Skip to main content

Flavonoid Pigments as Tools in Molecular Genetics

  • Chapter
Book cover The Science of Flavonoids

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, S., Lee, E., Walker, A. R., Tanner, G. J., Larkin, P. J. and Ashton, A. R., 2003, The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX and is essential for proanthocyanidin synthesis and vacuole development, Plant J 35: 624–636.

    CAS  PubMed  Google Scholar 

  • Alfenito, M. R., Souer, E., Goodman, C. D., Buell, R., Mol, J., Koes, R. and Walbot, V., 1998, Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases, Plant Cell 10: 1135–1149.

    CAS  PubMed  Google Scholar 

  • Athma, P., Grotewold, E. and Peterson, T., 1992, Insertional mutagenesis of the maize P gene by intragenic transposition of Ac, Genetics 131: 199–209.

    CAS  PubMed  Google Scholar 

  • Bieza, K. and Lois, R., 2001, An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics, Plant Physiol 126: 1105-1115.

    CAS  PubMed  Google Scholar 

  • Boddu, J., Svabek, C., Sekhon, R., Gevens, A., Nicholson, R., Jones, D., J., P., Gustine, D. and Chopra, S., 2004, Expression of a putative flavonoid 3'-hydroxylase in sorghum mesocotyls synthesizing 3-deoxyanthocyanidin phytoalexins, Physiol Mol Plant Path 65: 101–113.

    CAS  Google Scholar 

  • Boddu, J., Jiang, C., Sangar, V., Olson, T., Peterson, T. and Chopra, S., 2005a, Comparative structural and functional characterization of sorghum and maize duplications containing orthologous Myb transcription regulators of 3-deoxyflavonoid biosynthesis, Plant Mol Biol, in press.

    Google Scholar 

  • Boddu, J., Svabek, C., Ibraheem, F., Jones, A. D. and Chopra, S., 2005b, Characterization of a deletion allele of a sorghum Myb gene yellow seed1 showing loss of 3-deoxyflavonoids, Plant Sci, in press.

    Google Scholar 

  • Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. and Lamb, C., 2000, Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis, Plant Cell 12: 2383–2394.

    CAS  PubMed  Google Scholar 

  • Brink, R. A. and Nilan, R. A., 1952, The relation between light variegated and medium variegated pericarp in maize, Genetics 37: 519–544.

    CAS  PubMed  Google Scholar 

  • Brink, R. A., 1958, Paramutation at the R locus in maize, Cold Spring Harb Symp Quant Biol 23: 379-391.

    CAS  PubMed  Google Scholar 

  • Brink, R. A. and Styles, E. D., 1966, A collection of pericarp factors, Maize Genet Coop News 40: 149-160.

    Google Scholar 

  • Brink, R. A., Styles, E. D. and Axtell, J. D., 1968, Paramutation: directed genetic change. Paramutation occurs in somatic cells and heritably alters the functional state of a locus, Science 159: 161–170.

    CAS  PubMed  Google Scholar 

  • Brugliera, F., Holton, T. A., Stevenson, T. W., Farcy, E., Lu, C. Y. and Cornish, E. C., 1994, Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrida, Plant J 5: 81-92.

    CAS  PubMed  Google Scholar 

  • Brugliera, F., Barri-Rewell, G., Holton, T. A. and Mason, J. G., 1999, Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida, Plant J 19: 441–451.

    CAS  PubMed  Google Scholar 

  • Brutnell, T. P., 2002, Transposon tagging in maize, Funct Integr Genomics 2: 4–12.

    CAS  PubMed  Google Scholar 

  • Burr, F. A., Burr, B., Scheffler, B. E., Blewitt, M., Wienand, U. and Matz, E. C., 1996, The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing, Plant Cell 8: 1249–1259.

    CAS  PubMed  Google Scholar 

  • Byrne, P. F., McMullen, M. D., Snook, M. E., Musket, T. A., Theuri, J. M., Widstrom, N. W., Wiseman, B. R. and Coe, E. H., 1996, Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks, Proc Natl Acad Sci USA 93: 8820–8825.

    CAS  PubMed  Google Scholar 

  • Carey, C. C., Strahle, J. T., Selinger, D. A. and Chandler, V. L., 2004, Mutations in the pale aleurone color1 regulatory gene of the Zea mays anthocyanin pathway have distinct phenotypes relative to the functionally similar TRANSPARENT TESTA GLABRA1 gene in Arabidopsis thaliana, Plant Cell 16: 450–464.

    CAS  PubMed  Google Scholar 

  • Carvalho, C. H. S., Boddu, J., Zehr, U. B., Axtell, J. D., Pedersen, J. F. and Chopra, S., 2005, Genetics and molecular chracterization of Candystripe1 transposition events in sorghum, Genetica, in press.

    Google Scholar 

  • Chandler, V. L., Radicella, J. P., Robbins, T. P., Chen, J. and Turks, D., 1989, Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences, Plant Cell 1: 1175–1183.

