and M. Shilo. 1976. Properties of marine bdellovibrios. Microb. Ecol. 2: 284–295.CrossRefGoogle Scholar
  378. Margalith, P. 1962. Bacteriolytic principles of Myxococcus fulvus. Nature 196: 1335–1336.CrossRefGoogle Scholar
  379. Martin, S., E. Sodergren, T. Masuda and D. Kaiser. 1978. Systematic isolation of transducing phages for Myxococcus xanthus. Virology 88: 44– 53.CrossRefPubMedGoogle Scholar
  380. Martinez-Cañamero, M.M., J. Muñoz, A.L. Extremera and J.M. Arias. 1991. Deoxyribonuclease activities in Myxococcus coralloides D. J. Appl. Bacteriol. 71: 170–175.CrossRefPubMedGoogle Scholar
  381. Masson, P.J. and J.F. Guespin-Michel. 1988. An extracellular blood-anticoagulant glycopeptide produced exclusively during vegetative growth by Myxococcus xanthus and other myxobacteria is not co-regulated with other extracellular macromolecules. J. Gen. Microbiol. 134: 801–806.PubMedGoogle Scholar
  382. Matin, A. and S.C. Rittenberg. 1972. Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on Pseudomonas putida and Escherichia coli. J. Bacteriol. 111: 664–673.PubMedGoogle Scholar
  383. Mayer, D. 1967. Ernährungsphysiologische untersuchungen an Archangium violaceum. Arch. Mikrobiol. 58: 186–200.CrossRefPubMedGoogle Scholar
  384. Mayer, H. and H. Reichenbach. 1978. Restriction endonucleases—general survey procedure and survey of gliding bacteria. J. Bacteriol. 136: 708–713.PubMedGoogle Scholar
  385. McBride, M.J., P. Hartzell and D.R. Zusman. 1993. Motility and tactic behavior of Myxococcus xanthus. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 285–305.Google Scholar
  386. McBride, M.J. and D.R. Zusman. 1989. Trehalose accumulation in vegetative cells and spores of Myxococcus xanthus. J. Bacteriol. 171: 6383–6386.PubMedGoogle Scholar
  387. McCann, M.P., H.T. Solimeo, F. Cusick, Jr., B. Panunti and C. McCullen. 1998. Developmentally regulated protein synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. Can. J. Microbiol. 44: 50–55.PubMedGoogle Scholar
  388. McCurdy, H.D. 1970. Studies on the taxonomy of the Myxobacterales. II. Polyangium and the demise of the Sorangiaceae. Int. J. Syst. Bacteriol. 20: 283–296.CrossRefGoogle Scholar
  389. McCurdy, H.D. 1989. Genus I. Cystobacter. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 2150–2153.Google Scholar
  390. McCurdy, H.D. and B.T. Khouw. 1969. Studies on Stigmatella brunnea. Can. J. Microbiol. 15: 731–738.CrossRefPubMedGoogle Scholar
  391. McCurdy, H.D. and S. Wolf. 1967. Deoxyribonucleic acid base compositions of fruiting Myxobacterales. Can. J. Microbiol. 13: 1707–1708.CrossRefPubMedGoogle Scholar
  392. McDougall, R., J. Robson, D. Paterson and W. Tee. 1997. Bacteremia caused by a recently described novel Desulfovibrio species. J. Clin. Microbiol. 35: 1805–1808.PubMedGoogle Scholar
  393. McInerney, M.J. and M.P. Bryant. 1981. Review of nethane fermentation fundamentals. In Wise (Editor), Fuel Gas Production from Biomass, CRC Press, Boca Raton. pp. 19–46.Google Scholar
  394. McInerney, M.J., M.P. Bryant and N. Pfennig. 1979. Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch. Microbiol. 122: 129–136.CrossRefGoogle Scholar
  395. McNeil, K.E. and V.B.D. Skerman. 1972. Examination of myxobacteria by scanning electron microscopy. Int. J. Syst. Bacteriol. 22: 243–250.CrossRefGoogle Scholar
  396. McOrist, S., R. Boid, G.H. Lawson and I. McConnell. 1987. Monoclonal antibodies to intracellular Campylobacter-like organisms of the porcine proliferative enteropathies. Vet. Rec. 121: 421–422.CrossRefPubMedGoogle Scholar
  397. McOrist, S., S. Jasni, R.A. Mackie, N. MacIntyre, N. Neef and G.H. Lawson. 1993. Reproduction of porcine proliferative enteropathy with pure cultures of ileal symbiont intracellularis. Infect. Immun. 61: 4286– 4292.PubMedGoogle Scholar
  398. McOrist, S., G.H. Lawson, D.J. Roy and R. Boid. 1990. DNA analysis of intracellular Campylobacter-like organisms associated with the porcine proliferative enteropathies: novel organism proposed. FEMS Microbiol. Lett. 69: 189–193.CrossRefGoogle Scholar
  399. McOrist, S., R.A. Mackie, G.H. Lawson and D.G. Smith. 1997. In vitro interactions of Lawsonia intracellularis with cultured enterocytes. Vet. Microbiol. 54: 385–392.CrossRefPubMedGoogle Scholar
  400. McOrist, S., L. Roberts, S. Jasni, A.C. Rowland, G.H. Lawson, C.J. Gebhart and B. Bosworth. 1996. Developed and resolving lesions in porcine proliferative enteropathy: possible pathogenic mechanisms. J. Comp. Pathol. 115: 35–45.CrossRefPubMedGoogle Scholar
  401. McVittie, A. and S.A. Zahler. 1962. Chemotaxis in Myxococcus. Nature 194: 1299–1300.CrossRefGoogle Scholar
  402. Miller, J.D.A., P.M. Neumann, L. Elford and D.S. Wakerley. 1970. Malate dismutation by Desulfovibrio. Arch. Mikrobiol. 71: 214–219.CrossRefPubMedGoogle Scholar
  403. Miller, J.D.A. and A.M. Saleh. 1964. A sulphate-reducing bacterium containing cytochrome c 3 but lacking desulfoviridin. J. Gen. Microbiol. 37: 419–423.CrossRefPubMedGoogle Scholar
  404. Miroshnichenko, M.L., G.A. Gongadze, A.M. Lysenko and E.A. Bonch-Osmolovskaya. 1994. Desulfurella multipotens sp. nov, a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec Archipelago, New Zealand). Arch. Microbiol. 161: 88–93.Google Scholar
  405. Miroshnichenko, M.L., G.A. Gongadze, A.M. Lysenko and E.A. Bonch-Osmolovskaya. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List No. 57. Int. J. Syst. Bacteriol. 46: 625–626.CrossRefGoogle Scholar
  406. Miroshnichenko, M.L., F.A. Rainey, M. Rhode and E.A. Bonch-Osmolovskaya. 1999. Hippea maritima gen. nov., sp. nov, a new genus of thermophilic, sulfur-reducing bacterium from submarine hot vents. Int. J. Syst. Bacteriol. 49: 1033–1038.CrossRefPubMedGoogle Scholar
  407. Mishustin, E.N. 1938. Cellulose decomposing myxobacteria. Mikrobiologiya 7: 427–444.Google Scholar
  408. Miyashiro, S., S. Yamanaka, S. Takayama and H. Shibai. 1988. Novel macrocyclic antibiotics: megovalicins A, B, C, D, G and H. I. Screening of antibiotics-producing myxobacteria and production of megovalicins. J. Antibiot. (Tokyo) 41: 433–438.CrossRefGoogle Scholar
  409. Mochida, C., Y. Hirakata, J. Matsuda, F. Iori, Y. Ozaki, M. Nakano, K. Hamaguchi, K. Izumikawa, T. Yamaguchi, K. Tomono, S. Maesaki, Y. Yamada, S. Kohno and S. Kamihira. 1998. Antimicrobial susceptibility testing of Bilophila wadsworthia isolates submitted for routine laboratory examination. J. Clin. Microbiol. 36: 1790–1792.Google Scholar
  410. Mohn, W.W. and K.J. Kennedy. 1992. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl. Environ. Microbiol. 58: 1367–1370.PubMedGoogle Scholar
  411. Mohn, W.W., T.G. Linkfield, H.S. Pankratz and J.M. Tiedje. 1990. Involvement of a collar structure in polar growth and cell division of strain DCB-1. Appl. Environ. Microbiol. 56: 1206–1211.PubMedGoogle Scholar
  412. Mohn, W.W. and J.M. Tiedje. 1990. Catabolic thiosulfate disproportion-ation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe. J. Bacteriol. 172: 2065–2070.PubMedGoogle Scholar
  413. Mohn, W.W. and J.M. Tiedje. 1992. Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507.PubMedGoogle Scholar
  414. Moore, W.E.C., J.L. Johnson and L.V. Holdeman. 1976. Emendation of Bacteroides and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubac-rium, Clostridium, and Ruminococcus. Int. J. Syst. Bacteriol. 26: 238–252.CrossRefGoogle Scholar
  415. Morikawa, Y., S. Takayama, R. Fudo, S. Yamanaka, K. Mori and A. Isogai. 1998. Absolute chemical structure of the myxobacterial pheromone of Stigmatella aurantiaca that induces the formation of its fruiting body. FEMS Microbiol. Lett. 165: 29–34.CrossRefGoogle Scholar
  416. Morris, D.W., S.R. Ogden-Swift, V. Virrankoski-Castrodeza, K. Ainley and J.H. Parish. 1978. Transduction of Myxococcus virescens by coliphage P1cm—Generation of plasmids containing both phage and myxococcus genes. J. Gen. Microbiol. 107: 73–83.CrossRefPubMedGoogle Scholar
  417. Morris, D.W. and J.H. Parish. 1976. Restriction in Myxococcus virescens. Arch. Microbiol. 108: 227–230.CrossRefPubMedGoogle Scholar
