Skip to main content

Free-space laser communications with adaptive optics: Atmospheric compensation experiments

  • Chapter
Free-Space Laser Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 2))

Abstract

Refractive index inhomogeneities of the turbulent air cause wave-front distortions of optical waves propagating through the atmosphere, leading to such effects as beam spreading, beam wander, and intensity fluctuations (scintillations). These distortions are responsible for severe signal fading in free-space optical communications systems and therefore compromise link reliability. Wave-front distortions can be mitigated, in principle, with adaptive optics, i.e., real-time wave-front control, reducing the likeliness of signal fading. However, adaptive optics technology, currently primarily used in astronomical imaging, needs to be adapted to the requirements of free-space optical communication systems and their specific challenges.

In this chapter we discuss a non-conventional adaptive optics approach that has certain advantages with respect to its incorporation into free-space optical communication terminals. The technique does not require wave-front measurements, which are difficult under the strong scintillation conditions typical for communication scenarios, but is based on the direct optimization of a performance quality metric, e.g., the communication signal strength, with a stochastic parallel gradient descent (SPGD) algorithm.

We describe an experimental adaptive optics system that consists of a beam-steering and a higher-resolution wave-front correction unit with a 132-actuator MEMS piston-type deformable mirror controlled by a VLSI system implementing the SPGD algorithm. The system optimizes the optical signal that could be coupled into a single-mode fiber after propagating along a 2.3-km near-horizontal atmospheric path. We investigate characteristics of the performance metric under different atmospheric conditions and evaluate the effect of the adaptive system. Experiments performed under strong scintillation conditions with beam-steering only as well as with higher-resolution wave-front control demonstrate the mitigation of wave-front distortions and the reduction of signal fading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. S. Reed and X. Chen, Error-Control Coding for Data Networks, Vol. 508 of The Kluwer International Series in Engineering and Computer Science (Kluwer Academic, Boston, 1999).

    Google Scholar 

  2. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Vol. 16 of Oxford Series in Optical and Imaging Sciences (Oxford University Press, UK, 1998).

    Google Scholar 

  3. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, UK, 1999).

    Book  Google Scholar 

  4. C. A. Primmerman, T. R. Price, R. A. Humphreys, B. G. Zollars, H. T. Barclay, and J. Herrmann, “Atmospheric-compensation experiments in strong-scintillation conditions,” Appl. Opt. 34, 2081–2088 (1995).

    Article  ADS  Google Scholar 

  5. B. M. Levine, E. A. Martinsen, A. Wirth, A. Jankevics, M. Toledo-Quinones, F. Landers, and T. L. Bruno, “Horizontal line-of-sight turbulence over near-ground paths and implications for adaptive optics correction in laser communications,” Appl. Opt. 37, 4553–4560 (1998).

    Article  ADS  Google Scholar 

  6. N. B. Baranova, A. V. Mamaev, N. F. Pilipetsky, V. V. Shkunov, and B. Y. Zel’dovich, “Wave-front dislocations: topological limitations for adaptive systems with phase conjugation,” J. Opt. Soc. Am. 73, 525–528 (1983).

    Article  ADS  Google Scholar 

  7. D. L. Fried, “Branch point problem in adaptive optics,” J. Opt. Soc. Am. A 15, 2759–2768 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67, 298–303 (1977).

    Article  ADS  Google Scholar 

  9. S. L. McCall, T. R. Brown, and A. Passner, “Improved optical stellar image using a real-time phase-correction system: initial results,” Astrophysical Journal 211, 463–468 (1977).

    Article  ADS  Google Scholar 

  10. J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).

    Article  ADS  Google Scholar 

  11. T. R. O’Meara, “The multi-dither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977).

    Article  ADS  Google Scholar 

  12. J. E. Pearson and S. Hansen, “Experimental studies of a deformable-mirror adaptive optical system,” J. Opt. Soc. Am. 67, 325–333 (1977).

    Article  ADS  Google Scholar 

  13. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).