    CAS  PubMed  Google Scholar 

  • Chandler, V. L. and Stam, M., 2004, Chromatin conversations: mechanisms and implications of paramutation, Nat Rev Genet 5: 532–544.

    CAS  PubMed  Google Scholar 

  • Chen, J., Greenblatt, I. M. and Dellaporta, S. L., 1987, Transposition of Ac from the P locus of maize into unreplicated chromosomal sites, Genetics 117: 109–116.

    CAS  PubMed  Google Scholar 

  • Chopra, S., Athma, P. and Peterson, T., 1996, Alleles of the maize P gene with distinct tissue specificities encode Myb-homologous proteins with C-terminal replacements, Plant Cell 8: 1149–1158.

    CAS  PubMed  Google Scholar 

  • Chopra, S., Athma, P., Li, X. G. and Peterson, T., 1998, A maize Myb homolog is encoded by a multicopy gene complex, Mol Gen Genet 260: 372–380.

    CAS  PubMed  Google Scholar 

  • Chopra, S., Brendel, V., Zhang, J., Axtell, J. D. and Peterson, T., 1999, Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor, Proc Natl Acad Sci USA 96: 15330–15335.

    CAS  PubMed  Google Scholar 

  • Chopra, S., Gevens, A., Svabek, C., Wood, K. V., Peterson, T. and Nicholson, R. L., 2002, Excision of the Candystripe1 transposon from a hyper-mutable Y1-cs allele shows that the sorghum y1 gene control the biosynthesis of both 3-deoxyanthocyanidin phytoalexins and phlobaphene pigments, Physiol Mol Plant Path 60: 321–330.

    CAS  Google Scholar 

  • Chopra, S., Cocciolone, S. M., Bushman, S., Sangar, V., McMullen, M. D. and Peterson, T., 2003, The maize Unstable factor for orange1 is a dominant epigenetic modifier of a tissue specifically silent allele of pericarp color1, Genetics 163: 1135–1146.

    CAS  PubMed  Google Scholar 

  • Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H. K., 1993, Tagging and cloning of a petunia flower color gene with the maize transposable element Activator, Plant Cell 5: 371–378.

    CAS  PubMed  Google Scholar 

  • Cocciolone, S. M., Sidorenko, L. V., Chopra, S., Dixon, P. M. and Peterson, T., 2000, Hierarchical patterns of transgene expression indicate involvement of developmental mechanisms in the regulation of the maize P1-rr promoter, Genetics 156: 839–846.

    CAS  PubMed  Google Scholar 

  • Cocciolone, S. M., Chopra, S., Flint-Garcia, S. A., McMullen, M. D. and Peterson, T., 2001, Tissue-specific patterns of a maize Myb transcription factor are epigenetically regulated, Plant J 27: 467–478.

    CAS  PubMed  Google Scholar 

  • Cocciolone, S. M., Nettleton, D., Snook, M. and Peterson, T., 2005, Transformation of maize with the p1 transcription factor directs production of silk maysin, a corn earworm resistance factor, in concordance with a hierarchy of floral organ pigmentation, Plant Biotech 3: 225–235.

    CAS  Google Scholar 

  • Coe, E. H. and Neuffer, M. G., 1977, The genetics of corn. In G. F. Sprague (Ed.), Corn and Corn Improvement (pp. 111–223). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Coe, E. H., Jr., 2001, The origins of maize genetics, Nat Rev Genet 2: 898–905.

    CAS  PubMed  Google Scholar 

  • Coen, E. S., Robbins, T. P., Almeida, J., Hudson, A. and Carpenter, R., 1989, Consequences and mechanisms of transposition in Antirrhinum majus. In D. E. Berg and M. M. Howe, eds, Mobile DNA (pp. 413–436). Washington: American Society for Microbiology.

    Google Scholar 

  • Cone, K. C., Burr, F. A. and Burr, B., 1986, Molecular analysis of the maize anthocyanin regulatory locus C1, Proc Natl Acad Sci. USA 83: 9631–9635.

    CAS  PubMed  Google Scholar 

  • Cone, K. C., Cocciolone, S. M., Burr, F. A. and Burr, B., 1993, Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant, Plant Cell 5: 1795–1805.

    CAS  PubMed  Google Scholar 

  • Debeaujon, I., Peeters, A. J. M., Leon-Kloosterziel, K. M. and Koornneef, M., 2001, The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium, Plant Cell 13: 853–871.

    CAS  PubMed  Google Scholar 

  • Debeaujon, I., Nesi, N., Perez, P., Devic, M., Grandjean, O., Caboche, M. and Lepiniec, L., 2003, Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development, Plant Cell 15: 2514–2531.

    CAS  PubMed  Google Scholar 

  • Dellaporta, S. L., Greenblatt, I., Kermicle, J., Hicks, J. B. and Wessler, S., 1988, Molecular cloning of the maize R-nj allele by transposon tagging with Ac, Stadler Genet. Symp 18: 263–282.