  418. Mosca, A., M. D’Alagni, R. Del Prete, G.P. De Michele, P.H. Summanen, S.M. Fingold and G. Miragliotta. 1995. Preliminary evidence of endotoxic activity of Bilophila wadsworthia. Anaerobe 1: 21–24.CrossRefPubMedGoogle Scholar
  419. Motamedi, M. and K. Pedersen. 1998. Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int. J. Syst. Bacteriol. 48: 311–315.CrossRefPubMedGoogle Scholar
  420. Mountfort, D.O., W.J. Brulla, L.R. Krumholz and M.P. Bryant. 1984. Syntrophus buswellii gen. nov., sp. nov.: a benzoate catabolizer from methanogenic ecosystems. Int. J. Syst. Bacteriol. 34: 216–217.CrossRefGoogle Scholar
  421. Moyer, C.L., F.C. Dobbs and D.M. Karl. 1995. Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl. Environ. Microbiol. 61: 1555–1562.PubMedGoogle Scholar
  422. Mucha, H., F. Lingens and W. Trösch. 1988. Conversion of propionate to acetate and methane by syntrophic consortia. Appl. Microbiol. Biotechnol. 27: 581–586.Google Scholar
  423. Mueller, J.A., A.S. Galushko, A. Kappler and B. Schink. 1999. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287–294.CrossRefGoogle Scholar
  424. Müller, R., K. Gerth, P. Brandt, H. Blöcker and S. Beyer. 2000. Identification of an l-dopa decarboxylase gene from Sorangium cellulosum So ce90. Arch. Microbiol. 173: 303–306.CrossRefPubMedGoogle Scholar
  425. Muñoz, J., J.M. Arias and E. Montoya. 1984. Production and properties of a bacteriocin from Myxococcus coralloides-D. J. Appl. Bacteriol. 57: 69–74.CrossRefGoogle Scholar
  426. Muñoz, J., F. González, M.M. Martinez-Cañamero, M.A. Goicoechea, A.L. Extremera and J.M. Arias. 1989. Deoxyribonuclease and phosphatase activities in myxobacteria. Microbios. 58: 43–47.Google Scholar
  427. Muñoz-Dorado, J., S. Inouye and M. Inouye. 1991. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a Gram-negative bacterium. Cell 67: 995–1006.CrossRefPubMedGoogle Scholar
  428. Nanninga, H.J. and J.C. Gottschal. 1986. Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol. Ecol. 38: 125– 130.CrossRefGoogle Scholar
  429. Nanninga, H.J. and J.C. Gottschal. 1987. Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl. Environ. Microbiol. 53: 802–809.PubMedGoogle Scholar
  430. Nanninga, H.J. and J.C. Gottschal. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 55. Int. J. Syst. Bacteriol. 45: 879–880.CrossRefGoogle Scholar
  431. Nelson, D.R., M.G. Cumsky and D.R. Zusman. 1981. Localization ofmyxo-bacterial hemagglutinin in the periplasmic space and on the cell surface of Myxococcus xanthus during developmental aggregation. J. Biol. Chem. 256: 2589–2595.Google Scholar
  432. Neumann, B., A. Pospiech and H.U. Schairer. 1992. Size and stability of the genomes of the myxobacteria Stigmatella aurantiaca and Stigmatella erecta. J. Bacteriol. 174: 6307–6310.PubMedGoogle Scholar
  433. Neumann, B., A. Pospiech and H.U. Schairer. 1993. A physical and genetic map of the Stigmatella aurantiaca DW4/3.1 chromosome. Mol. Microbiol. 10: 1087–1099.CrossRefPubMedGoogle Scholar
  434. Nga, D.P., D.T.C. Ha, L.T. Hien and H. Stan-Lotter. 1996. Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2: 385–392.CrossRefGoogle Scholar
  435. Nga, D.P., D.T.C. Ha, T.H. Lai and H. Stan-Lotter. 2002. In Validation of the publication of new names and new combinations previously effectively published outside the IJSEM. List No. 86. Int. J. Syst. Evol. Microbiol. 52: 1075–1076.CrossRefGoogle Scholar
  436. Nguyen, B., T. Scognamiglio and J.J. Tudor. 1997. RAPD and macrorestriction polymorphism analysis of Bdellovibrio strains. 97th Annual Meeting of the American Society for Microbiology, Miami Beach, Florida.Google Scholar
  437. Nicolas, F.J., M.L. Cayuela, I.M. Martinez-Argudo, R.M. Ruiz-Vazquez and F.J. Murillo. 1996. High mobility group I(Y )-like DNA-binding domains on a bacterial transcription factor. Proc. Natl. Acad. Sci. U.S.A. 93: 6881–6885.CrossRefPubMedGoogle Scholar
  438. Nielsen, J.T., W. Liesack and K. Finster. 1999. Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int. J. Syst. Bacteriol. 49: 859–865.CrossRefPubMedGoogle Scholar
  439. Nolte, E.M. 1957. Untersuchungen über Ernährung und Fruchtkörper-bildung von Myxobakterien. Arch. Microbiol. 28: 191–218.Google Scholar
  440. O’Connor, K.A. and D.R. Zusman. 1983. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus—Use for complementation and recombinational analyses. J. Bacteriol. 155: 317–329.PubMedGoogle Scholar
  441. Odom, J.M. and R. Singleton. 1993. The Sulfate-Reducing bacteria: Contemporary Perspectives, Springer-Verlag, New York.CrossRefGoogle Scholar
  442. Ollivier, B., P. Caumette, J.L. Garcia and R.A. Mah. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27–38.PubMedGoogle Scholar
  443. Ollivier, B., R. Cord-Ruwisch, E.C. Hatchikian and J.L. Garcia. 1988. Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149: 447–450.CrossRefGoogle Scholar
  444. Ollivier, B., R. Cord-Ruwisch, E.C. Hatchikian and J.L. Garcia. 1990. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 32. Int. J. Syst. Bacteriol. 40: 105–106.CrossRefGoogle Scholar
  445. Ollivier, B., C.E. Hatchikian, G. Prensier, J. Guezennec and J.-L. Garcia. 1991. Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. Syst. Bacteriol. 41: 74–81.CrossRefGoogle Scholar
  446. Ordal, E.J. and R.R. Rucker. 1944. Pathogenic myxobacteria. Proc. Soc. Exp. Biol. Med. 56: 15–18.CrossRefGoogle Scholar
  447. Orlowski, M., P. Martin, D. White and M.C. Wong. 1972. Changes in activity of glyoxylate cycle enzymes during myxospore development in Myxococcus xanthus. J. Bacteriol. 111: 784–790.PubMedGoogle Scholar
  448. Orlowski, M. and D. White. 1974. Intracellular proteolytic activity in developing myxospores of Myxococcus xanthus. Arch. Microbiol. 97: 347–357.CrossRefPubMedGoogle Scholar
  449. Orndorff, P.E. and M. Dworkin. 1980. Separation and properties of the cytoplasmic and outer membranes of vegetative cells of Myxococcus xanthus. J. Bacteriol. 141: 914–927.PubMedGoogle Scholar
  450. Orndorff, P., E. Stellwag, T. Starich, M. Dworkin and J. Zissler. 1983. Genetic and physical characterization of lysogeny by bacteriophage-Mx8 in Myxococcus xanthus. J. Bacteriol. 154: 772–779.PubMedGoogle Scholar
  451. Ouattara, A.S., B.K.C. Patel, J.L. Cayol, N. Cuzin, A.S. Traore and J.L. Garcia. 1999. Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio al-coholivorans. Int. J. Syst. Bacteriol. 49: 639–643.CrossRefPubMedGoogle Scholar
  452. Oude Elferink, S.J., W.M. Akkermans-van Vliet, J.J. Bogte and A.J. Stams. 1999. Desulfobacca acetoxidans gen. nov., sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic granular sludge. Int. J. Syst. Bacteriol. 49: 345–350.CrossRefPubMedGoogle Scholar
  453. Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1995. Desulforhabdus amnigenus gen. nov. sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124.CrossRefPubMedGoogle Scholar
  454. Oude Elferink, S.J.W.H., R.N. Maas, H.J.M. Harmsen and A.J.M. Stams. 1997. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 63. Int. J. Syst. Bacteriol. 47: 1274.CrossRefGoogle Scholar
  455. Oude Elferink, S.H.J.W., A. Visser, L.W. Hulshoff Pol and A.J.M. Stams. 1994. Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–126.Google Scholar
  456. Oyaizu, H. and C.R. Woese. 1985. Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst. Appl. Microbiol. 6: 257–263.CrossRefGoogle Scholar
  457. Paitan, Y., G. Alon, E. Orr, E.Z. Ron and E. Rosenberg. 1999. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J. Mol. Biol. 286: 465–474.CrossRefPubMedGoogle Scholar
  458. Papenfuss, G.F 1940. Notes on South African marine algae. Bot Not. 93: 200–226.Google Scholar
  459. Parish, J.H. 1975. Transfer of drug resistance to Myxococcus from bacteria carrying drug resistance factors. J. Gen. Microbiol. 87: 198–210.CrossRefPubMedGoogle Scholar
  460. Passador, L. and H.D. McCurdy. 1985. Cyclic nucleotides and development of Myxococcus xanthus—analysis of mutants. Curr. Microbiol. 12: 289–294.CrossRefGoogle Scholar
  461. Peace, T.A., K.V. Brock and H.F. Stills, Jr.. 1994. Comparative analysis of the 16S rDNA gene sequence of the putative agent of proliferative ileitis of hamsters. Int. J. Syst. Bacteriol. 44: 832–835.CrossRefPubMedGoogle Scholar