    Article  ADS  Google Scholar 

  14. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15, 2745–2758 (1998).

    Article  ADS  Google Scholar 

  15. J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, Hoboken, NJ, 2003).

    Book  MATH  Google Scholar 

  16. R. T. Edward, M. Cohen, G. Cauwenberghs, M. A. Vorontsov, and G. W. Carhart, “Analog VLSI parallel stochastic optimization for adaptive optics,” in Learning on Silicon, G. Cauwenberghs and M. A. Bayoumi, eds., (Kluwer Academic, Boston, 1999), Chap. 16, pp. 359–382.

    Google Scholar 

  17. T. G. Bifano, J. A. Perreault, P. A. Bierden, and C. E. Dimas, “Micromachined deformable mirrors for adaptive optics,” In High-Resolution Wavefront Control: Methods, Devices, and Applications IV, J. D. Gonglewski, M. A. Vorontsov, M. T. Gruneisen, S. R. Restaino, and R. K. Tyson, eds., Proc. SPIE 4825, 10–13 (2002).

    Google Scholar 

  18. M. A. Vorontsov, G. W. Carhart, J. W. Gowens II, and J. C. Ricklin, “Adaptive correction of wave-front phase distortions in a free-space laser communication: system and method,” Patent pending.

    Google Scholar 

  19. M. A. Vorontsov, G. W. Carhart, L. A. Beresnev, and J. W. Gowens II, “Adaptive WDM free-space laser communication system: low-order aberration compensation experiments,” presented at the International Symposium on Optical Science and Technology, Denver, Colorado, Conference 5550 “Free-Space Laser Communications IV,” 2–6 August 2004.

    Google Scholar 

  20. M. A. Vorontsov, G. W. Carhart, M. Banta, T. Weyrauch, J. Gowens II, and J. C. Carrano, “Atmospheric laser optics testbed (A LOT): atmospheric propagation characterization, beam control and imaging results,” In Advanced Wavefront Control: Methods, Devices, and Applications, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 5162, 37–48 (2003).

    Google Scholar 

  21. M. E. Gravecha, A. S. Gurvich, S. S. Kashkarov, and V. L. V. Pokasov, “Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation,” in Laser Beam Propagation in the Atmosphere, J. Strohbehn, ed., (Springer, New York, 1978).

    Google Scholar 

  22. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Press, Bellingham, WA, 2001).

    Book  Google Scholar 

  23. Y. A. Kravtsov, “New effects in wave propagation and scattering in random media (a mini review),” Appl. Opt. 32, 2681–2691 (1993).

    Article  ADS  Google Scholar 

  24. M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. A 17, 1440–1453 (2000).

    Article  ADS  Google Scholar 

  25. T. Weyrauch, M. A. Vorontsov, T. G. Bifano, J. A. Hammer, M. Cohen, and G. Cauwenberghs, “Microscale adaptive optics: wave-front control with a µ-mirror array and a VLSI stochastic gradient descent controller,” Appl. Opt. 40, 4243–4253 (2001).

    Article  ADS  Google Scholar 

  26. T. Weyrauch and M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27, 751–753 (2002).

    Article  ADS  Google Scholar 

  27. T. G. Bifano, J. Perrault, R. Krishnamoorthy Mali, and M. N. Horenstein, “Microelectrome-chanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

    Article  Google Scholar 

  28. J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856–866 (2003).

    Article  ADS  Google Scholar 

  29. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a multiconjugate (piston-MEMS/modal DM) adaptive system,” In Target-in-the-Loop: Atmospheric Tracking, Imaging and Compensation, M. T. Valley and M. A. Vorontsov, eds., Proc. SPIE 5552, 73–84 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Weyrauch, T., Vorontsov, M.A. (2004). Free-space laser communications with adaptive optics: Atmospheric compensation experiments. In: Free-Space Laser Communications. Optical and Fiber Communications Reports, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28677-8_5

Download citation

Publish with us

Policies and ethics