    Google Scholar 

  • Dellaporta, S. L. and Moreno, M. A., 1994, Gene tagging with Ac/Ds elements in maize. In M. Freeling and V. Walbot, eds, The Maize Handbook (pp. 219–233). New York: Springer-Verlag.

    Google Scholar 

  • de Vetten, N., Quattrocchio, F., Mol, J. and Koes, R., 1997, The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals, Genes Dev 11: 1422–1434.

    CAS  PubMed  Google Scholar 

  • de Vetten, N., ter Horst, J., van Schaik, H. P., de Boer, A., Mol, J. and Koes, R., 1999, A cytochrome b 5 is required for full activity of flavonoid 3′, 5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors, Proc Natl Acad Sci USA 96: 778–783.

    CAS  PubMed  Google Scholar 

  • de Vlaming, P., Schram, A. W. and Wiering, H., 1983, Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida, Theor Appl Genet 66: 271–278.

    Google Scholar 

  • de Vries, H., 1903, Die Mutationstheorie 2. Leipzig: von Veit u. Co. Dixon, R. A. and Steele, C. L., 1999, Flavonoids and isoflavonoids—a gold mine for metabolic engineering, Trends Plant Sci 4: 394–400.

    Google Scholar 

  • Dooner, H. K. and Nelson, O. E., 1977, Genetic control of UDPglucose: flavonol 3-O-glucosyltransferase in the endosperm of maize, Biochem Genet 15: 509–519.

    CAS  PubMed  Google Scholar 

  • Dooner, H. K., Robbins, T. P. and Jorgensen, R. A., 1991, Genetic and developmental control of anthocyanin biosynthesis, Annu Rev Genet 25: 173–199.

    CAS  PubMed  Google Scholar 

  • Dorweiler, J. E., Carey, C. C., Kubo, K. M., Hollick, J. B., Kermicle, J. L. and Chandler, V. L., 2000, Mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci, Plant Cell 12: 2101–2118.

    CAS  PubMed  Google Scholar 

  • Emerson, R. A., 1917, Genetical studies of variegated pericarp in maize, Genetics 2: 1–35.

    CAS  PubMed  Google Scholar 

  • Fedoroff, N. V., Furtek, D. and Nelson, O. E., 1984, Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac), Proc Natl Acad Sci USA 81: 3825–3829.

    CAS  PubMed  Google Scholar 

  • Fedoroff, N. V., 1989, Maize transposable elements. In D. E. Berg and M. M. Howe, eds, Mobile DNA (pp. 375–411). Washington: American Society for Microbiology.

    Google Scholar 

  • Feschotte, C., Jiang, N. and Wessler, S. R., 2002, Plant transposable elements: where genetics meets genomics, Nat Rev Genet 3: 329–341.

    CAS  PubMed  Google Scholar 

  • Foo, L. Y. and Karchesy, J. J., 1989, Chemical nature of phlopaphene. In R. W. Hemingwa and J. J. Karchesy, eds, Chemistry and Significance of Condensed Tannins (pp. 109–118). New York and London: Plenum Press.

    Google Scholar 

  • Franken, P., Niesbach-Klosgen, U., Weydemann, U., Marechal-Drouard, L., Saedler, H. and Wienand, U., 1991, The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in, EMBO J 10: 2605–2612.

    CAS  PubMed  Google Scholar 

  • Fukada-Tanaka, S., Inagaki, Y., Yamaguchi, T., Saito, N. and Iida, S., 2000, Colour-enhancing protein in blue petals, Nature 407: 581.

    CAS  PubMed  Google Scholar 

  • Gerats, T. and Vandenbussche, M., 2005, A model system for comparative research: Petunia, Trends Plant Sci 10: 251–256.

    CAS  PubMed  Google Scholar 

  • Goff, S. A., Cone, K. C. and Chandler, V. L., 1992, Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins, Genes Dev 6: 864–875.

    CAS  PubMed  Google Scholar 

  • Goodman, C. D., Casati, P. and Walbot, V., 2004, A multidrug resistance-associated protein involved in anthocyanin transport in Zea mays, Plant Cell 16: 1812–1826.

    CAS  PubMed  Google Scholar 

  • Goodrich, J., Carpenter, R. and Coen, E. S., 1992, A common gene regulates pigmentation pattern in diverse plant species, Cell 68: 955–964.

    CAS  PubMed  Google Scholar 

  • — Flower color variation, Angrew Chem Int Ed Engl 30: 17–33.

    Google Scholar 

  • Greenblatt, I. M. and Brink, R. A., 1963, Transpositions of Modulator in maize into divided and undivided chromosome segments, Nature 197: 412–413.

    Google Scholar 

  • Greenblatt, I. M., 1984, A chromosome replication pattrern deduced from pericarp phenotypes resulting from movements of the transposable element Modulator, in maize, Genetics 108: 471–485.