  462. Pereira, A.S., R. Franco, M.J. Feio, C. Pinto, J. Lampreia, M.A. Reis, J. Calvete, I. Moura, I. Beech, A.R. Lino and J.J. Moura. 1996. Characterization of representative enzymes from a sulfate reducing bacterium implicated in the corrosion of steel. Biochem. Biophys. Res. Commun. 221: 414–421.CrossRefPubMedGoogle Scholar
  463. Peterson, J.E. 1958. Two new fifty-year-old species of myxobacteria. Mycologia. 50: 628–633.CrossRefGoogle Scholar
  464. Peterson, J.E. 1959. A monocystic genus of the Myxobacterales (Schizo-mycetes). Mycologia. 51: 1–8.CrossRefGoogle Scholar
  465. Peterson, J.E. and J.C. McDonald. 1966. The demise of the myxobacterial genus Angiococcus. Mycologia. 58: 962–965.CrossRefGoogle Scholar
  466. Petit, F. and J.F. Guespin-Michel. 1992. Production of an extracellular milk-clotting activity during development in Myxococcus xanthus. J. Bacteriol. 174: 5136–5140.PubMedGoogle Scholar
  467. Pfennig, N. 1965. Anreicherungskulturen fur rote und grune Schwefelbakterien. Zentbl. Bakteriol. Parasitenkd. Infektkrankh. Hyg. Abt. I Orig. Suppl. I.: 179–189, 503–505.Google Scholar
  468. Pfennig, N. 1978. Rhodocyclus purpureus gen. nov. and sp. nov. a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28: 283–288.CrossRefGoogle Scholar
  469. Pfennig, N. and H. Biebl. 1976. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110: 3–12.CrossRefPubMedGoogle Scholar
  470. Pfennig, N. and H. Biebl. 1977. Announcement of the valid publication of new names and new combinations previously effectively published outside the IJSB. List No. 1. Int. J. Syst. Bacteriol. 27: 306.CrossRefGoogle Scholar
  471. Pfennig, N. and K.D. Lippert. 1966. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Microbiol. 55: 245–256.Google Scholar
  472. Pfennig, N. and F. Widdel. 1981. Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In Bothe and Trebst (Editors), Biology of Inorganic Nitrogen and Sulfur, Springer-Verlag, Heidelberg. pp. 169–177.CrossRefGoogle Scholar
  473. Pfennig, N., F. Widdel and H.G. Trüper. 1981. The dissimilatory sulfate-reducing bacteria. In Starr, M.P., Stolp, H.G. Trüper, A. Balows and H.G. Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, 1st Ed., Vol. 1, Springer-Verlag, Berlin. pp. 926–940.Google Scholar
  474. Pfister, D.H. 1993. Roland Thaxter and the myxobacteria. In Dworkin and Kaiser (Editors), Myxobacteria II, American Society for Microbiology, Washington, D.C. pp. 1–11.Google Scholar
  475. Pfistner, B. 1990. A one dimensional model for the swarming behaviour of myxobacteria. In Alt and Hoffmann (Editors), Biological Motion, Springer-Verlag, Heidelberg. pp. 556–0563.Google Scholar
  476. Pikuta, E.V., A.M. Lysenko and T.N. Zhilina. 1997. Distribution of De-sulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66: 216–221.Google Scholar
  477. Plaga, W. and H.U. Schairer. 1999. Intercellular signalling in Stigmatella aurantiaca. Curr. Opin. Microbiol. 2: 593–597.CrossRefPubMedGoogle Scholar
  478. Plaga, W., I. Stamm and H.U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: Purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. U.S.A. 95: 11263–11267.CrossRefPubMedGoogle Scholar
  479. Platen, H., A. Temmes and B. Schink. 1990. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov. Arch. Microbiol. 154: 355–361.CrossRefPubMedGoogle Scholar
  480. Platen, H., A. Temmes and B. Schink. 1991. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 39. Int. J. Syst. Bacteriol. 41: 580–581.CrossRefGoogle Scholar
  481. Plugge, C.M., M. Balk and A.J.M. Stams. 2002. Desulfotomaculum thermo-benzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 52: 391–399.PubMedGoogle Scholar
  482. Postgate, J.R. 1959. A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183: 481–482.CrossRefPubMedGoogle Scholar
  483. Postgate, J.R. and L.L. Campbell. 1966. Classification of Desulfovibrio species the nonsporulating sulfate-reducing bacteria. Bacteriol. Rev. 30: 732–738.PubMedGoogle Scholar
  484. Pradella, S., A. Hans, C. Sproer, H. Reichenbach, K. Gerth and S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol. 178: 484–492.CrossRefPubMedGoogle Scholar
  485. Probst, J., M. Bruschi, N. Pfennig and J. LeGall. 1977. Cytochrome c 551.5 (c 7) from Desulfuromonas acetoxidans. Biochim. Biophys. Acta 460: 58– 64.CrossRefPubMedGoogle Scholar
  486. Pronina, N.I. 1962. Description of new species and varieties of cellulose-decomposing myxobacteria. Microbiology 31: 384–390.Google Scholar
  487. Qatibi, A.I., V. Niviere and J.L. Garcia. 1991. Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2-and 1,3-propanediol. Arch. Microbiol. 155: 143–148.CrossRefGoogle Scholar
  488. Qualls, G.T., K. Stephens and D. White. 1978. Light-stimulated morphogenesis in fruiting myxobacterium Stigmatella aurantiaca. Science 201: 443–444.CrossRefGoogle Scholar
  489. Quaroni, A. and R.J. May. 1980. Establishment and characterization of intestinal epithelial cell cultures. Methods Cell Biol. 21B: 403–427.CrossRefPubMedGoogle Scholar
  490. Quehl, A. 1906. Untersuchungen über Myxobakterien. Zentbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. II 16: 9–34.Google Scholar
  491. Rabus, R., R. Nordhaus, W. Ludwig and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl. Environ. Microbiol. 59: 1444–1451.PubMedGoogle Scholar
  492. Ravenschlag, K., K. Sahm, C. Knoblauch, B.B. Jorgensen and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66: 3592–3602.CrossRefPubMedGoogle Scholar
  493. Raverdy, J. 1973. Sur l’isolement et l’activité bactériolytique de quelques myxobactéries isolées de l’eau. Water Res. 7: 687–693.CrossRefGoogle Scholar
  494. Redburn, A.C. and B.K.C. Patel. 1994. Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol. Lett. 115: 33–38.CrossRefPubMedGoogle Scholar
  495. Redburn, A.C. and B.K.C. Patel. 1995. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 55. Int. J. Syst. Bacteriol. 45: 879–880.CrossRefGoogle Scholar
  496. Rees, G.N., C.G. Harfoot and A.J. Sheehy. 1998. Amino acid degradation by the mesophilic sulfate-reducing bacterium Desulfobacterium vacuolatum. Arch. Microbiol. 169: 76–80.CrossRefPubMedGoogle Scholar
  497. Rees, G.N. and B.K.C. Patel. 2001. Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int. J. Syst. Evol. Bacteriol. 51: 1911–1916.CrossRefGoogle Scholar
  498. Reichenbach, H. 1970. Nannocystis exedens gen. nov., spec. nov., a new myxobacterium of the family Sorangiaceae. Arch. Microbiol. 70: 119–138.Google Scholar
  499. Reichenbach, H. 1999. The ecology of the myxobacteria. Environ. Microbiol. 1: 15–21.CrossRefPubMedGoogle Scholar
  500. Reichenbach, H. and M. Dworkin. 1969. Studies on Stigmatella aurantiaca (Myxobacterales). J. Gen. Microbiol. 58: 3–14.CrossRefGoogle Scholar
  501. Reichenbach, H. and M. Dworkin. 1981. The order Myxobacterales. In Starr, Stolp, Trüper, Balows and Schlegel (Editors), The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. I, Springer-Verlag, Berlin. pp. 328–355.Google Scholar
  502. Reichenbach, H. and M. Dworkin. 1992. The Myxobacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2 ed., Vol. 4, Springer-Verlag, New York. pp. 3417–3487.Google Scholar
  503. Reichenbach, H. and G. Höfle. 1993. Biologically active secondary metabolites from myxobacteria. Biotechnol. Adv. 11: 219–277.CrossRefPubMedGoogle Scholar
  504. Reichenbach, H. and G. Höfle. 1999. Myxobacteria as producers of secondary metabolites. In Grabley and Thiericke (Editors), Drug Discovery from Nature, Springer-Verlag, Berlin, Berlin. pp. 149–179.Google Scholar
  505. Reichenbach, H., H.H. Heunert and H. Kuczka. 1974. Chondromyces apiculatus (Myxobacterales): Schwarmentwicklung und Morphogenese, Encyclopaedia Cinematographica Sekt. Biologie, Göttingen. Institut fur den Wissenschaftlichen Filmen.Google Scholar
  506. Reichenbach, H. and H. Kleinig. 1971. The carotenoids of Myxococcus fulvus (Myxobacterales). Arch. Microbiol. 76: 364–380.Google Scholar
  507. Reichenbach, H. and H. Kleinig. 1972. Die Carotinoide der Myxobakterien. Zent Bakteriol Hyg I Abt. Orig. A 220: 458–463.Google Scholar
  508. Reichenbach, H., H. Voelz and M. Dworkin. 1969. Structural changes in Stigmatella aurantiaca during myxospore induction. J. Bacteriol. 97: 905–911.PubMedGoogle Scholar
  509. Reichenbecher, W. and B. Schink. 1997. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch. Microbiol. 168: 338–344.CrossRefPubMedGoogle Scholar
  510. Reichenbecher, W. and B. Schink. 1999. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 68. Int. J. Syst. Bacteriol. 49: 1–3.CrossRefGoogle Scholar
  511. Rice, T.D., H.N. Williams and B.F. Turng. 1998. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35: 256–264.CrossRefPubMedGoogle Scholar
  512. Richardson, I.R. 1990. The incidence of Bdellovibrio spp. in man-made water systems: coexistence with legionellas. J. Appl. Bacteriol. 69: 134–140.CrossRefPubMedGoogle Scholar
  513. Ringelberg, D.B., G.T. Townsend, K.A. DeWeerd, J.M. Suflita and D.C. White. 1994. Detection of the anaerobic dechlorinating microorganism Desulfomonile tiedjei in environmental matrixes by its signature lipopolysaccharide branced-long-chain hydroxy fatty acids. FEMS Microbiol. Ecol. 14: 9–18.CrossRefGoogle Scholar
  514. Rittenberg, S.C. and R.B. Hespell. 1975. Energy efficiency of intraperi-plasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 121: 1158–1165.PubMedGoogle Scholar
  515. Rittenberg, S.C. and D. Langley. 1975. Utilization of nucleoside monophosphates per se for intraperiplasmic growth of Bdellovibrio bacter-iovorus. J. Bacteriol. 121: 1137–1144.PubMedGoogle Scholar
  516. Rittenberg, S.C. and M. Shilo. 1970. Early host damage in the infection cycle of Bdellovibrio bacteriovorus. J. Bacteriol. 102: 149–160.PubMedGoogle Scholar
  517. Roden, E.E. and D.R. Lovley. 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59: 734–742.PubMedGoogle Scholar
  518. Rodrigues, F.K., V. Virrankoski-Castrodeza, J.H. Parish and K. Grimm. 1980. Isolation and characterization of new bacteriophages for Myxococcus xanthus. Arch. Microbiol. 126: 175–180.CrossRefGoogle Scholar
  519. Rooney-Varga, J.N., R.T. Anderson, J.L. Fraga, D. Ringelberg and D.R. Lovley. 1999. Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65: 3056–3063.PubMedGoogle Scholar
  520. Rosenberg, E. and M. Dworkin (Editors). 1984. Myxobacteria. Development and Cell Interactions, Springer-Verlag, New York.Google Scholar
  521. Rosenberg, E., K.H. Keller and M. Dworkin. 1977. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 129: 770–777.PubMedGoogle Scholar
  522. Rosenfelder, G., O. Lüderitz and O. Westphal. 1974. Composition of lipopolysaccharides from Myxococcus fulvus and other fruiting and non-fruiting myxobacteria. Eur. J. Biochem. 44: 411–420.CrossRefPubMedGoogle Scholar
  523. Rowland, A.C. and G.H. Lawson. 1974. Intestinal adenomatosis in the pig: immunofluorescent and electron microscopic studies. Res. Vet. Sci. 17: 323–330.PubMedGoogle Scholar
  524. Rozanova, E.P. and T.N. Nazina. 1976. A mesophilic, sulfate-reducing, rod-shaped nonspore-forming bacterium. Mikrobiologiya 45: 825– 830.Google Scholar
  525. Rozanova, E.P., T.N. Nazina and A.S. Galushko. 1988. A new genus of sulfate-reducing bacteria and the description of its new species, Desulfomicrobium apsheronum, new genus new species. Mikrobiologiya 57: 514–520.Google Scholar
  526. Rozanova, E.P., T.N. Nazina and A.S. Galushko. 1994. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 49. Int. J. Syst. Bacteriol. 44: 370–371.CrossRefGoogle Scholar
  527. Ruby, E.G. 1989. Cell-envelope modifications accompanying intracellular growth of Bdellovibrio bacteriovorus. In Moulder (Editor), Intracellular Parasitism, CRC Press, Boca Raton. pp. 17–34.Google Scholar
  528. Ruby, E.G. 1992. The genus Bdellovibrio. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed, Vol. 4, Springer-Verlag, New York. pp. 3400–3415.Google Scholar
  529. Ruby, E.G. and J.B. McCabe. 1986. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J. J. Bacteriol. 167: 1066–1070.PubMedGoogle Scholar
  530. Ruby, E.G., J.B. McCabe and J.I. Barke. 1985. Uptake of intact nucleoside monophosphates by Bdellovibrio bacteriovorus 109J. J. Bacteriol. 163: 1087–1094.PubMedGoogle Scholar
  531. Rückert, G. 1978. Förderung der Fruchtkörper-bildung von Myxococcus virescens Thaxter (Myxobacterales) in Rohkulturen durch Salzzusatz. Z. Allg. Mikrobiol. 18: 69–71.CrossRefPubMedGoogle Scholar
  532. Rückert, G. 1984. Untersuchungen zum Vorkommen von Myxobakterien in von Meerwasser beeinflussten Substraten unter besonderer Berücksichtigung der Insel Helgoland. Helgol. Meeresunters. 38: 179– 184.CrossRefGoogle Scholar
  533. Rudd, K.E. and D.R. Zusman. 1982. RNA polymerase of Myxococcus xanthus: Purification and selective transcription in vitro with bacteriophage templates. J. Bacteriol. 151: 89–105.PubMedGoogle Scholar
  534. Rueter, P., R. Rabus, H. Wilkes, F. Aeckersberg, F.A. Rainey, H.W. Jannasch and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372: 455–458.CrossRefPubMedGoogle Scholar
  535. Sager, B. and D. Kaiser. 1994. Intercellular C-aignaling and the traveling waves of myxococcus. Genes Dev. 8: 2793–2804.CrossRefPubMedGoogle Scholar
  536. Sahm, K., C. Knoblauch and R. Amann. 1999. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates inmarine arctic sediments. Appl. Environ. Microbiol. 65: 3976–3981.PubMedGoogle Scholar
  537. Samain, E., H.C. Dubourguier and G. Albagnac. 1984. Isolation and Characterization of Desulfobulbus elongatus sp. nov. from a mesophilic industrial digester. Syst. Appl. Microbiol. 5: 391–401.CrossRefGoogle Scholar
  538. Sanford, R.A., J.R. Cole, F.E. Löffler and J.M. Tiedje. 1996. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Environ. Microbiol. 62: 3800–3808.PubMedGoogle Scholar
  539. Sanford, R.A., J.R. Cole and J.M. Tiedje. 2002. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an arylhalorespiring facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68: 893–900.CrossRefPubMedGoogle Scholar
  540. Sapico, F.L., D. Reeves, H.M. Wexler, J. Duncan, K.H. Wilson and S.M. Finegold. 1994. Preliminary study using species-specific oligonucle-otide probe for rRNA of Bilophila wadsworthia. J. Clin. Microbiol. 32: 2510–2513.PubMedGoogle Scholar
  541. Sarao, R., H.D. McCurdy and L. Passador. 1985. Enzymes of the intermediary carbohydrate metabolism of Polyangium cellulosum. Can. J. Microbiol. 31: 1142–1146.CrossRefGoogle Scholar
  542. Sasse, F., B. Kunze, T.M.A. Gronewold and H. Reichenbach. 1998. The chondramides: Cytostatic agents from myxobacteria acting on the actin cytoskeleton. J. Natl. Cancer Inst. 90: 1559–1563.CrossRefPubMedGoogle Scholar
  543. Schauder, R., B. Eikmanns, R.K. Thauer, F. Widdel and G. Fuchs. 1986. Acetate oxidation of carbon dioxide in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch. Microbiol. 145: 162–172.CrossRefGoogle Scholar
  544. Schelling, J.E., C. Anderson and S.F. Conti. 1977. Serotyping of bdellovibrios by agglutination and indirect immunofluorescence. 77th Annual Meeting of the American Society for Microbiology, p. 179.Google Scholar
  545. Schelling, M.E. and S.F. Conti. 1983. Serotyping of bdellovibrios by agglutination and indirect immunofluorescence. Int. J. Syst. Bacteriol. 33: 816–821.CrossRefGoogle Scholar
  546. Schelling, M. and S.F. Conti. 1986. Host receptor sites involved in the attachment of Bdellovibrio bacteriovorus and Bdellovibrio stolpii. FEMS Microbiol. Lett. 36: 319–323.CrossRefGoogle Scholar
  547. Scherer, O.W., H. Budzikiewicz, R. Hartmann, R.A. Klein and H. Egge. 1992. The structural elucidation of the two positional isomers of a mono-glucopyranosyl mono-acyl glycerol derivative from Cystobacter fuscus (Myxobacterales). Biochim. Biophys. Acta 1117: 42–46.CrossRefPubMedGoogle Scholar
  548. Schink, B. 1985. Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus, new species. Arch. Microbiol. 142: 295–301.CrossRefGoogle Scholar
  549. Schink, B. 1986. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 20. Int. J. Syst. Bacteriol. 36: 354–356.CrossRefGoogle Scholar
  550. Schink, B. 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61: 262–280.PubMedGoogle Scholar
  551. Schink, B. and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallici, new genus new species: a new strictly anaerobic, non-spore-forming bacterium. Arch. Microbiol. 133: 195–201.CrossRefGoogle Scholar