    PubMed  Google Scholar 

  • Grotewold, E., Athma, P. and Peterson, T., 1991, Alternatively spliced products of the maize P gene encode proteins with homology to the DNA-binding domain of myb-like transcription factors, Proc Natl Acad Sci USA 88: 4587–4591.

    CAS  PubMed  Google Scholar 

  • Grotewold, E., Drummond, B. J., Bowen, B. and Peterson, T., 1994, The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset, Cell 76: 543–553.

    CAS  PubMed  Google Scholar 

  • Grotewold, E., Chamberlin, M., Snook, M., Siame, B., Butler, L., Swenson, J., Maddock, S., Clair, G. S. and Bowen, B., 1998, Engineering secondary metabolism in maize cells by ectopic expression of transcription factors, Plant Cell 10: 721–740.

    CAS  PubMed  Google Scholar 

  • Habu, Y., Hisatomi, Y. and Iida, S., 1998, Molecular characterization of the mutable flaked allele for flower variegation in the common morning glory, Plant J 16: 371–376.

    CAS  PubMed  Google Scholar 

  • Harborne, J. B. and Williams, C. A., 2000, Advances in flavonoid research since 1992, Phytochem 55: 481–504.

    CAS  Google Scholar 

  • Hollick, J. B., Patterson, G. I., Asmundsson, I. M. and Chandler, V. L., 2000, Paramutation alters regulatory control of the maize pl locus, Genetics 154: 1827–1838.

    CAS  PubMed  Google Scholar 

  • Holton, T. A., Brugliera, F., Lester, D. R., Tanaka, Y., Hyland, C. D., Menting, J. G., Lu, C. Y., Farcy, E., Stevenson, T. W. and Cornish, E. C., 1993, Cloning and expression of cytochrome P450 genes controlling flower colour, Nature 366: 276–279.

    CAS  PubMed  Google Scholar 

  • Holton, T. A., and Cornish, E. C., 1995, Genetics and biochemistry of anthocyanin biosynthesis, Plant Cell 7: 1071–1083.

    CAS  PubMed  Google Scholar 

  • Honda, T. and Saito, N., 2002, Recent progress in the chemistry of polyacylated anthocyanins as flower color pigments, Heterocycles 56: 633–692.

    CAS  Google Scholar 

  • Hoshino, A., Abe, Y., Saito, N., Inagaki, Y. and Iida, S., 1997, The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone, Plant Cell Physiol 38: 970–974.

    CAS  PubMed  Google Scholar 

  • Hoshino, A., Johzuka-Hisatomi, Y. and Iida, S., 2001, Gene duplication and mobile genetic elements in the morning glories, Gene 265: 1–10.

    CAS  PubMed  Google Scholar 

  • Hoshino, A., Morita, Y., Choi, J. D., Saito, N., Toki, K., Tanaka, Y. and Iida, S., 2003, Spontaneous mutations of the flavonoid 3'-hydroxylase gene conferring reddish flowers in the three morning glory species, Plant Cell Physiol 44: 990–1001.

    CAS  PubMed  Google Scholar 

  • Huits, H. S. M., Gerats, A. G. M., Kreike, M. M., Mol, J. N. M. and Koes, R. E., 1994, Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida, Plant J 6: 295–310.

    CAS  PubMed  Google Scholar 

  • Iida, S., Hoshino, A., Johzuka-Hisatomi, Y., Habu, Y. and Inagaki, Y., 1999, Floricultural traits and transposable elements in the Japanese and common morning glories, Annal New York Acad Sci 870: 265–274.

    CAS  Google Scholar 

  • Iida, S., Morita, Y., Choi, J. D., Park, K. I. and Hoshino, A., 2004, Genetics and epigenetics in flower pigmentation associated with transposable elements in morning glories, Adv Biophys. 38: 141–159.

    CAS  Google Scholar 

  • Inagaki, Y., Hisatomi, Y., Suzuki, T., Kasahara, K. and Iida, S., 1994, Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers, Plant Cell 6: 375–383.

    CAS  PubMed  Google Scholar 

  • Kambal, A. E. and Bate-Smith, E. C., 1976, A genetic and biochemical study on pericarp pigmentation between two cultivars of grain sorghum, Sorghum bicolor, Heredity 37: 417–421.

    Google Scholar 

  • Kawasaki, S. and Nitasaka, E., 2004, Characterization of Tpn1 family in the Japanese morning glory: En/Spm-related transposable elements capturing host genes, Plant Cell Physiol 45: 933–944.

    CAS  PubMed  Google Scholar 

  • Kirby, L. T. and Styles, E. D., 1970, Flavonoids associated with specific gene action in maize aleurone, and the role of light in substituting for the action of a gene. [Corn], Can J Genet Cytol 12: 934–940.

    CAS  Google Scholar 

  • Kitamura, S., Shikazono, N. and Tanaka, A., 2004, TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis, Plant J 37: 104–114.