  552. Schink, B. and N. Pfennig. 1983. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 12. Int. J. Syst. Bacteriol. 33: 896–897.CrossRefGoogle Scholar
  553. Schink, B. and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, non-spore-forming bacterium, Pelobacter venetianus, sp. nov. Appl. Environ. Microbiol. 45: 1905–1913.PubMedGoogle Scholar
  554. Schink, B. and M. Stieb. 1984. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 13. Int. J. Syst. Bacteriol. 34: 91–92.CrossRefGoogle Scholar
  555. Schmidt, J.E. and B.K. Ahring. 1993. Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2546–2551.PubMedGoogle Scholar
  556. Schmidt-Lorenz, W and H. Kühlwein. 1968. Intracelluläre Bewegungsorganellen der Myxobakterien. Arch. Microbiol. 60: 95–98.Google Scholar
  557. Schmidt-Lorenz, W and H. Kühlwein. 1969. Beiträge zur kenntnis der Myxobakterienzelle. 2. Mitteilung. oberflächenstrukturen der schwa-rmzellen. Arch. Microbiol. 68: 405–426.Google Scholar
  558. Schoberth, S. 1973. A new strain of Desulfovibrio gigas isolated from a sewage plant. Arch. Mikrobiol. 92: 365–368.CrossRefPubMedGoogle Scholar
  559. Schöcke, L. and B. Schink. 1998. Membrane-bound proton-translocating pyrophosphatase of Syntrophus gentianae, a syntrophically benzoate-degrading fermenting bacterium. Eur. J. Biochem. 256: 589–594.CrossRefPubMedGoogle Scholar
  560. Schöcke, L. and B. Schink. 1999. Energetics and biochemistry of fermentative benzoate degradation by Syntrophus gentianae. Arch. Microbiol. 171: 331–337.CrossRefGoogle Scholar
  561. Schoeffield, A.J. 1990. Ecological, Serological and Molecular Characterization of Halophilic Bdellovibrios, Doctoral thesis, University of Maryland at Baltimore. Baltimore, Maryland.Google Scholar
  562. Schoeffield, A.J., W.A.J. Falkler, D. Desai and H.N. Williams. 1991. Serogrouping of halophilic bdellovibrios from Chesapeake Bay and environs by immunodiffusion and immunoelectrophoresis. Appl. Environ. Microbiol. 57: 3471–3475.Google Scholar
  563. Schroeter, J. 1886. Schizomycetes. In Cohn (Editor), Kryptogamenflora von Schlesien, Bd. 3, Heft 3, Pilze, J.U. Kern’s Verlag, Breslau. pp. 1–814.Google Scholar
  564. Schumacher, U.K. 1997. Adherence of Bilophila wadsworthia to laminin and fibronectin. Clin. Infect. Dis. 25: S180.CrossRefPubMedGoogle Scholar
  565. Schumacher, U. and M. Bucheler. 1997. First isolation of Bilophila wadsworthia in otitis externa. HNO. 45: 567–569.CrossRefPubMedGoogle Scholar
  566. Schumacher, U.K., M. Maennel and H. Werner. 2000. Adherence of Bacteroides species and Bilophila wadsworthia to phospholipids and glycolipids. Anaerobe 6: 61–63.CrossRefGoogle Scholar
  567. Schumacher, W., P.M.H. Kroneck and N. Pfennig. 1992. Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch. Microbiol. 158: 287–293.CrossRefGoogle Scholar
  568. Schürmann, C. 1967. Growth of myxococci in suspension in liquid media. Appl. Microbiol. 15: 971–974.PubMedGoogle Scholar
  569. Schwudke, D., E. Strauch, M. Kruger and B. Appel. 2001. Taxonomic studies of predatory Bdellovibrios based on 16S rRNA analysis, ri-botyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 24: 385–394.CrossRefPubMedGoogle Scholar
  570. Seidler, R.J., M. Mandel and J.N. Baptist. 1972. Molecular heterogeneity of the bdellovibrios: evidence of two new species. J. Bacteriol. 109: 209–217.Google Scholar
  571. Seidler, R.J. and M.P. Starr. 1968. Structure of the flagellum of Bdellovibrio bacteriovorus. J. Bacteriol. 95: 1952–1955.PubMedGoogle Scholar
  572. Seidler, R.J. and M.P. Starr. 1969. Isolation and characterization of host-independent bdellovibrios. J. Bacteriol. 100: 769–785.PubMedGoogle Scholar
  573. Seitz, H.J. and H. Cypionka. 1986. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146: 63–67.CrossRefGoogle Scholar
  574. Selenska-Pobell, S. 2002. Diversity and activity of bacterium in uranium waste piles. In Keith-Roach and Livens (Editors), Interactions of Microorganisms with Radionuclides, Elsevier, Amsterdam. pp. 225–253.CrossRefGoogle Scholar
  575. Severin, A.I., N.Y. Markelova, A.V. Afinogenova and I.S. Kulaev. 1987. Isolation and some physicochemical properties of lytic proteinase of the parasitic bacterium Micavibrio admirandus. Biokhimiya 52: 1594– 1599.Google Scholar
  576. Sharak Genthner, B.R., G. Mundfrom and R. Devereux. 1994. Characterization of Desulfomicrobium escambium sp. nov. and proposal to assign Desulfovibrio desulfuricans strain Norway 4 to the genus Desulfomicrobium. Arch. Microbiol. 161: 215–219.CrossRefGoogle Scholar
  577. Shelton, D.R. andJ.M. Tiedje. 1984. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chloroben-zoic acid. Appl. Environ. Microbiol. 48: 840–848.PubMedGoogle Scholar
  578. Shi, W.Y, T. Kohler and D.R. Zusman. 1993. Chemotaxis plays a role in the social behavior of Myxococcus xanthus. Mol. Microbiol. 9: 601–611.CrossRefPubMedGoogle Scholar
  579. Shilo, M. 1966. Predatory bacteria. Science 2: 33–37.Google Scholar
  580. Shilo, M. 1969. Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria. Curr. Top. Microbiol. Immunol. 50: 174–204.CrossRefPubMedGoogle Scholar
  581. Shimkets, L.J. 1987. Control of morphogenesis in Myxobacteria. CRC Crit. Rev. Microbiol. 14: 195–227.Google Scholar
  582. Shimkets, L.J. and D. Kaiser. 1982. Induction of coordinated movement of Myxococcus xanthus cells. J. Bacteriol. 152: 451–461.PubMedGoogle Scholar
  583. Shimkets, L.J. and C.R. Woese. 1992. A phylogenetic analysis of the myxobacteria: Basis for their classification. Proc. Natl. Acad. Sci. U.S.A. 89: 9459–9463.CrossRefPubMedGoogle Scholar
  584. Sievert, S.M. and J. Kuever. 2000. Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int. J. Syst. Evol. Microbiol. 50: 1239–1246.CrossRefPubMedGoogle Scholar
  585. Silakowski, B., G. Nordsiek, B. Kunze, H. Blöcker and R. Müller. 2001. Novel features in a combined polyketide synthase/non-ribosomalpeptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem. Biol. 8: 59–69.CrossRefPubMedGoogle Scholar
  586. Singh, B.N. 1947. Myxobacteria in soils and composts; their distribution, number and lytic action on bacteria. J. Gen. Microbiol. 1: 1–10.CrossRefPubMedGoogle Scholar
  587. Singh, B.N. and N.B. Singh. 1971. Distribution of fruiting myxobacteria in Indian soils, bark of trees an dung of herbivorous animals. Indian J. Microbiol. 11: 47–92.Google Scholar
  588. Singleton, R., L.L. Campbell and F.M. Hawkridge. 1979. Cytochrome c 3 from the sulfate-reducing anaerobe Desulfovibrio africanus Benghazi -purification and properties. J. Bacteriol. 140: 893–901.PubMedGoogle Scholar
  589. Skladny, H., M. Heidelbach and H.U. Schairer. 1994. Cloning and characterization of the gene encoding the major sigma-factor of Stigmatella aurantiaca. Gene 143: 123–127.CrossRefPubMedGoogle Scholar
  590. Skyring, G.W. and H.E. Jones. 1972. Guanine plus cytosine contents of the deoxyribonucleic acids of some sulfate-reducing bacteria: a reassessment. J. Bacteriol. 109: 1298–1300.PubMedGoogle Scholar
  591. Smith, A.L. 1901. Myxobacteria. J. Bot. 39: 69–72.Google Scholar
  592. Solntseva, L. 1940. Biology of myxobacteria I. Myxococcus. Mikrobiologiya 9: 217–232.Google Scholar
  593. Solntseva, L. 1941. The biology of the myxobacteria. II. The genera Melittangium and Chondromyces. Mikrobiologiya 10: 505–525.Google Scholar
  594. Sorokin, D.Y., G. Muyzer, T. Brinkhoff, J.G. Kuenen and M.S.M. Jetten. 1998. Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov. Arch. Microbiol. 170: 345–352.CrossRefPubMedGoogle Scholar
  595. Sowers, K.R. and K.M. Noll. 1995. Techniques for anaerobic growth. In Robb, Sowers, DasSarma, Place, Schreier and Fleischmann (Editors), Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY. pp. 15–48.Google Scholar
  596. Spormann, A.M. 1999. Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621–641.PubMedGoogle Scholar
  597. Spröer, C., H. Reichenbach and E. Stackebrandt. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49: 1255–1262.CrossRefPubMedGoogle Scholar
  598. Stackebrandt, E. 1988. Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria. Can. J. Microbiol. 34: 552–556.CrossRefPubMedGoogle Scholar
  599. Stackebrandt, E., U. Wehmeyer and B. Schink. 1989. The phylogenetic status of Pelobacter acidigallici, Pelobacter venetianus, and Pelobacter carbinolicus. Syst. Appl. Microbiol. 11: 257–260.CrossRefGoogle Scholar
  600. Stackebrandt, E. and C.R. Woese. 1984. The phylogeny of prokaryotes. Microbiol. Sci. 1: 117–122.PubMedGoogle Scholar
  601. Stahl, S. 1973. Slime of Myxococcus virescens. Physiol. Plant. 28: 523–529.CrossRefGoogle Scholar
  602. Stams, A.M. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Leeuwenhoek 66: 271–294.CrossRefPubMedGoogle Scholar
  603. Stams, A.M., J.B. Van Dijk, C. Dijkema and C.M. Plugge. 1993. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59: 1114–1119.PubMedGoogle Scholar
  604. Stanier, R.Y. 1942. A note on elasticotaxis in myxobacteria. J. Bacteriol. 44: 405–412.PubMedGoogle Scholar
  605. Stanier, R.Y. 1957. Order VIII. Myxobacterales Jahn. In Breed, Murray and Smith (Editors), Bergey’s Manual of Determinative Bacteriology, 7th Ed., The Williams & Wilkins Co., Baltimore. pp. 854–891.Google Scholar
  606. Staples, D.G. 1973. The ecology and physiology of Bdellovibrio bacteriovorus, Doctoral thesis, University of Wales, Institute of Science and Technology, Cardiff.Google Scholar
  607. Staples, D.G. and J.C. Fry. 1973. Factors which influence the enumeration of Bdellovibrio bacteriovorus in sewage and river water. J. Appl. Bacteriol. 36: 1–11.CrossRefGoogle Scholar
  608. Starich, T., P. Cordes and J. Zissler. 1985. Transposon tagging to detect a latent virus in Myxococcus xanthus. Science 230: 541–543.CrossRefPubMedGoogle Scholar
  609. Starich, T. and J. Zissler. 1989. Movement of multiple DNA units between Myxococcus xanthus cells. J. Bacteriol. 171: 2323ȓ2336.PubMedGoogle Scholar
  610. Starr, M.P. and N.L. Baigent. 1966. Parasitic interaction of Bdellovibrio bacteriovorus with other bacteria. J. Bacteriol. 91: 2006–2017.PubMedGoogle Scholar
  611. Stein, J. and H. Budzikiewicz. 1987. 1-O-(13-Methyl-1-Z-tetradecenyl)-2-O-(13-methyltetradecanoyl)-glycero-3-phospho-ethanolamin, ein plasmalogen aus Myxococcus stipitatus. Z. Naturforsch. 42b: 1017–1020.Google Scholar
  612. Steiner, S., S.F. Conti and R.L. Lester. 1973. Occurrence of phosphon-osphingolipids in Bdellovibrio bacteriovorus strain UKi2. J. Bacteriol. 116: 1199–1211.PubMedGoogle Scholar
  613. Stevens, A. 1990. Simulations of the gliding behaviour and aggregation of myxobacteria. In Alt and Hoffmann (Editors), Biological Motion, Springer-Verlag, Heidelberg. pp. 548–555.Google Scholar
  614. Stills, H.F., Jr. 1991. Isolation of an intracellular bacterium from hamsters (Mesocricetus auratus) with proliferative ileitis and reproduction of the disease with a pure culture. Infect. Immun. 59: 3227–3236.PubMedGoogle Scholar
  615. Stolp, H. 1973. The bdellovibrios: bacterial parasites of bacteria. Annu. Rev. Phytopath. 11: 53–76.CrossRefGoogle Scholar
  616. Stolp, H. and M.P. Starr. 1963. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Leeuwenhoek J. Microbiol. Serol. 29: 217–248.CrossRefGoogle Scholar
  617. Straley, S.C. and S.F. Conti. 1974. Chemotaxis in Bdellovibrio bacteriovorus. J. Bacteriol. 120: 549–551.PubMedGoogle Scholar
  618. Straley, S.C. and S.F. Conti. 1977. Chemotaxis by Bdellovibrio bacterionorus toward prey. J. Bacteriol. 132: 628–640.PubMedGoogle Scholar
  619. Straley, S.C., A.G. Lamarre, L.J. Lawrence and S.F. Conti. 1979. Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. J. Bacteriol. 140: 634–642.PubMedGoogle Scholar
  620. Strunk, O. and W. Ludwig. 1998. Arb: a software environment for sequence data, Technical University of Munich, Munich, Germany.Google Scholar
  621. Sudo, S.Z. and M. Dworkin. 1969. Resistance of vegetative cells and mi-crocysts of Myxococcus xanthus. J. Bacteriol. 98: 883–887.PubMedGoogle Scholar
  622. Sudo, S. and M. Dworkin. 1972. Bacteriolytic enzymes produced by Myxococcus xanthus. J. Bacteriol. 110: 236–245.PubMedGoogle Scholar
  623. Sudo, S.Z. and M. Dworkin. 1973. Comparative biology of prokaryotic resting cells. Adv. Microbial Physiol. 9: 153–223.CrossRefGoogle Scholar
  624. Summanen, P., J. Downes, M. Karl, K. Lounaimaa, E. Baron, H. Jousimies-Somer and S. Finegold. 1989. Characteristics and ultrastructure of an unusual Gram-negative bacillus isolated from inflamed and noninflamed appendices. Abstr. Eur. Soc. Clin. Microbiol. 5: p. 15.Google Scholar
  625. Summanen, P.H., H. Jousimies-Somer, S. Manley, D. Bruckner, M. Marina, E.J. Goldstein and S.M. Finegold. 1995. Bilophila wadsworthia isolates from clinical specimens. Clin. Infect. Dis. 20: S210–S211.CrossRefPubMedGoogle Scholar
  626. Summanen, P., H.M. Wexler and S.M. Finegold. 1992. Antimicrobial susceptibility testing of Bilophila wadsworthia by using triphenyltetrazolium chloride to facilitate endpoint determination. Antimicrob. Agents Chemother. 36: 1658–1664.CrossRefPubMedGoogle Scholar
  627. Summanen, P., H.M. Wexler, K. Lee, S.A. Becker, M.M. Garcia and S.M. Finegold. 1993. Morphological response of Bilophila wadsworthia to imipenem: correlation with properties of penicillin-binding proteins. Antimicrob. Agents Chemother. 37: 2638–2644.CrossRefPubMedGoogle Scholar
  628. Sun, B., J.R. Cole and J.M. Tiedje. 2001. Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. Int. J. Syst. Evol. Microbiol. 51: 365–371.PubMedGoogle Scholar
  629. Sutherland, I.W. and M.L. Smith. 1973. The lipopolysaccharides of fruiting and non-fruiting myxobacteria. J. Gen. Microbiol. 74: 259–266.CrossRefGoogle Scholar
  630. Sutherland, I.W. and S. Thomson. 1975. Comparison of polysaccharides produced by Myxococcus strains. J. Gen. Microbiol. 89: 124–132.CrossRefPubMedGoogle Scholar
  631. Tardy-Jacquenod, C, M. Magot, F. Laigret, M. Kaghad, B.K.C. Patel,J. Guezennec, R. Matheron and P. Caumette. 1996. Desulfovibrio gabonensis sp. nov, a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710–715.CrossRefPubMedGoogle Scholar
  632. Tasaki, M., Y. Kamagata, K. Nakamura and E. Mikami. 1990. Isolation of a propionate using sulfate-reducing bacterium. In Bélaich, Bruschi and Garcia (Editors), Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer. FEMS symposium; No. 54, Plenum Press, New York. pp. 477–479.CrossRefGoogle Scholar
  633. Taylor, J. and R.J. Parkes. 1983. The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J. Gen. Microbiol. 129: 3303–3309.Google Scholar
  634. Taylor, V.I., P. Baumann, J.L. Reichelt and R.D. Allen. 1974. Isolation, enumeration, and host range of marine bdellovibrios. Arch. Microbiol. 98: 101–114.CrossRefPubMedGoogle Scholar
  635. Tchan, Y.T., J. Pochon and A.R. Prévot. 1948. Études de systématique bactérienne. VIII. Essai de classification des Cytophaga. Ann. Inst. Pasteur 74: 394–400.Google Scholar
  636. Tee, W., M. DyallSmith, W. Woods and D. Eisen. 1996. Probable new species of Desulfovibrio isolated from a pyogenic liver abscess. J. Clin. Microbiol. 34: 1760–1764.PubMedGoogle Scholar
  637. Teske, A., E. Alm, J.M. Regan, S. Toze, B.E. Rittmann and D.A. Stahl. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623–6630.PubMedGoogle Scholar
  638. Thaxter, R. 1892. On the Myxobacteriaceae, a new order of Schizomycetes. Bot. Gaz. 17: 389–406.CrossRefGoogle Scholar
  639. Thaxter, R. 1893. A new order of Schizomycetes. Bot. Gaz. 18: 29–30.CrossRefGoogle Scholar
  640. Thaxter, R. 1897. Further observations on the Myxobacteriaceae. Bot. Gaz. 23: 395–411.CrossRefGoogle Scholar
  641. Thaxter, R. 1904. Notes on the Myxobacteriaceae. Bot. Gaz. 37: 405–416.CrossRefGoogle Scholar
  642. Thomashow, M.F. and T.W. Cotter. 1992. Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J. Bacteriol. 174: 5767–5771.PubMedGoogle Scholar
  643. Thomashow, M.F. and S.C. Rittenberg. 1979. the intraperiplasmic growth cycle — the lifestyle of the bdellovibrios. In Parish (Editor), Developmental Biology of Prokaryotes, University of California Press, Berkeley. pp. 115–138.Google Scholar
  644. Torrella, F., R. Guerrero and R.J. Seidler. 1978. Further taxonomic characterization of the genus Bdellovibrio. Can. J. Microbiol. 24: 1387–1394.CrossRefPubMedGoogle Scholar