    CAS  PubMed  Google Scholar 

  • Koes, R. E., Spelt, C. E. and Mol, J. N. M., 1989, The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction, Plant Mol Biol 12: 213–225.

    CAS  Google Scholar 

  • Koes, R. E., Souer, E., van Houwelingen, A., Mur, L., Spelt, C., Quattrocchio, F., Wing, J., Oppedijk, B., Ahmed, S., Maes, T., Gerats, T., Hoogeneen, P., Meesters, M., Kools, D. and Mol, J. N. M., 1995, Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants, Proc Natl Acad Sci USA. 92: 8149–8153.

    CAS  PubMed  Google Scholar 

  • Koes, R. E., Verweij, W. and Quattrocchio, F., 2005, Flavonoids: a colorful model for the regulation and evolution of biochemical pathways, Trends Plant Sci, 10: 236–242.

    CAS  PubMed  Google Scholar 

  • Kolkman, J. M., Conrad, L. J., Farmer, P. R., Hardeman, K., Ahern, K. R., Lewis, P. E., Sawers, R. J. H., Lebejko, S., Chomet, P. and Brutnell, T. P., 2005, Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis, Genetics 169: 981–995.

    CAS  PubMed  Google Scholar 

  • Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D. N. and Hahlbrock, K., 1983, UV-Induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense, Proc Natl Acad Sci USA 80: 2591–2593.

    CAS  PubMed  Google Scholar 

  • Kroon, J., Souer, E., de Graaff, A., Xue, Y., Mol, J. and Koes, R., 1994, Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles, Plant J 5: 69–80.

    CAS  PubMed  Google Scholar 

  • Kunze, R. and Weil, C. F., 2002, The hAT and CACTA superfamilies of plant transposons. In N. L. Craig, R. Craigie, M. Gellert and A. M. Lambowitz, eds, Mobile DNA II (pp. 565–610). Washington, D. C.: ASM Press.

    Google Scholar 

  • Larson, R., Bussard, J. B. and Coe, E. H., Jr., 1986, Gene-dependent flavonoid 3'-hydroxylation in maize, Biochem Genet 24: 615–624.

    CAS  PubMed  Google Scholar 

  • Lechelt, C., Peterson, T., Laird, A., Chen, J., Dellaporta, S. L., Dennis, E., Peacock, W. J. and Starlinger, P., 1989, Isolation and molecular analysis of the maize P locus, Mol Gen Genet 219: 225–234.

    CAS  PubMed  Google Scholar 

  • Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Lavine, K., Mittal, V., May, B., Kasschau, K. D., Carrington, J. C., Doerge, R. W., Colot, V. and Martienssen, R., 2004, Role of transposable elements in heterochromatin and epigenetic control, Nature 430: 471–476.

    CAS  PubMed  Google Scholar 

  • Lippman, Z. and Martienssen, R., 2004, The role of RNA interference in heterochromatic silencing, Nature 431: 364–370.

    CAS  PubMed  Google Scholar 

  • Lo, S. C. and Nicholson, R. L., 1998, Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Implications for a compensatory role in the defense response, Plant Physiol 116: 979–989.

    CAS  PubMed  Google Scholar 

  • Ludwig, S. R. and Wessler, S. R., 1990, Maize R gene family: Tissue-specific helix-loop-helix proteins, Cell 62: 849–851.

    CAS  PubMed  Google Scholar 

  • Martin, C., Carpenter, R., Sommer, H., Saedler, H. and Coen, E. S., 1985, Molecular analysis of instability in flower pigmentation of Antirrhinum majus, following isolation of the pallida locus by transposon tagging, EMBO J 4: 1625–1630.

    CAS  PubMed  Google Scholar 

  • Martin, C., Prescott, A., Mackay, S., Bartlett, J. and Vrijlandt, E., 1991, Control of anthocyanin biosynthesis in flowers of Antirrhinum majus, Plant J 1: 37–49.

    CAS  PubMed  Google Scholar 

  • Martin, C. and Gerats, T., 1993a, Control of pigment biosynthesis genes during petal development, Plant Cell 5: 1253–1264.

    CAS  Google Scholar 

  • Martin, C. and Gerats, T., 1993b, The control of flower coloration. In B. R. Jordan, ed, The Molecular Biology of Flowering (pp. 219–255). Wallingford, Oxon: C.A.B. International.

    Google Scholar 

  • Matzke, M. A. and Birchler, J. A., 2005, RNAi-mediated pathways in the nucleus, Nat. Rev. Genet. 6: 24–35.

    CAS  PubMed  Google Scholar 

  • McClintock, B., 1950, The origin and behavior of mutable loci in maize, Proc Natl Acad Sci USA 36: 344–355.

    CAS  PubMed  Google Scholar 

  • McClintock, B., 1951, Chromosome organization and genic expression, Cold Spring Harb Symp Quant Biol 16: 13–47.