  645. Townsend, G.T. and J.M. Suflita. 1997. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl. Environ. Microbiol. 63: 3594–3599.PubMedGoogle Scholar
  646. Trinkerl, M., A. Breunig, R. Schauder and H. König. 1990. Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a termite, Heterotermes indicola (Wasman). Syst. Appl. Microbiol. 13: 372–377.CrossRefGoogle Scholar
  647. Trinkerl, M., A. Breunig, R. Schauder and H. König. 1991. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 36. Int. J. Syst. Bacteriol. 41: 178–179.CrossRefGoogle Scholar
  648. Trowitzsch, W., L. Witte and H. Reichenbach. 1981. Geosmin from earthy-smelling cultures of Nannocystis exedens (Myxobacterales). FEMS Microbiol. Lett. 12: 257–260.CrossRefGoogle Scholar
  649. Trowitzsch-Kienast, W., E. Forche, V. Wray, H. Reichenbach, E. Jurkiewicz, G. Hunsmann and G. Höfle. 1992. Phenalamide, neue HIV-1-Inhi-bitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992: 659–664.CrossRefGoogle Scholar
  650. Trowitzsch-Kienast, W., K. Gerth, V. Wray, H. Reichenbach and G. Höfle. 1993. Myxochromid A: ein hochungesättigtes ipopeptidlacton aus Myxococcus virescens. Liebigs Ann. Chem. 1993: 1233–1237.CrossRefGoogle Scholar
  651. Tsai, H. and H.J. Hirsch. 1981. The primary structure of fulvocin-C from Myxococcus fulvus. Biochim. Biophys. Acta 667: 213–217.CrossRefPubMedGoogle Scholar
  652. Tsopanakis, C. and J.H. Parish. 1976. Bacteriophage MX-1: properties of the phage and its structural proteins. J. Gen. Virol. 30: 99–112.CrossRefPubMedGoogle Scholar
  653. Tsu, I.H., C.Y. Huang, J.L. Garcia, B.K.C. Patel, J.L. Cayol, L. Baresi and R.A. Mah. 1998. Isolation and characterization of Desulfovibrio senezii sp. nov., a halotolerant sulfate reducer from a solar saltern and phylogenetic confirmation of Desulfovibrio fructosovorans as a new species. Arch. Microbiol. 170: 313–317.CrossRefPubMedGoogle Scholar
  654. Tudor, J.J. 1980. Chemical analysis of the outer cyst wall and inclusion material of Bdellovibrio bdellocysts. Curr. Microbiol. 4: 251–256.CrossRefGoogle Scholar
  655. Tudor, J.J. and S.M. Bende. 1986. The outer cyst wall of Bdellovibrio bdellocysts is made de novo and not from preformed units from the prey wall. Curr. Microbiol. 13: 185–190.CrossRefGoogle Scholar
  656. Tudor, J.J. and S.F. Conti. 1978. Characterization of germination and activation of Bdellovibrio bdellocysts. J. Bacteriol. 133: 130–138.PubMedGoogle Scholar
  657. Tudor, J.J. and M.A. Karp. 1994. Translocation of an outer membrane protein into prey cytoplasmic membranes by bdellovibrios. J. Bacteriol. 176: 948–952.PubMedGoogle Scholar
  658. Tudor, J.J., M.P. McCann and I.A. Acrich. 1990. A new model for the penetration of prey cells by Bdellovibrios. J. Bacteriol. 172: 2421–2426.PubMedGoogle Scholar
  659. Vahle, C. 1910. Vergleichende ntersuchungen über die Myxobakteriazeen und Bakteriazeen. Zentbl. Bakteriol. Abt 2 25: 178–260.Google Scholar
  660. Vainshtein, M., H. Hippe and R.M. Kroppenstedt. 1992. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15: 554–566.CrossRefGoogle Scholar
  661. van der Maarel, M.J.E.C., S. van Bergeijk, A.F. van Werkhoven, A.M. Laverman, W.G. Meijer, W.T. Stam and T.A. Hansen. 1996. Cleavage of dimethylsulfoniopropionate and reduction of acrylate by Desulfovibrio acrylicus sp. nov. Arch. Microbiol. 166: 109–115.CrossRefGoogle Scholar
  662. Van Kuijk, B.M., E. Schlösser and A.M. Stams. 1998. Investigation of the fumarate metabolism of the syntrophic propionate-oxidizing bacterium strain MPOB. Arch. Microbiol. 169: 346–352.CrossRefPubMedGoogle Scholar
  663. Van Kuijk, B.M. and A.J.M. Stams. 1995. Sulfate reduction by a syntrophic propionate-oxidizing bacterium. Antonie Leeuwenhoek 68: 293–296.CrossRefPubMedGoogle Scholar
  664. Varon, M. and R. Levisohn. 1972. Three-membered parasitic system: a bacteriophage, Bdellovibrio bacteriovorus, and Escherichia coli. J. Virol. 9: 519–525.PubMedGoogle Scholar
  665. Varon, M. and J. Seijffers. 1975. Symbiosis-independent and symbiosis-incompetent mutants of Bdellovibrio bacteriovorus 109J.J. Bacteriol.124: 1191–1197.PubMedGoogle Scholar
  666. Varon, M. and M. Shilo. 1968. Interaction of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli B by Bdellovibrio bacteriovorus. J. Bacteriol. 95: 744–753.PubMedGoogle Scholar
  667. Varon, M. and M. Shilo. 1970. Methods for separation of Bdellovibrio from mixed bacterial population by filtration through Millipore filters or by gradient differential centrifugation. Rev. Int. Oceanogr. Med. 18–19: 145–152.Google Scholar
  668. Varon, M. and M. Shilo. 1980. Ecology of aquatic bdellovibrios. Adv. Aquat. Microbiol. 2: 1–48.Google Scholar
  669. Varon, M. and M. Shilo. 1981. Inhibition of the predatory activity of Bdellovibrio by various environmental pollutants. Microb. Ecol. 7: 107–112.CrossRefGoogle Scholar
  670. Varon, M., A. Tietz and E. Rosenberg. 1986. Myxococcus xanthus autocide ami. J. Bacteriol. 167: 356–361.PubMedGoogle Scholar
  671. Voelz, H. 1964. Sites of adenosine triphosphatase activity in bacteria. J. Bacteriol. 88: 1196–1198.PubMedGoogle Scholar
  672. Voelz, H. 1965. Formation and structure of mesosomes in Myxococcus xanthus. Arch. Mikrobiol. 51: 60–70.CrossRefPubMedGoogle Scholar
  673. Voelz, H. 1967. The physical organization of the cytoplasm in Myxococcus xanthus and the fine structure of its components. Arch. Microbiol. 57: 181–195.Google Scholar
  674. Voelz, H. 1968. Structural comparison between intramitochondrial and bacterial crystalloids. J. Ultrastruct. Res. 25: 29–36.CrossRefPubMedGoogle Scholar
  675. Voelz, H. and R.P. Burchard. 1971. Fine structure of bacteriophage infected Myxococcus xanthus. I. The lytic cycle in vegetative cells. Virology 43: 243–250.CrossRefPubMedGoogle Scholar
  676. Voelz, H. and R.O. Ortigoza. 1968. Cytochemistry of phosphatases in Myxococcus xanthus. J. Bacteriol. 96: 1357–1365.PubMedGoogle Scholar
  677. Voelz, H. and H. Reichenbach. 1969. Fine structure of fruiting bodies of Stigmatella aurantiaca (Myxobacterales). J. Bacteriol. 99: 856–866.PubMedGoogle Scholar
  678. Voelz, H., U. Voelz and R.O. Ortigoza. 1966. The “polyphosphate overplus” phenomenon in Myxococcus xanthus and its influence on the architecture of the cell. Arch. Microbiol. 53: 371–388.Google Scholar
  679. Voordouw, G. 1995. The genus Desulfovibrio - the centennial. Appl. Environ. Microbiol. 61: 2813–2819.PubMedGoogle Scholar
  680. Wallrabenstein, C., E. Hauschild and B. Schink. 1994. Pure culture and cytological properties of ‘Syntrophobacter wolinii’. FEMS Microbiol.Lett. 123: 249–254.CrossRefGoogle Scholar
  681. Wallrabenstein, C., E. Hauschild and B. Schink. 1996. In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 58. Int. J. Syst. Bacteriol. 46: 836–837.CrossRefGoogle Scholar
  682. Wallrabenstein, C. and B. Schink. 1994. Evidence of reversed electron-transport in syntrophic butyrate or benzoate oxidation by Syntropho-monas wolfei and Syntrophus buswellii. Arch. Microbiol. 162: 136–142.CrossRefGoogle Scholar
  683. Ward, M.J. and D.R. Zusman. 2000. Developmental aggregation and fruiting body formation in the gliding bacterium Myxococcus xanthus. In Brun and Shimkets (Editors), Prokaryotic Development, American Society of Microbiology, Washington, D.C. pp. 243–262.Google Scholar
  684. Ware, J.C. and M. Dworkin. 1973. Fatty acids of Myxococcus xanthus. J. Bacteriol. 115: 253–261.PubMedGoogle Scholar
  685. Warikoo, V., M.J. McInerney, J.A. Robinson and J.M. Suflita. 1996. Interspecies acetate transfer influences the extent of anaerobic benzoate degradation by syntrophic consortia. Appl. Environ. Microbiol. 62: 26–32.PubMedGoogle Scholar
  686. Watson, B.F. and M. Dworkin. 1968. Comparative intermediary metabolism of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 96: 1465–1473.PubMedGoogle Scholar
  687. Watson, S.W., E. Bock, H. Harms, H.P. Koops and A.B. Hooper. 1989. Nitrifying bacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st Ed., Vol. 3, The Williams & Wilkins Co., Baltimore. pp. 1808–1833.Google Scholar
  688. Watson, S.W. and J.B. Waterbury. 1971. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Microbiol. 77: 203–230.Google Scholar