    CAS  PubMed  Google Scholar 

  • McClintock, B., 1956, Controlling elements and the gene, Cold Spring Harbor Symp Quant Biol 21: 197–216.

    CAS  PubMed  Google Scholar 

  • McLaughlin, M. and Walbot, V., 1987, Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridization, Genetics 117: 771–776.

    CAS  PubMed  Google Scholar 

  • Menssen, A., Hohmann, S., Martin, W., Schnable, P. S., Peterson, P. A., Saedler, H. and Gierl, A., 1990, The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene, EMBO J 9: 3051–3057.

    CAS  PubMed  Google Scholar 

  • Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H., 1987, A new petunia flower colour generated by transformation of a mutant with a maize gene, Nature 330: 677–678.

    CAS  PubMed  Google Scholar 

  • Meyer, P., 1995, DNA methylation and transgene silencing in Petunia hybrida, Curr Top Microbiol Immunol 197: 15–28.

    CAS  PubMed  Google Scholar 

  • Mo, Y., Nagel, C. and Taylor, L. P., 1992, Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen, Proc Natl Acad Sci USA 89: 7213–7217.

    CAS  PubMed  Google Scholar 

  • Mol, J., Grotewold, E. and Koes, R., 1998, How genes paint flowers and seeds, Trends Plant Sci 3: 212–217.

    Google Scholar 

  • Moreno, M. A., Chen, J., Greenblatt, I. and Dellaporta, S. L., 1992, Reconstitutional mutagenesis of the maize P gene by short-range Ac transpositions, Genetics 131: 939–956.

    CAS  PubMed  Google Scholar 

  • Morita, Y., Hoshino, A., Kikuchi, Y., Okuhara, H., Ono, E., Tanaka, Y., Fukui, Y., Saito, N., Nitasaka, E., Noguchi, H. and Iida, S., 2005, Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene, Plant J 42: 353–363.

    CAS  PubMed  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R., 1990, Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell 2: 279–289.

    CAS  PubMed  Google Scholar 

  • Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L., 2000, The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques, Plant Cell 12: 1863–1878.

    CAS  PubMed  Google Scholar 

  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M. and Lepiniec, L., 2001, The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed, Plant Cell 13: 2099–2114.

    CAS  PubMed  Google Scholar 

  • Neuffer, M. G., Coe, E. H. and Wessler, S. R., 1997, Mutants of Maize. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Nevers, P., Shepherd, N. S. and Saedler, H., 1986, Plant transposable elements, Adv Bot Res 12: 103–203.

    CAS  Google Scholar 

  • Nicholson, R. L. and Hammerschmidt, R., 1992, Phenolic compounds and their role in disease resistance, Ann Rev Phytopathol 30: 369–389.

    CAS  Google Scholar 

  • O'Reilly, C., Shepherd, N. S., Pereira, A., Schwarz-Sommer, Z., Bertam, I., Robertson, D. S., Peterson, P. A. and Saedler, H., 1985, Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1, EMBO J 4: 877–882.

    PubMed  Google Scholar 

  • Ohnishi, M., Fukada-Tanaka, S., Hoshino, A., Takada, J., Inagaki, Y. and Iida, S., 2005, Characterization of a novel Na+/H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory, Plant Cell Physiol 46: 259–267.

    CAS  PubMed  Google Scholar 

  • Park, K. I., Choi, J. D., Hoshino, A., Morita, Y. and Iida, S., 2004, An intragenic tandem duplication in a transcriptional regulatory gene for anthocyanin biosynthesis confers pale-colored flowers and seeds with fine spots in Ipomoea tricolor, Plant J 38: 840–849.

    CAS  PubMed  Google Scholar 

  • Payne, C. T., Zhang, F. and Lloyd, A. M., 2000, GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1, Genetics 156: 1349–1362.

    CAS  PubMed  Google Scholar 

  • Paz-Ares, J., Wienand, U., Peterson, P. A. and Saedler, H., 1986, Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway, EMBO J 5: 829–833.

    CAS  PubMed  Google Scholar 

  • Peterson, T., 1990, Intragenic transposition of Ac generates a new allele of the maize P gene, Genetics 126: 469–476.

    CAS  PubMed  Google Scholar 

  • Pooma, W., Gersos, C. and Grotewold, E., 2002, Transposon insertions in the promoter of the Zea mays a1 gene differentially affect transcription by the Myb factors P and C1, Genetics 161: 793–801.

    CAS  PubMed  Google Scholar 

  • Quattrocchio, F., Wing, J. F., van der Woude, K., Mol, J. N. M. and Koes, R., 1998, Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes, Plant J 13: 475–488.

    CAS  PubMed  Google Scholar 

  • Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J. and Koes, R., 1999, Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color, Plant Cell 11: 1433–1444.

    CAS  PubMed  Google Scholar 

  • Radicella, J. P., Turks, D. and Chandler, V. L., 1991, Cloning and nucleotide sequence of a cDNA encoding B-Peru, a regulatory protein of the anthocyanin pathway in maize, Plant Mol Biol 17: 127-130.

    CAS  PubMed  Google Scholar 

  • Ramsay, N. A. and Glover, B. J., 2005, MYB-bHLH-WD40 protein complex and the evolution of cellular diversity, Trends Plant Sci 10: 63–70.

    CAS  PubMed  Google Scholar 

  • Russo, V. E. A., Martienssen, R. A. and Riggs, A. D., 1996, Epigenetic Mechanisms of Gene Regulation. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Schijlen, E. G., Ric de Vos, C. H., van Tunen, A. J. and Bovy, A. G., 2004, Modification of flavonoid biosynthesis in crop plants, Phytochem 65: 2631–2648.

    CAS  Google Scholar 

  • Schoenbohm, C., Martens, S., Eder, C., Forkmann, G. and Weisshaar, B., 2000, Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme, Biol Chem 381: 749–753.

    CAS  PubMed  Google Scholar 

  • Schwarz-Sommer, Z., Davies, B. and Hudson, A., 2003, An everlasting pioneer: the story of Antirrhinum research, Nat Rev Genet 4: 655–664.

    Google Scholar 

  • Schwinn, K. E. and Davies, K. M., 2004, Flavonoids. In K. Davies, ed, Plant Pigments and Their Manipulation (pp. 92–149). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Shikazono, N., Yokota, Y., Kitamura, S., Suzuki, C., Watanabe, H., Tano, S. and Tanaka, A., 2003, Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions, Genetics 163: 1449–1455.

    CAS  PubMed  Google Scholar 

  • Shirley, B. W., Hanley, S. and Goodman, H. M., 1992, Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations, Plant Cell 4: 333–347.

    CAS  PubMed  Google Scholar 

  • Shirley, B. W., Kubasek, W. L., Storz, G., Bruggemann, E., Koornneef, M., Ausubel, F. M. and Goodman, H. M., 1995, Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis, Plant J 8: 659–671.

    CAS  PubMed  Google Scholar 

  • Sidorenko, L. V., Li, X., Cocciolone, S. M., Chopra, S., Tagliani, L., Bowen, B., Daniels, M. and Peterson, T., 2000, Complex structure of a maize Myb gene promoter: functional analysis in transgenic plants, Plant J 22: 471–482.

    CAS  PubMed  Google Scholar 

  • Snyder, B. A. and Nicholson, R. L., 1990, Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress, Science 248: 1637–1639.

    CAS  PubMed  Google Scholar 

  • Souer, E., Quattrocchio, F., de Vetten, N., Mol, J. and Koes, R., 1995, A general method to isolate genes tagged by a high copy number transposable element, Plant J 7: 677–685.

    CAS  PubMed  Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J. N. and Koes, R., 2000, anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes, Plant Cell 12: 1619–1631.

    CAS  PubMed  Google Scholar 

  • Spelt, C., Quattrocchio, F., Mol, J. and Koes, R., 2002, ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms, Plant Cell 14: 2121–2135.

    CAS  PubMed  Google Scholar 

  • Springob, K., Nakajima, J., Yamazaki, M. and Saito, K., 2003, Recent advances in the biosynthesis and accumulation of anthocyanins, Nat Prod Rep 20: 288–303.

    CAS  PubMed  Google Scholar 

  • Styles, E. D. and Ceska, O., 1977, The genetic control of flavonoid synthesis in maize, Can J Genet Cytol 19: 289–302.

    CAS  Google Scholar 

  • Styles, E. D. and Ceska, O., 1981, P and R control of flavonoids in BRONZE coleoptiles of maize, Can J Genet Cytol 23: 691–704.

    CAS  Google Scholar 

  • Styles, E. D. and Ceska, O., 1989, Pericarp flavonoids in genetic strains of Zea mays, Maydica 34: 227-237.

    Google Scholar 

  • Takahashi, S., Inagaki, Y., Satoh, H., Hoshino, A. and Iida, S., 1999, Capture of a genomic HMG domain sequence by the En/Spm-related transposable element Tpn1 in the Japanese morning glory, Mol Gen Genet 261: 447–451.

    CAS  PubMed  Google Scholar 

  • Tanaka, Y., Katsumoto, Y., Brugliera, F. and Mason, J., 2005, Genetic engineering in floriculture, Plant Cell Tiss Org Cult 80: 1–24.

    CAS  Google Scholar 

  • Tanner, G. J., Francki, K. T., Abrahams, S., Watson, J. M., Larkin, P. J. and Ashton, A. R., 2003, Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA, J Biol Chem 278: 31647–31656.

    CAS  PubMed  Google Scholar 

  • Tanner, G. J., 2004, Condensed tannins. In K. Davies, ed, Plant Pigments and Their Manipulation (pp. 150–184). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Tiffin, P., Miller, R. E. and Rausher, M. D., 1998, Control of expression patterns of anthocyanin structural genes by two loci in the common morning glory, Genes Genet Syst 73: 105–110.

    CAS  Google Scholar 

  • Tohge, T., Nishiyama, Y., Hirai, M. Y., Yano, M., Nakajima, J., Awazuhara, M., Inoue, E., Takahashi, H., Goodenowe, D. B., Kitayama, M., Noji, M., Yamazaki, M. and Saito, K., 2005, Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants overexpressing a MYB transcription factor, Plant J 42: 218–235.

    CAS  PubMed  Google Scholar 

  • van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G. M., Mol, J. N. M. and Stuitje, A. R., 1988, An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature 333: 866–869.

    CAS  Google Scholar 

  • van der Krol, A. R., Mur, L. A., de Lange, P., Mol, J. N. M. and Stuitje, A. R., 1990, Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect, Plant Mol Biol 14: 457–466.

    CAS  PubMed  Google Scholar 

  • van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Koes, R., 1998, Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida, Plant J 13: 39–50.

    CAS  PubMed  Google Scholar 

  • van Tunen, A. J., Mur, L. A., Recourt, K., Gerats, A. G. M. and Mol, J. N., 1991, Regulation and manipulation of flavonoid gene expression in anthers of petunia: the molecular basis of the Po mutation, Plant Cell 3: 39–48.

    CAS  PubMed  Google Scholar 

  • Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srinivasan, N., Blundell, T. L., Esch, J. J., Marks, M. D. and Gray, J. C., 1999, The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein, Plant Cell 11: 1337–1350.

    CAS  PubMed  Google Scholar 

  • Wienand, U., Sommer, H., Schwarz, Z., Shepherd, N., Saedler, H., Kreuzaler, F., Ragg, H., Fautz, E., Hahlbrock, K., Harrison, B. J. and Peterson, P., 1982, A general method to identify plant structural genes among genomic DNA clones using transposable element induced mutations, Mol Gen Genet 187: 195–201.

    CAS  Google Scholar 

  • Wienand, U., Weydemann, U., Niesbach-Klosgen, U., Peterson, P. A. and Saedler, H., 1986, Molecular cloning of the c2 locus of Zea mays, the gene coding for chalcone synthase, Mol Gen Genet 203: 202–207.

    CAS  Google Scholar 

  • Winkel-Shirley, B., 2001a, Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant Physiol 126: 485–493.

    CAS  Google Scholar 

  • Winkel-Shirley, B., 2001b, It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism, Plant Physiol 127: 1399–1404.

    CAS  Google Scholar 

  • Wiseman, B. R., Snook, M. and Widstrom, N. W., 1996, Feeding responses of the corn ear worm larvae (Lepidoptera: Noctuidae) on corn silks of varying flavone content, J Econ Entomol 89: 1040–1044.

    Google Scholar 

  • Wisman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H. and Weisshaar, B., 1998, Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes, Proc Natl Acad Sci USA 95: 12432–12437.

    CAS  PubMed  Google Scholar 

  • Xie, D. Y., Sharma, S. B., Paiva, N. L., Ferreira, D. and Dixon, R. A., 2003, Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis, Science 299: 396–399.

    CAS  PubMed  Google Scholar 

  • Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S., 2001, Genes encoding the vacuolar Na+/H+ exchanger and flower coloration, Plant Cell Physiol 42: 451–461.

    CAS  PubMed  Google Scholar 

  • Yoshida, K., Kondo, T., Okazaki, Y. and Katou, K., 1995, Cause of blue petal colour, Nature 373: 291.

    CAS  Google Scholar 

  • Zanta, C. A., Yang, X., Axtell, J. D. and Bennetzen, J. L., 1994, The candystripe locus, y-cs, determines mutable pigmentation of the sorghum leaf, flower, and pericarp, J Hered 85: 23–29.

    Google Scholar 

  • Zhang, F. and Peterson, T., 2005, Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region, Plant Cell 17: 903–914.

    CAS  PubMed  Google Scholar 

  • Zhang, P., Chopra, S. and Peterson, T., 2000, A segmental gene duplication generated differentially expressed myb-homologous genes in maize, Plant Cell 12: 2311–2322.

    CAS  PubMed  Google Scholar 

  • Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T. and Lloyd, A., 2003a, A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis, Development 130: 4859–4869.

    CAS  Google Scholar 

  • Zhang, P., Wang, Y., Zhang, J., Maddock, S., Snook, M. and Peterson, T., 2003b, A maize QTL for silk maysin levels contains duplicated Myb-homologous genes which jointly regulate flavone biosynthesis, Plant Mol Biol 52: 1–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Chopra, S., Hoshino, A., Boddu, J., Iida, S. (2006). Flavonoid Pigments as Tools in Molecular Genetics. In: Grotewold, E. (eds) The Science of Flavonoids. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28822-2_6

Download citation

Publish with us

Policies and ethics