  689. Wayne, L.G., D.J. Brenner, R.R. Colwell, P.A.D. Grimont, O. Kandler, M.I. Krichevsky, L.H. Moore, W.E.C. Moore, R.G.E. Murray, E. Stackebrandt, M.P. Starr and H.G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464.CrossRefGoogle Scholar
  690. Weckesser, J., G. Rosenfelder, H. Mayer and O. Luderitz. 1971. The identification of 3-O-methyl-d-xylose and 3-O-methyl-l-xylose as constituents of the lipopolysaccharides of Myxococcus fulvus and Rhodopseudo-monas viridis, respectively. Eur. J. Biochem. 24: 112–115.CrossRefPubMedGoogle Scholar
  691. Westergaard, J.M. and T.T. Kramer. 1977. Bdellovibrio and the intestinal flora of vertebrates. Appl. Environ. Microbiol. 34: 506–511.PubMedGoogle Scholar
  692. White, D., M. Dworkin and D.J. Tipper. 1968. Peptidoglycan of Myxococcus xanthus: Structure and relation to morphogenesis. J. Bacteriol. 95: 2186–2197.PubMedGoogle Scholar
  693. White, D. and H.U. Schairer. 2000. Development of Stigmatella. In Brun and Shimkets (Editors), Prokaryotic Development, ASM Press, Washington, D.C. pp. 285–294.Google Scholar
  694. Whitman, W.B., E. Ankwanda and R.S. Wolfe. 1982. Nutrition and carbon metabolism of Methanococcus voltae. J. Bacteriol. 149: 852–863.PubMedGoogle Scholar
  695. Widdel, F. 1980. Anaerober Abbau von Fettsäuren und Benzoesäure durch neu Isolierte Arten Sulfat-reduzierender Bakterien, Universität zu Göttingen, Lindhorst/Schaumburg-Lippe Göttingen.Google Scholar
  696. Widdel, F. 1981. In Validation of the publication of new names and new combinations previously published outside the IJSB. List No. 7. Int. J. Syst. Bacteriol. 31: 382–383.CrossRefGoogle Scholar
  697. Widdel, F. 1983. Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch. Microbiol. 134: 282–285.CrossRefGoogle Scholar
  698. Widdel, F. 1987. New types of acetate-oxidizing sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov. and D. curvatus sp. nov. Arch. Microbiol. 148: 286–291.CrossRefGoogle Scholar
  699. Widdel, F. 1988a. Microbiology and ecology of sulfate and sulfur-reducing bacteria. In Zehnder (Editor), Environmental Microbiology of Anaerobic Bacteria, Wiley and Sons, New York.Google Scholar
  700. Widdel, F. and F. Bak. 1992. Gram negative mesophilic sulfate-reducing bacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 4, Springer Verlag, New York. pp. 3352–3378.Google Scholar
  701. Widdel, F., G.-W. Kohring and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limnicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286–294.CrossRefGoogle Scholar
  702. Widdel, F. and T.A. Hansen. 1992. The dissimilatory sulfate- and sulfur-reducing bacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 1, Springer-Verlag, New York. pp. 583–624.Google Scholar
  703. Widdel, F. and N. Pfennig. 1981. Studies on dissimilatorysulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch. Microbiol. 129: 395–400.CrossRefPubMedGoogle Scholar
  704. Widdel, F. and N. Pfennig. 1982. Studies on dissimilatorysulfate-reducing bacteria that decompose fatty-acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch. Microbiol. 131: 360–365.CrossRefGoogle Scholar
  705. Widdel, F. and N. Pfennig. 1992. The genus Desulfuromonas and other Gram-negative sulfur-reducing eubacteria. In Balows, Trüper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes: A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd Ed., Vol. 4, Springer-Verlag, New York. pp. 3379–3389.Google Scholar
  706. Williams, H.N. 1987. The recovery of high numbers of bdellovibrios from the surface water microlayer. Can. J. Microbiol. 33: 572–575.CrossRefGoogle Scholar
  707. Williams, H.N. 1988. A study of the occurrence and distribution of bdellovibrios in estuarine sediment over an annual cycle. Microb. Ecol. 15: 9–20.CrossRefGoogle Scholar
  708. Williams, H.N. and W.A. Falkler, Jr.. 1984. Distribution of bdellovibrios in the water column of an estuary. Can. J. Microbiol. 30: 971–974.CrossRefPubMedGoogle Scholar
  709. Williams, H.N., W.A. Falkler, Jr. and D.E. Shay. 1976. Incidence of marine bdellovibrios lytic against Vibrio parahaemolyticus in Chesapeake Bay, U.S.A. Appl. Environ. Microbiol. 40: 970–972.Google Scholar
  710. Williams, H.N., S. Toon, E. Faulk and W.A.J. Falkler. 1987. The incidence of bdellovibrios in an artificial environment: The National Aquarium in Baltimore (Maryland, U.S.A.). Can. J. Microbiol. 33: 483–488.CrossRefGoogle Scholar
  711. Williams, R.L., D.A. Oren, J. Munoz-Dorado, S. Inouye, M. Inouye and E. Arnold. 1993. Crystal structure of Myxococcus xanthus nucleoside diphosphate kinase and its interaction with a nucleotide substrate at 2.0 Å resolution. J. Mol. Biol. 234: 1230–1247.CrossRefPubMedGoogle Scholar
  712. Winogradsky, S. 1892. Contributions a la morphologie des organismes de la nitrification. Arch. Sci. Biol. (St. Petersb.) 1: 86–137.Google Scholar
  713. Wireman, J.W. and M. Dworkin. 1977. Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J. Bacteriol. 129: 796–802.Google Scholar
  714. Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  715. Wu, W.M., M.K. Jain, E. Conway De Macario, J.H. Thiele and J.G. Zeikus. 1992. Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules. Appl. Microbiol. Biotechnol. 38: 282–290.CrossRefGoogle Scholar
  716. Yamanaka, S., R. Fudo, A. Kawaguchi and K. Komagata. 1988. Taxonomic significance of hydroxy fatty acids in myxobacteria with special reference to 2-hydroxy fatty acids in phospholipids. J. Gen. Appl. Microbiol. 34: 57–66.CrossRefGoogle Scholar
  717. Yamanaka, S., S. Kanbe and R. Fudo. 1993. Lysis of basidiomycetousyeast, Rhodotorula glutinis caused by myxobacteria. J. Gen. Appl. Microbiol. 39: 419–427.CrossRefGoogle Scholar
  718. Yamanaka, S., A. Kawaguchi and K. Komagata. 1987. Isolation and identification of myxobacteria from soils and plant materials, with special reference to DNA base composition, quinone system, and cellular fatty acid composition, and with a description of a new species, Myxococcus flavescens. J. Gen. Appl. Microbiol. 33: 247–265.CrossRefGoogle Scholar
  719. Yang, C. and H.B. Kaplan. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179: 7759–7767.PubMedGoogle Scholar
  720. Yee, T. and M. Inouye. 1982. Two-dimensional DNA electrophoresis applied to the study of DNA methylation and the analysis of genome size in Myxococcus xanthus. J. Mol. Biol. 154: 181–196.CrossRefPubMedGoogle Scholar
  721. Zavarzin, G.A., T.N. Zhilina and E.V. Pikuta. 1996. Secondary anaerobes in haloalkaliphilic communities in lakes of Tuva. Mikrobiologiya 65: 480–486.Google Scholar
  722. Zeggel, B. 1993. Steroide bei Myxobakterien, Technical University Braunschweig, Germany,. p. 134.Google Scholar
  723. Zellner, G., A. Busmann, F.A. Rainey and H. Diekmann. 1996. A syntrophic propionate-oxidizing, sulfate-reducing bacterium from a fluidized bed reactor. Syst. Appl. Microbiol. 19: 414–420.CrossRefGoogle Scholar
  724. Zellner, G., P. Messner, H. Kneifel and J. Winter. 1989. Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch. Microbiol. 152: 329–334.CrossRefGoogle Scholar
  725. Zhilina, T.N. and G.A. Zavarzin. 1994. Alkaliphilic anaerobic community at pH 10. Curr. Microbiol. 29: 109–112.CrossRefGoogle Scholar
  726. Zhilina, T.N., G.A. Zavarzin, F.A. Rainey, E.N. Pikuta, G.A. Osipov and N.A. Kostrikina. 1997. Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int. J. Syst. Bacteriol. 47: 144–149.CrossRefPubMedGoogle Scholar
  727. Zukal, H. 1896. Myxobotrys variabilis Zuk., als repräsentant einer neuen Myxomyceten-ordnung. Ber. Deutsch. Bot. Ges. 14: 340–347.Google Scholar
  728. Zusman, D.R. 1980. Genetic approaches to the study of development in the myxobacteria. In Leighton and Loomis (Editors), The Molecular Genetics of Development, Academic Press, New York. pp. 41–77.Google Scholar

Copyright information

© Bergey’s Manual Trust 2005

Authors and Affiliations

  • Jan Kuever
    • 1
  • Fred A. Rainey
    • 2
  • Friedrich Widdel
  1. 1.Department of MicrobiologyInstitute for Material Testing, Foundation Institute for Materials ScienceBremenGermany
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations