Skip to main content

Laser communication transmitter and receiver design

  • Chapter
Free-Space Laser Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 2))

Abstract

Free-space laser communication systems have the potential to provide flexible, high-speed connectivity suitable for long-haul intersatellite and deep-space links. For these applications, power-efficient transmitter and receiver designs are essential for cost-effective implementation. State-of-the-art designs can leverage many of the recent advances in optical communication technologies that have led to global wideband fiber-optic networks with multiple Tbit/s capacities. While spectral efficiency has long been a key design parameter in the telecommunications industry, the many THz of excess channel bandwidth in the optical regime can be used to improve receiver sensitivities where photon efficiency is a design driver. Furthermore, the combination of excess bandwidth and average-power-limited optical transmitters has led to a new paradigm in transmitter and receiver design that can extend optimized performance of a single receiver to accommodate multiple data rates.

This paper discusses state-of-the-art optical transmitter and receiver designs that are particularly well suited for average-power-limited photon-starved links where channel bandwidth is readily available. For comparison, relatively simple direct-detection systems used in short terrestrial or fiber optic links are discussed, but emphasis is placed on mature high-performance photon-efficient systems and commercially available technologies suitable for operation in space. The fundamental characteristics of optical sources, modulators, amplifiers, detectors, and associated noise sources are reviewed along with some of the unique properties that distinguish laser communication systems and components from their RF counterparts. Also addressed is the interplay between modulation format, transmitter waveform, and receiver design, as well as practical tradeoffs and implementation considerations that arise from using various technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.L. Edwards, et. al., “Overview of the Mars laser communications demonstration project,” in American Institute of Aeronautics and Astronautics, Space 2003 Conference & Exposition, 2003.

    Google Scholar 

  2. S.A. Townes, et. al., “The Mars laser communication demonstration,” presented at IEEE Aerospace Conf., 2004.

    Google Scholar 

  3. E.A. Swanson and R.S. Bondurant, “Fiber-based free-space optical system,” in US Pat. 5,062,150, 1991.

    Google Scholar 

  4. “Reliability assurance practices for optoelectronic devices in interoffice applications,” Bellcore TR-NWT-000468 Issue 1, Dec. 1991.

    Google Scholar 

  5. “Generic reliability assurance requirements for optoelectronic devices used in telecommunications equipment,” Telcordia GR-468-CORE no. 2, Dec. 2002.

    Google Scholar 

  6. “Generic requirements for fiber optic branching components,” Bellcore GR-1209-CORE, Issue 1, Nov. 1994.

    Google Scholar 

  7. “Generic requirements for optical fiber amplifiers,” GR-1312-CORE, Issue 2, Dec. 1996.

    Google Scholar 

  8. “Generic reliability assurance requirements for fiber optic branching components,” GR-1221-CORE, Issue 1, Dec. 1994.

    Google Scholar 

  9. “Test methods and procedures for microelectronics,” Military Standard MIL-STD-883C, Aug. 1983.

    Google Scholar 

  10. D.O. Caplan, M.L. Stevens, and D.M. Boroson, “Variable-rate communication system with optimal filtering” in US Pat. 6,694,104, 2004, (filed 1998).

    Google Scholar 

  11. D.O. Caplan, M.L. Stevens, D.M. Boroson, and J.E. Kaufmann, “A multi-rate optical communications architecture with high sensitivity,” in LEOS, 1999.

    Google Scholar 

  12. M.L. Stevens, D.M. Boroson, and D.O. Caplan, “A novel variable-rate pulse-position modulation system with near quantum limited performance,” in LEOS, 1999.

    Google Scholar 

  13. D.O. Caplan and W.A. Atia, “A quantum-limited optically-matched communication link,” in Optical Fiber Conference (OFC), 2001.

    Google Scholar 

  14. D.O. Caplan and W.A. Atia, “Methods of achieving optimal communications performance,” in US Pat. 7,181,097, 2007.

    Google Scholar 

  15. D.O. Capjlan, B.S. Robinson, R.J. Murphy, and M.L. Stevens, “Demonstration of 2.5-Gslot/s optically-preamplified M-PPM with 4 photons/bit receiver sensitivity,” in Optical Fiber Conference (OFC): Paper PDP23, 2005.

    Google Scholar 

  16. C.E. Shannon, “A mathematical theory of communication,” Bell Syst. Technol. J. 27, 379–423, 623–656, 1948.

    MathSciNet  MATH  Google Scholar 

  17. S. Haykin, Digital Communications (John Wiley & Sons, Inc., 1988).

    Google Scholar 

  18. J.G. Proakis and M. Salehi, Communication Systems Engineering (Prentice-Hall, Inc., 1994).

    Google Scholar 

  19. Peebles, Peyton Z. Jr., Digital Communications Systems (Englewood Cliffs, NJ: Prentice-Hall, 1987).

    Google Scholar 

  20. S.B. Alexander, Optical communication receiver design (Bellingham, Washington, USA: SPIE Optical Engineering Press, 1997).

    Book  Google Scholar 

  21. D.O. Caplan, “High-performance free-space laser communications and future trends,” in Optical Amplifiers and Their Applications (OAA’05) Topical Meeting, Budapest, Hungary, 2005.

    Google Scholar 

  22. D.O. Caplan, B.S. Robinson, M.L. Stevens, D.M. Boroson, and S.A. Hamilton, “High-Rate Photon-Efficient Laser Communications with Near Single Photon/bit Receiver Sensitivities,” in Optical Fiber Conference (OFC), 2006.

    Google Scholar 

  23. D.M. Boroson, “Optical Communications, A Compendium of Signal Formats, Receiver Architectures, Analysis Mathematics, and Performance Comparisons,” 2005.

    Google Scholar 

  24. T. Mizuochi, et. al., “Forward error correction based on block turbo code with 3-bit soft decision for 10-Gb/s optical communication systems,” IEEE Sel. Top. Quantum Electron. 10, 376–386, 2004.

    Article  Google Scholar 

  25. N.W. Spellmeyer, J.C. Gottschalk, D.O. Caplan, and M.L. Stevens, “High-sensitivity 40-Gb/s RZ-DPSK with forward error correction,” IEEE Photon. Technol. Lett. 16, 1579–1581 (2004).

    Article  ADS  Google Scholar 

  26. J.R. Pierce, “Optical Channels: Practical Limits with Photon Counting,” IEEE Trans. Commun. COM-26, 1819–1821, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Yamamoto and H.A. Haus, “Preparation, measurement and information capacity of optical quantum states,” Rev. Mod. Phys. 58, 1001–1020, 1986.

    Article  ADS  Google Scholar 

  28. H.A. Haus, “Limits on communication using photons,” in MIT-EECS Colloquium Series, 1997.

    Google Scholar 

  29. G.N. Gol’tsman, O. Okunev, G. Chulkova, A.L.A. Semenov, K. Smirnov, B. Voronov, A. Dsardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707, 2001.

    Article  ADS  Google Scholar 

  30. K.A. Mcintosh, et. al., “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 µm,” Appl. Phys. Lett. 81 (2002).

    Google Scholar 

  31. J. Zhang, W. Slysz, A. Verevkin, O. Okunev, G. Chulkova, A. Korneev, A. Lipatov, G.N. Gol’tsman, and R. Sobolewski, “Response time characterization of NbN superconducting single-photon detectors,” IEEE Trans. App. Supercond. 13, 180–183, 2003.

    Article  Google Scholar 

  32. K.A. Mcintosh, et. al., “Arrays of III–V semiconductor Geiger-mode avalanche photodiodes” in LEOS, 2003.

    Google Scholar 

  33. B.S. Robinson, A.J. Kerman, E.A. Dauler, R.J. Barron, D.O. Caplan, M.L. Stevens, J.J. Carney, S.A. Hamilton, J.K.W. Yang, and K.K. Berggren, “781-Mbit/s Photon-Counting Optical Communications Using Superconducting NbN-Nanowire Detectors,” Opt. Lett. 31, 444–446 (2006).

    Article  ADS  Google Scholar 

  34. B.S. Robinson, A.J. Kerman, E.A. Dauler, R.J. Barron, D.O. Caplan, M.L. Stevens, J.J. Carney, S.A. Hamilton, J.K.W. Yang, and K.K. Berggren, “High-Data-Rate Photon-Counting Optical Communications Using a NbN Nanowire Superconducting Detector,” in Conference on Lasers and Electro-Optics (CLEO), 2006.

    Google Scholar 

  35. E.A. Dauler, B.S. Robinson, A.J. Kerman, V. Anant, R.J. Barron, K. Berggren, D.O. Caplan, J.J. Carney, S.A. Hamilton, K.M. Rosfjord, M.L. Stevens, and J.K.W. Yang, “1.25-Gbit/s photon-counting optical communications using a twoelement superconducting nanowire single photon detector” in Proc. SPIE, (Advanced Photon Counting Techniques), 2006.

    Google Scholar 

  36. P.S. Henry, “Error-rate performance of optical amplifiers,” in Optical Fiber Conference (OFC), 1989.

    Google Scholar 

  37. N.A. Olsson, “Lightwave Systems With Optical Amplifiers,” J. Lightwave Technol. 7, 1071–082 (1989).

    Article  ADS  Google Scholar 

  38. P.A. Humblet and M. Azizoglu, “On bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol. 9 (1991).

    Google Scholar 

  39. S.D. Personick, “Receiver design for digital fiber optic communication systems, I & II,” Bell Syst. Tech. J. 52, 843–886, 1973.

    Google Scholar 

  40. S. Vanstone and P.C. v. Oorschot, An introduction to Error Correcting Codes with Applications (Kluwer Academic Publishers, 1989).

    Google Scholar 

  41. D.O. Caplan, J.C. Gottschalk, R.J. Murphy, N.W. Spellmeyer, M.L. Stevens, and A.M.D. Beling, “Performance of high-rate high-sensitivity optical communications with forward error correction coding,” in Conference on Lasers and Electro-Optics (CLEO): Paper CPDD9, 2004.

    Google Scholar 

  42. B.E. Moision and J. Hamkins, “Coded modulation for the deep-space optical channel: serially concatenated pulse-position modulation,” 42–161, 2005.

    Google Scholar 

  43. D.M. Boroson, C.C. Chen, and B.L. Edwards, “The Mars laser communication demonstration project: truly ultralong-haul optical transport,” in Optical Fiber Conference (OFC), 2005.

    Google Scholar 

  44. P.I. Hopman, P.W. Boettcher, L.M. Candell, J.B. Glettler, R. Shoup, and G. Zogbi, “An End-to-End Demonstration of a Receiver Array Based Free-Space Photon Counting Communications Link,” in SPIE, (Free-Space Laser Communications VI), vol. 6304, 2006.

    Google Scholar 

  45. R. Shoup, “Hardware implementation of a high-throughput 64-PPM serial concatenated turbo decoder,” in SPIE, (Optical Information Systems IV), vol. 6311, 2006.

    Google Scholar 

  46. E.A. Swanson and R.S. Bondurant, “Using fiber optics to simplify free-space lasercom systems,” in Proc. SPIE, (Free-Space Laser Communication Technologies II), 1218, 70–82 (1990).

    ADS  Google Scholar 

  47. R.M. Gagliardi and S. Karp, Optical Communication, 2nd Ed. (New York,: John Wiley & Sons, Inc., 1995).

    Google Scholar 

  48. F. G. Walther, J.M. Roth, W.E. Keicher, A.E. DeCew, and “Wavelength division and polarization division multiple access free space optical terminal using a single aperture,” in US Pat. Appl. 20040081466, 2004.

    Google Scholar 

  49. A.G. Bell and S. Tainter, “Photophone transmitter,” in US Pat. 235,496, 1880.

    Google Scholar 

  50. A.G. Bell, “On the Production and Reproduction of Sound by Light,” Am. J. Sci., 3rd Series, XX, 305–324 (1880).

    Google Scholar 

  51. A.G. Bell and S. Tainter, “Photophonic receiver,” in US Pat. 241,909, 1881.

    Google Scholar 

  52. A.G. Bell, C.A. Bell, and S. Tainter, “Transmitting and recording sounds by radiant energy,” in US Pat. 324,213, 1886.

    Google Scholar 

  53. D. Killinger, “Free space optics for laser communication through the air,” in Optics & Photonics News, 2002.

    Google Scholar 

  54. Hertz, “Heinrich Rudolf Hertz discovered GHz radio waves in 1887,” 1887.

    Google Scholar 

  55. A.G. Bell, “Improvement in Telegraphy,” in US Pat. 174,465, 1876.

    Google Scholar 

  56. T.A. Edison, “Telephones or Speaking Telegraphs,” in US Pat. 203,018, 1878.

    Google Scholar 

  57. G. Marconi, “A system of telegraphy using Hertzian waves,” in British Pat. 12039, (filed June 2, 1896, demonstrated Sept. 2, 1896), 1896.

    Google Scholar 

  58. M. Loomis, “Improvement in Telegraphing,” in US Pat. 129,971, 1872 (first US wireless telegraphy patent).

    Google Scholar 

  59. R.A. Fessenden, “Wireless Telegraphy,” in US Pat. 706,737, 1902, (filed 1901).

    Google Scholar 

  60. A.L. Schawlow and C.H. Townes., “Infrared and Optical Masers,” Phys. Rev. 112, 1940–1949 (1958).

    Article  ADS  Google Scholar 

  61. T.H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).

    Article  ADS  Google Scholar 

  62. T.H. Maiman, “Ruby Laser Systems,” in US Pat. 3,353,115, 1967, (filed 1963).

    Google Scholar 

  63. A. Javan, Bennett, W.R. Jr., and D.R. Herriott, “Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture,” Phys. Rev. Lett. 6, 106–110, 1961.

    Article  ADS  Google Scholar 

  64. “Research groups at GE, IBM, and Lincoln Laboratory at MIT demonstrated semiconductor lasers using gallium arsenide (GaAs) in 1962. (Courtesy W. Keicher),” 1962.

    Google Scholar 

  65. C.H. Gooch, Gallium Arsenide Lasers (New York: John Wiley & Sons, 1969).

    Google Scholar 

  66. C.J. Koester and E. Snitzer, “Amplification in a Fiber Laser,” Appl. Opt. 3, 1182–86 (1964).

    Article  ADS  Google Scholar 

  67. E. Snitzer, “Means for producing and amplifying optical energy,” in US Pat. 3,729,690, (filed 1969, 1961), 1973.

    Google Scholar 

  68. Z.I. Alferov, V.M. Andreev, D.Z. Garbuzov, Y.V. Zhilyaev, E.P. Morozov, E.L. Portnoi, and V.G. Trofim, “Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature,” Sov. Phys. Semicond. 4, 1573–1575 (1971).

    Google Scholar 

  69. C.K. Kao and G.A. Hockham, “Dielectric-Fiber Surface Waveguides for Optical Frequencies,” Proc. IEE 133, 1151–58 (1966).

    Google Scholar 

  70. R.D. Maurer and P.C. Schultz, “Fused silica optical waveguide,” in US Pat. 3,659,915, 1972, (filed 1970).

    Google Scholar 

  71. D.B. Keck and P.C. Schultz, “Method of producing optical waveguide fibers,” in US Pat. 3,711,262, 1973, (filed 1970).

    Google Scholar 

  72. C.K. Kao and T.W. Davies, “Spectroscopic studies of ultra low loss optical glasses,” J. Sci. Instrum. (1968).

    Google Scholar 

  73. F.P Kapron, D.B. Keck, and R.D. Mauer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, (1970).

    Google Scholar 

  74. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. (1961).

    Google Scholar 

  75. E. Snitzer, H. Po, R.P. Tumminelli, and F. Hakimi, “Optical fiber lasers and amplifiers,” in US Pat. 4,815,079, (filed 1987), 1989.

    Google Scholar 

  76. R.J. Mears, L. Reekie, I.M. Jauncey, and D.N. Payne, “Low-noise erbim-doped fibre amplifier operating at 1.54 µm,” Electron. Lett. 23, 1026 (1987).

    Article  Google Scholar 

  77. E. Desurvire, J.R. Simpson, and P.C. Becker, “High-gain erbium-doped traveling wave fiber amplifier,” Opt. Lett. 12, 888 (1987).

    Article  ADS  Google Scholar 

  78. “TAT-8, the first trans-Atlantic fiber cable (2 × 280 Mb/s, 1.3 µm), was AT&T’s 8th transatlantic telephone cable, in operation from 1988, initially carrying 40,000 telephone circuits between USA and France.”

    Google Scholar 

  79. “TAT-10, AT&T’s 10th transatlantic telephone cable, in operation from 1992, initially carrying 2 × 565Mb/s between USA and Germany, using 1.5 µm technology.”

    Google Scholar 

  80. Y. Arimoto, M. Toyoshima, M. Toyoda, T. Takahashi, M. Shikatani, and K. Araki, “Preliminary result on laser communication experiment using Engineering Test Satellite-VI (ETS-VI),” in Proc. SPIE 2381, 1995.

    Google Scholar 

  81. K.E. Wilson, J.R. Lesh, K. Araki, and Y. Arimoto, “Preliminary results of the Ground/Orbiter Lasercom Demonstration experiment between Table Mountain and the ETS-VI satellite,” in Proc. SPIE (Free-Space Laser Communication Technologies VIII), 1996.

    Google Scholar 

  82. K.E. Wilson, et. al., “Results from Phase-1 and Phase-2 GOLD experiments,” Feb. 15 1997.

    Google Scholar 

  83. K.E. Wilson and J.R. Lesh, “Overview of the Ground-to-Orbit Lasercom Demonstration (GOLD),” in Proc. SPIE (Free-Space Laser Communication Technologies IX), 1997.

    Google Scholar 

  84. “TAT-12/13 (1996) first used optical amplification (EDFA) and ring topology.”

    Google Scholar 

  85. A.R. Chraplyvy, A.H. Gnauck, R.W. Tkach, J.L. Zyskind, J.W. Sulhoff, A.J. Lucero, Y. Sun, R.M. Jopson, F. Forghieri, R.M. Derosier, C. Wolf, and A.R. McCormick, “1-Tb/s transmission experiment,” Photonics Technol. Lett. 8, 1264–1266 (1996).

    Article  ADS  Google Scholar 

  86. A.H. Gnauck, et. al., “One Terabit/s Transmission Experiment,” presented at Optical Fiber Conference (OFC), 1996.

    Google Scholar 

  87. T. Morioka, et. al., “100 Gb/s × 10 Channel OTDM/WDM Transmission Using a Single Supercontinuum WDM Source,” presented at Optical Fiber Conference (OFC), 1996.

    Google Scholar 

  88. H. Onaka, et. al., “1.1 Tb/s WDM Transmission over a 150 km 1.3 mm Zero-Dispersion Single-Mode Fiber,” presented at Optical Fiber Conference (OFC), 1996.

    Google Scholar 

  89. KMI Corporation, Nashua, NH, USA.

    Google Scholar 

  90. S. Bigo, A. Bertaina, Y. Frignac, S. Borne, L. Lorcy, D. Hamoir, D. Bayart, J.-P. Hamaide, W. Idler, E. Lach, B. Franz, G. Veith, P. Sillard, L. Fleury, P. Guénot, and P. Nouchi, “5.12 Tbit/s (128 × 40 Gbit/s WDM) transmission over 3 × 100 km of TeraLight fiber,” in Proc. Eur. Conf. Optical Communications (ECOC), paper PD1.2, Munich, Germany, 2000.

    Google Scholar 

  91. W. Idler, S. Bigo, Y. Frignac, B. Franz, and G. Veith, “Vestigial side-band demultiplexing for ultra-high capacity (0.64 bit/s/Hz) of 128 × 40 Gbit/s channels,” in Optical Fiber Conference (OFC), 2001.

    Google Scholar 

  92. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, “10,92 Tb/s (273 × 40 Gb/s) triple band/ultra dense WDM optical repeatered transmission experiment,” presented at Optical Fiber Conference (OFC), 2001.

    Google Scholar 

  93. S. Bigo, Y. Frignac, G. Charlet, W. Idler, S. Borne, H. Gross, R. Dischler, W. Poehlmann, P. Tran, C. Simonneau, D. Bayart, G. Veith, A. Jourdan, and J.-P. Hamaide, “10.2 Tbit/s (256 × 42.7 Gbit/s PDM/WDM) transmission over 100 km TeraLight fiber with 1.28 bit/s/Hz spectral efficiency,” in Optical Fiber Conference (OFC), paper PD25, 2001.

    Google Scholar 

  94. Y. Frignac, G. Charlet, W. Idler, R. Dischler, P. Tran, S. Lanne, S. Borne, C. Martinelli, G. Veith, A. Jourdan, J.-P. Hamaide, and S. Bigo, “Transmission of 256 wavelength-division and polarization-division multiplexed channels at 42.7 Gb/s (10.2 Tb/s capacity) over 3 × 100 km of TeraLight fiber,” in Optical Fiber Conference (OFC), 2002.

    Google Scholar 

  95. “Press Release: NRO GeoLITE Satellite Successfully Launched”, http://cartome.org/geolite.htm, 2001.

    Google Scholar 

  96. “Press Release: Delta Launches GeoLITE Satellite for U.S. NRO.” http://www.spaceandtech.com/digest/flash2001/flash2001-038.shtml Andrews Space & Technology, 2001.

    Google Scholar 

  97. “Press Release: NRO Awarded the David Packard Excellence in Acquisition Award”. http://www.nro.gov/PressReleases/prs_rel62.html, 2002.

    Google Scholar 

  98. T.T. Nielsen and G. Oppenhaeuser, “In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX,” in Proc. SPIE, (Free-Space Laser Communication Technologies XIV), 2002.

    Google Scholar 

  99. T.T. Nielsen, G. Oppenhaeuser, B. Laurent, and G. Planche, “In-orbit test results of the optical intersatellite link, SILEX. A milestone in satellite communication,” in 53rd International Astronautical Congress, IAC-02-M.2.01, 2002.

    Google Scholar 

  100. H.P. Lutz, “Optical Communications in Space—Twenty Years of ESA Effort,” in ESA Bulletin (http://esapub.esrin.esa.it/bulletin/bullet91/b91lutz.htm), 1, 25–31 (1997).

    Google Scholar 

  101. B.I. Edelson, J.N. Pelton, C.W. Bostian, W.T. Brandon, V.W.S. Chan, E.P. Hager, N.R. Helm, R.D. Jennings, R.K. Kwan, C.E. Mahle, E. F. Miller, and L. Riley, “Satellite Communications Systems And Technology,” in http://www.wtec.org/loyola/satcom/, Loyola College in Maryland, 1993.

    Google Scholar 

  102. M. Reyes, S. Chueca, A. Alonso, T. Viera, and Z. Sodnik, “Analysis of the preliminary optical links between ARTEMIS and the Optical Ground Station,” in Proc. SPIE 4821, 2003.

    Google Scholar 

  103. A. Alonso, M. Reyes, and Z. Sodnik, “Performance of satellite-to-ground communications link between ARTEMIS and the Optical Ground Station,” in Proc. SPIE 5572, 2004.

    Google Scholar 

  104. D.M. Boroson, C.C. Chen, and B.L. Edwards, “The Mars laser communications demonstration project: truly ultralong-haul optical transport,” in Optical Fiber Conference (OFC), 2005.

    Google Scholar 

  105. M. Toyoshima, “Special Report: Trends of research and development of optical space communications technology,” Space Japan Review 12-1, No. 44, 2005.

    Google Scholar 

  106. E. Hecht, Optics, 2nd Ed. (Addison Wesley, 1987).

    Google Scholar 

  107. A. Biswas, K.E. Wilson, S. Piazzolla, J.P. Wu, and W.H. Farr, “Deep-space optical communications link availability and data volume,” in Proc. SPIE 5338, 175 (2004).

    Article  ADS  Google Scholar 

  108. F.I. Khatri, D.M. Boroson, D.V. Murphy, and J. Sharma, “Link analysis of Mars-Earth optical communications system,” in Proc. SPIE 5338, 143 (2004).

    Article  ADS  Google Scholar 

  109. F.I. Khatri and A. Biswas, “Signal and Background Levels for the Mars Lasers Communications Demonstration (MLCD),” in IEEE LEOS Summer Topical Meetings, 2005.

    Google Scholar 

  110. R.W. Boyd, Nonlinear Optics (New York: Academic Press, Inc., 2003).

    Google Scholar 

  111. G.P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (New York: Academic Press, Inc., 1995).

    Google Scholar 

  112. W.E. Webb and J.T. Marino, Jr., “Threshold detection in an on-off binary communications channel with atmospheric scintillation,” Appl. Opt. 14, 1413–1417 (1975).

    Article  ADS  Google Scholar 

  113. W.C. Brown, “Optimum Thresholds for Optical On-Off Keying Receivers Operating in the Turbulent Atmosphere,” in Proc. SPIE, (Free-Space Laser Communication Technologies IX), vol. 2290, 254–261 (1997).

    Google Scholar 

  114. H. Haunstein, R. Schlenk, and K. Sticht, “Control of Combined Electrical Feed-Forward and Decision Feedback Equalization by Conditional Error Counts from FEC in the Presence of PMD,” in Optical Fiber Conference (OFC), 2003.

    Google Scholar 

  115. D.M. Castagnozzi, “Digital signal processing and electronic equalization (EE) of ISI,” in Optical Fiber Conference (OFC), 2004.

    Google Scholar 

  116. M. Schwartz, W.R. Bennett, and S. Stein, Communication Systems and Techniques (New York: IEEE Press, 1996).

    MATH  Google Scholar 

  117. S.D. Personick, P. Balaban, J. Bobsin, and P. Kumar, “A Detailed Comparison of Four Approaches to the Calculation of the Sensitivity of Optical Fiber System Receivers,” IEEE Trans. Comm. 25, 541–548 (1977).

    Article  ADS  Google Scholar 

  118. R.G. Smith and S.D. Personick, Semiconductor devices for optical communication (New York: Springer-Verlag, 1982), vol. 39.

    Google Scholar 

  119. S.O. Rice, “Mathematical analysis of random noise,” Bell Syst. Technol. J. 24, 46–156 (1945).

    MathSciNet  MATH  Google Scholar 

  120. S. Stein and J.J. Jones, Modern communication principles (New York: McGraw-Hill, 1967).

    Google Scholar 

  121. Saleh, B.E.A. and M.C. Teich, Fundamentals of Photonics (New York: Wiley, 1991).

    Book  Google Scholar 

  122. T. Li and M.C. Teich, “Bit-Error Rate For A Lightwave Communication System Fibre Amplifier Incorporating An Erbium-doped Fibre Amplifier,” Electron. Lett. 27, 598–599 (1991).

    Article  Google Scholar 

  123. T. Li and M.C. Teich, “Photon Point Process for Traveling-Wave Laser Amplifiers,” IEEE J. Quantum Electron. 29, 2568–2578 (1993).

    Article  ADS  Google Scholar 

  124. W.S. Wong, H.A. Haus, L.A. Jiang, P.B. Hansen, and M. Margalit, “Photon statistics of amplified spontaneous emission noise in a 10-Gbitys optically preamplified direct-detection receiver,” Opt. Lett. 23, 1832–834 (1998).

    Article  ADS  Google Scholar 

  125. W.S. Wong, J.D. Moores, J. Korn, and H.A. Haus, “Photon statistics of NRZ signals in high-bit-rate optically pre-amplified direct detection receiver,” Optical Fiber Conference (OFC), 1999.

    Google Scholar 

  126. E. Desurvire, Erbium-doped fiber amplifiers (New York: John Wiley & Sons, 1994).

    Google Scholar 

  127. H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer-Verlag, 2000).

    Google Scholar 

  128. J.C. Livas, “High sensitivity optically preamplified 10 Gb/s receivers,” in Optical Fiber Conference (OFC), Paper PD4, 1996.

    Google Scholar 

  129. W.A. Atia and R.S. Bondurant, “Demonstration of return-to-zero signaling in both OOK and DPSK formats to improve receiver sensitivity in an optically preamplified receiver,” in LEOS, 1999.

    Google Scholar 

  130. A.H. Gnauck, S. Chandrasekhar, J. Leuthold, and L. Stulz, “Demonstration of 42.7-Gb/s DPSK receiver with 45 photons/bit sensitivity,” IEEE Photon. Technol. Lett. 15, 99–101 (2003).

    Article  ADS  Google Scholar 

  131. J.H. Sinsky, A. Adamiecki, A.H. Gnauck, C.A. Burrus, J. Leuthold, O. Wohlgemuth, and A. Umbach, “A 42.7-Gb/s Integrated Balanced Optical Front End with Record Sensitivity,” in Optical Fiber Conference (OFC): Paper PD39-1, 2003.

    Google Scholar 

  132. A.H. Gnauck and P.J. Winzer, “Optical phase-shift-keyed transmission,” J. Lightwave Technol. 23, 115–130 (2005).

    Article  ADS  Google Scholar 

  133. D.O. Caplan, M.L. Stevens, J.J. Carney, and R.J. Murphy, “Demonstration of Optical DPSK Communication with 25 Photons/Bit Sensitivity,” in Conference on Lasers and Electro-Optics (CLEO), 2006.

    Google Scholar 

  134. J.R. Minch, D. J. Townsend, and D.R. Gervais, “Rate Adjustable NRZ-DPSK Modulation Scheme with a Fixed Interferometer,” in IEEE LEOS, 2005.

    Google Scholar 

  135. D.O. Caplan, M.L. Stevens, and J.J. Carney, “A High-Sensitivity Multi-Channel Single-Interferometer DPSK Receiver,” Opt. Express 14, 10984–10989 (2006).

    Article  ADS  Google Scholar 

  136. D.O. Caplan, M.L. Stevens, and J.J. Carney, “High-Sensitivity Demodulation of Multiple-Data-Rate WDM-DPSK Signals using a Single Interferometer,” in Optical Fiber Conference (OFC), 2007.

    Google Scholar 

  137. K. Yonenaga and K. Hagimoto, “10-Git/s × four-channel WDM transmission experiment over 2400-km DSF using optical DPSK direct detection scheme,” in Optical Fiber Conference (OFC), 1997.

    Google Scholar 

  138. A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, A. Agarwal, S. Banerjee, D. Grosz, S. Hunsche, A. Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D.M. Gill, “2.5 Tb/s (64 × 42.7 Gb/s) transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans,” in Optical Fiber Conference (OFC), 2002.

    Google Scholar 

  139. J.-X. Cai, D.G. Foursa, C.R. Davidson, Y Cai, G. Domagala, H. Li, L. Liu, W. Patterson, A. Pilipetskii, M. Nissov, and N. Bergano, “A DWDM Demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK Channels at 10 Gb/s,” in Optical Fiber Conference (OFC): Paper PD22-1,2003.

    Google Scholar 

  140. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-Pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km Ultrawave fiber spans,” in Optical Fiber Conference (OFC): Paper PD18-1,2003.

    Google Scholar 

  141. B. Zhu, L. E. Nelson, S. Stulz, A.H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M.O. Pedersen, J. Kim, R.L. Lingle, Jr., Y. Emori, Y. Ohki, N. Tsukiji, A. Oguri, and S. Namiki, “6.4 Tbit/s (160×42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 × 100 km of fiber using CSRZ-DPSK format,” in Optical Fiber Conference (OFC): Paper PD19, 2003.

    Google Scholar 

  142. M.L. Stevens, “Transmitter pulse issues,” private communication, 2004.

    Google Scholar 

  143. R.A. Griffin, “Integrated DQPSK Transmitters,” in Optical Fiber Conference (OFC), 2005.

    Google Scholar 

  144. H. Kim and P.J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol. 21, 1887–1891 (2003).

    Article  ADS  Google Scholar 

  145. G. Bosco and P. Poggiolini, “On the joint effect of receiver impairments on direct-detection DQPSK systems,” J. Lightwave Technol. 24, 1323–1333 (2006).

    Article  ADS  Google Scholar 

  146. P.J. Winzer and H. Kim, “Degradations in balanced DPSK receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284(2003).

    Article  ADS  Google Scholar 

  147. I. Morita and N. Yoshikane, “Merits of DQPSK for Ultrahigh Capacity Transmission,” in LEOS, 2005.

    Google Scholar 

  148. A. Royset and D.R. Hjelme, “Novel dispersion tolerant optical duobinary transmitter using phase modulator and Bragg grating filter,” in ECOC, 1998.

    Google Scholar 

  149. Y. Miyamoto, H. Masuda, A. Hirano, S. Kuwahara, Y. Kisaka, H. Kawakami, M. Tomizawa, Y. Tada, and S. Aozasa, “S-band WDM coherent transmission of 40 × 43-Gbit/s CS-RZ DPSK signals over 400 km DSF using hybrid GS-TDFAs/Raman amplifiers,” Electron. Lett. 39, 1569–1570(2002).

    Article  Google Scholar 

  150. D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, and F. Bakhti, “Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal,” in ECOC, 2001.

    Google Scholar 

  151. Y. Miyamoto, A. Hirano, S. Kuwahara, M. Tomizawa, and Y. Tada, “Novel modulation and detection for bandwidth-reduced RZ formats using duobinary-mode splitting in wideband PSK/ASK conversion,” J. Lightwave Technol. 20, 2067–2078 (2002).

    Article  ADS  Google Scholar 

  152. L. Moller, C. Xie, R. Ryf, L. Xiang, and X. Wei, “10 Gb/s duobinary receiver with a record sensitivity of 88 photons per bit,” presented at Optical Fiber Conference (OFC), 2004.

    Google Scholar 

  153. L.G. Kazovsky and D.A. Atlas., “PSK synchronous heterodyne and homodyne experiments using optical phase-locked loops,” presented at Optical Fiber Conference (OFC), 1990.

    Google Scholar 

  154. L.G. Kazovsky and D.A. Atlas, “A 1320-nm Experimental Optical Phase-Locked Loop: Performance Investigation and PSK Homodyne Experiments at 140 Mb/s and 2 Gb/s,” J. Lightwave Technol. 8, 1414–1425 (1990).

    Article  ADS  Google Scholar 

  155. F.T. Herzog, “An optical phase locked loop for coherent space communications,” Swiss Federal Institute of Technology, 2006.

    Google Scholar 

  156. L.G. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems (Norwood, MA: Artech House, Inc., 1996).

    Google Scholar 

  157. B. Wandernoth, “5 photon/bit low complexity 2 Mbit/s PSK transmission breadboard experiment with homodyne receiver applying synchronization bits and convolutional coding,” Proc. Eur. Conf. Opt. Commun. (ECOC), 1, 59–62 (1994).

    Google Scholar 

  158. R. Lange and B. Smutny, “Highly-Coherent Optical Terminal Design Status and outlook,” in LEOS, 2005.

    Google Scholar 

  159. J.H. Sinsky, A. Adamiecki, A.H. Gnauck, C.A. Burrus, J. Leuthold, and O. Wohlgemuth, “RZ-DPSK Transmission Using a 42.7-Gb/s Integrated Balanced Optical Front End With Record Sensitivity,” J. Lightwave Technol. 22, (2004).

    Google Scholar 

  160. S. B. Alexander, R. Barry, D.M. Castagnozzi, V.W.S. Chan, D.M. Hodsdon, L.L. Jeromin, J.E. Kaufmann, D.M. Materna, R.J. Parr, M.L. Stevens, and D.W. White, “4-ary FSK coherent optical communication system,” Electron. Lett. 26, 1346–1348 (1990).

    Article  ADS  Google Scholar 

  161. M.L. Stevens, D.M. Boroson, and J.E. Kaufmann, “A near-optimum discriminator demodulator for binary FSK with wide tone spacing,” IEEE Microwave and Guided Wave Lett. 3, 227–229(1993).

    Article  Google Scholar 

  162. R. Noe, et. al., “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett. 25, 757–758 (1989).

    Article  Google Scholar 

  163. B.S. Robinson “Semiconductor-based all-optical switching for optical time-division multiplexed networks,” Thesis, MIT, 2003.

    Google Scholar 

  164. J.M. Kahn, “1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 1, 340–342 (1989).

    Article  ADS  Google Scholar 

  165. S. Norimatsu, K. Iwashita, and K. Noguchi, “10 Gbit/s optical PSK homodyne transmission experiments using external cavity DFB LDs,” Electron. Lett. 26, 648–649 (1990).

    Article  Google Scholar 

  166. S. Norimatsu, K. Iwashita, and K. Sato, “PSK optical homodyne detection using external cavity laser diodes in Costas loop,” IEEE Photon. Technol. Lett. 2, 374–376 (1990).

    Article  ADS  Google Scholar 

  167. B. Zhu, L. Leng, L. E. Nelson, L. Gruner-Nielsen, Y. Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R.L. Lingle, Jr., “3.2 Tb/s (80 × 42.7 Gb/s) transmission over 20 × 100km of nonzero dispersion fiber with simultaneous C + L-band dispersion compensation,” in Optical Fiber Conference (OFC), 2002.

    Google Scholar 

  168. J.M. Ross, S. I. Green, and J. Brand, “Short-pulse optical communication experiments,” Proc. IEEE 58, (1970).

    Google Scholar 

  169. J.R. Lesh, J. Katz, H.H. Tan, and D. Zwillinger, “2.5 bit/detected photon demonstration program: description, analysis, and phase 1 results,” Jet Propulsion Laboratory, Pasadena, CA 42-66, Dec. 1981.

    Google Scholar 

  170. J.R. Lesh, “Capacity Limit of the Noiseless, Energy-Efficient Optical PPM Channel,” IEEE Trans. Comm., 31, 546–548 (1983).

    Article  ADS  Google Scholar 

  171. A.J. Phillips, R.A. Cryan, and J.M. Senior, “An optically preamplified intersatellite PPM receiver employing maximum likelihood detection,” IEEE Photon. Technol. Lett. 8, 691–693, 1996.

    Article  ADS  Google Scholar 

  172. D.O. Caplan, P.W. Juodawlkis, J.J. Plant, and M.L. Stevens, “Performance of high-sensitivity OOK, PPM, and DPSK communications using high-power slab-coupled optical waveguide amplifier (SCOWA) based transmitters,” in Optical Fiber Conference (OFC), 2006.

    Google Scholar 

  173. C. Chen and C.S. Gardner, “Performance of PLL Synchronized Optical PPM Communication Systems,” IEEE Trans. Comm. COM-34, 988–994 (1986).

    Article  ADS  Google Scholar 

  174. F. Nekoogar, Ultra-Wideband Communications: Fundamentals and Applications (Upper Saddle River: Prentice Hall, 2005).

    Google Scholar 

  175. M.L. Stevens, “Estimation of M-PPM Spectra for Pseudo-Random Bit Sequences.” private communication, 2006.

    Google Scholar 

  176. B.S. Robinson, S.A. Hamilton, and E.P. Ippen, “Demultiplexing of 80 Gbit/s pulse-position modulated data with an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 14, 2002.

    Google Scholar 

  177. R.S. Vodhanel, J.L. Gimlett, N.K. Cheung, and S. Tsuji, “FSK Heterodyne Transmission Experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol. LT-5, 461–468 (1987).

    Article  ADS  Google Scholar 

  178. A.R. Chraplyvy, R.W. Tkach, A.H. Gnauck, and R.M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett., 25, 319–321 (1989).

    Article  Google Scholar 

  179. B. Glance, et. al., “Densely spaced FDM optical coherent system with near quantum-limited sensitivity and computer controlled random access channel selection,” in Optical Fiber Conference (OFC): Paper PD11, 1989.

    Google Scholar 

  180. M.L. Stevens, B. R. Hemenway, and S.B. Alexander, “Simultaneous TDM/FDM digital optical transmission with polarization-diversity heterodyne detection,” Microwave Symposium Digest, 1, 171–173(1994).

    Google Scholar 

  181. R. Gross and R. Olshansky, “Multichannel Coherent FSK Experiments Using Subcarrier Multiplexing Techniques,” J. Lightwave Technol. 8, 406–415 (1990).

    Article  ADS  Google Scholar 

  182. H. Gross, M. Schmidt, R. Olshansky, and V. Lanzisera, “Coherent Transmission of 60 FM-SCM Video Channels,” Photonics Technol. Lett. 2, 288–290 (1990).

    Article  ADS  Google Scholar 

  183. S. Bendetto, R. Gaudino, and P. Poggiolini, “Direct detection of optical digital transmission based on polarization shift keying modulation,” IEEE Sel. Areas Commun., 13, 531–542 (1995).

    Article  Google Scholar 

  184. E. Hu, K. Wong, M. Marhic, L.G. Kazovsky, K. Shimizu, and N. Nikuchi, “4-Level Direct-Detection Polarization Shift-Keying (DD-PolSK) System with Phase Modulators,” in Optical Fiber Conference (OFC), 2003.

    Google Scholar 

  185. M.M. Matalgah and R.M. Radaydeh, “Hybrid Frequency-Polarization Shift-Keying Modulation for Optical Transmission,” J. Lightwave Technol. 23, 1152–1162 (2005).

    Article  ADS  Google Scholar 

  186. M. Nazarathy and E. Simony, “Generalized Stokes Parameters-Shift Keying: A New Perspective on Optimal Detection Over Electrical and Optical Vector Incoherent Channels,” IEEE Trans. Comm. 54,499–509 (2006).

    Article  Google Scholar 

  187. M. Nazarathy and E. Simony, “Stokes Space Optimal Detection of Multidifferential Phase and Polarization Shift Keying Modulation,” J. Lightwave Technol. 24, 1978–1988 (2006).

    Article  ADS  Google Scholar 

  188. R. Zhang and G.S. La Rue, “Clock and data recovery circuits with fast acquisition and low jitter,” presented at IEEE Workshop on Microelectronics and Electron Devices, 2004.

    Google Scholar 

  189. N.W. Spellmeyer, “Communications performance of a multimode EDFA,” IEEE Photon. Technol. Lett. 12, 1337–1339 (2000).

    Article  ADS  Google Scholar 

  190. R.H. Kingston, Detection of Optical and Infrared Radiation (New York: Springer-Verlag, 1978).

    Google Scholar 

  191. B. Glance, “Polarization independent coherent optical receiver,” J. Lightwave Technol. 5, 274–276 (1987).

    Article  ADS  Google Scholar 

  192. B.S. Glance, K. Pollock, C.A. Burrus, B.L. Kasper, G. Einstein, and L.W. Stulz, “WDM coherent optical star network,” J. Lightwave Technol. 6, 67–72 (1988).

    Article  ADS  Google Scholar 

  193. B.S. Glance and M. Kavehrad, “Polarization-insensitive frequency-shift-keying optical heterodyne receiver using discriminator demodulation,” J. Lightwave Technol. 6, 1386–1394 (1988).

    Article  ADS  Google Scholar 

  194. N. Ohkawa, T. Sugie, and Y. Hayashi, “A highly sensitive balanced receiver for 2.5 Gb/s het-erodyne detection systems,” IEEE Photon. Technol. Lett. 3, 375–377 (1991).

    Article  ADS  Google Scholar 

  195. B. Wandernoth, “20 photon/bit 565 Mbit/s PSK homodyne receiver using synchronization bits,” Electron. Lett. 28, (1992).

    Google Scholar 

  196. F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, and N.O. Sokal, “RF and Microwave Power Amplifier and Transmitter Technologies—Part 1,” High Frequency Electronics, 22–36 (2003).

    Google Scholar 

  197. P.W. Juodawlkis, J.J. Plant, R.K. Huang, L.J. Missaggia, and J.P. Donnelly, “High-power 1.5-/spl mu/m InGaAsP-InP slab-coupled optical waveguide amplifier,” IEEE Photon. Technol. Lett. 17, (2005).

    Google Scholar 

  198. N.W. Spellmeyer, D.O. Caplan, and M.L. Stevens, “Design of a 5-Watt PPM transmitter for the Mars Laser Communications Demonstration,” in LEOS, 2005.

    Google Scholar 

  199. P. Wysocki, T. Wood, A. Grant, D. Holcomb, K. Chang, M. Santo, L. Braun, and G. Johnson, “High Reliability 49 dB Gain, 13W PM Fiber Amplifier at 1550 nm with 30 dB PER and Record Efficiency,” in Optical Fiber Conference (OFC), paper PDP 17, 2006.

    Google Scholar 

  200. L. Goldberg, J.P. Koplow, and D.A.V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett. 24, 673–675 (1999).

    Article  ADS  Google Scholar 

  201. A.N. Curren, J.A. Dayton, Jr., R.W. Palmer, K.J. Long, D.A. Force, CE. Weeder, Z.A. Zachar, and W.L. Harvey, “The Cassini mission Ka-band TWT,” in International Electron Devices Meeting, 1994.

    Google Scholar 

  202. D. Morabito, S. Butman, and S. Shambayati, “The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II),” in Telecommunications and Mission Operations Progress Report 42-137, Jet Propulsion Laboratory, 1999.

    Google Scholar 

  203. I. Haque, “Ka-Band Traveling Wave Tube Amplifier,” in IND Technology and Sciency News, Jet Propulsion Laboratory, 2002, pp. 11–14: http://tmot.jpl.nasa.gov/Program_Overview_Information/IND_Program_News/Issue15.pdf.

    Google Scholar 

  204. N.W. Spellmeyer, D.O. Caplan, B.S. Robinson, D. Sandberg, M.L. Stevens, M.M. Willis, D.V. Gapontsev, N.S. Platonov, and A. Yusim, “A High-Efficiency Ytterbium-Doped Fiber Amplifier Designed for Interplanetary Laser Communications,” in Optical Fiber Conference (OFC), 2007.

    Google Scholar 

  205. R. Loudon, The Quantum Theory of Light (New York: Oxford University Press, Inc., 2000).

    MATH  Google Scholar 

  206. C.W. Gardiner and P. Zoller, Quantum Noise (New York: Springer Verlag, 2000).

    MATH  Google Scholar 

  207. J.W. Goodman, Statistical Optics (New York: John Wiley & Sons, Inc., 2000).

    Google Scholar 

  208. A. Papoulis, Probability, Random Variables, and Stochastic Processes (New York: McGraw-Hill, Inc., 1984).

    MATH  Google Scholar 

  209. R. Sobolewski, et. al., “Ultrafast superconducting single-photon optical detectors and their applications” IEEE Trans. Appi Superconduct 13, 1151–1157 (2003).

    Article  Google Scholar 

  210. J.K.W. Yang, et. al., “Fabrication development for nanowire GHz-counting-rate single-photon detectors,” IEEE Trans. Appi. Superconduct., 2005.

    Google Scholar 

  211. B.S. Robinson, “Private communication,” 2005.

    Google Scholar 

  212. J.H. Shapiro, “Imaging and Optical Communication through Atmospheric Turbulence,” in Laser Beam Propagation in the Atmosphere, J.W. Strohbehn, Ed. (Berlin: Springer-Verlag, 1978).

    Google Scholar 

  213. R.J. Barron, “Binary shaping for low-duty-cycle communications,” in International Symposium on Information Theory (ISIT), 2004.

    Google Scholar 

  214. B.S. Robinson, D.O. Caplan, M.L. Stevens, R.J. Barron, E.A. Dauler, and S.A. Hamilton, “1.5-photons/bit Photon-Counting Optical Communications Using Geiger-Mode Avalanche Photodiodes,” in IEEE LEOS Summer Topical Meetings, 2005.

    Google Scholar 

  215. J.B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).

    Article  ADS  Google Scholar 

  216. H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32, 110–113 (1928).

    Article  ADS  Google Scholar 

  217. B. M. Oliver, “Thermal and quantum noise,” presented at Proc. IEEE, 1965.

    Google Scholar 

  218. A. Yariv, Optical Electronics in Modem Communications, 5th Ed. (New York: Oxford Un. Press, 1997).

    Google Scholar 

  219. S.G. Lambert and W.L. Casey, Laser Communications in Space (Boston: Artech House, 1995).

    Google Scholar 

  220. ITU-R Recommendation PI.372-6: Radio Noise, 1994.

    Google Scholar 

  221. K. P. Phillips, “An overview of propagation factors influencing the design of mobile satellite communication systems,” Electron. & Commun. Eng. J., (1997).

    Google Scholar 

  222. K. Rosfjord, J. Yang, E. Dauler, A. Kerman, V. Anant, B. Voronov, G. Gol’tsman, and K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating,” Opt. Express, 14, 527–534 (2006).

    Article  ADS  Google Scholar 

  223. W.R. Leeb, “Degradation of signal to noise ratio in optical free space data links due to background illumination,” Appi. Opt. 28, 3443–3449 (1989).

    Article  ADS  Google Scholar 

  224. F.D. Teodoro, J.P. Koplow, and S.W. Moore, “Diffraction limited, 300-kW peak power pulses from a coiled multimode fiber amplifier,” Opt. Lett., (2002).

    Google Scholar 

  225. V.W.S. Chan, “Space coherent optical communication systems-An introduction,” J. Lightwave Technol. 5, 633–637 (1987).

    Article  ADS  Google Scholar 

  226. S.B. Alexander, E.S. Kintzer, and J.C. Livas, “A Gbps, 1 Watt Free-space Coherent Optical Communication System,” in LEOS, 1992.

    Google Scholar 

  227. A. Biswas, H. Hemmati, and J.R. Lesh, “High data-rate laser transmitters for free space laser communications,” in Photonics West, 1999.

    Google Scholar 

  228. E. Rochat, R. Dändliker, K. Haroud, R.H. Czichy, U. Roth, D. Costantini, and R. Holzner, “Fiber Amplifiers for Coherent Space Communication,” IEEE Sei. Top. Quantum Electron., 7, 64–81(2001).

    Article  Google Scholar 

  229. R. Lange and B. Smutny, “BPSK Laser Communication Terminals to be verified in space,” in Milcom, 2004, pp. 441–444.

    Google Scholar 

  230. R. Lange and B. Smutny, “Optical inter-satellite links based on homodyne BPSK modulation: Heritage, status and outlook,” in Proc. SPIE, (Free-Space Laser Communication Technologies XVII), 2005.

    Google Scholar 

  231. T. Shinagawa, “Detailed investigation on reliability of wavelength-monitor-integrated fixed and tunable DFB laser diode modules,” J. Lightwave Technol. 23, 1126–1136 (2005).

    Article  ADS  Google Scholar 

  232. T. Ikegami and Y Suematsu, “Resonance-like characteristics of the direct modulation of a junction laser,” presented at Proc. IEEE, 1967.

    Google Scholar 

  233. L.A. Coldren and S.W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, Inc., 1995).

    Google Scholar 

  234. D.A. Ackerman, “Laser diodes for CATV,” in IEEE LEOS, 1995.

    Google Scholar 

  235. M.R. Phillips, et. al., “112 channel split-band WDM lightwave CATV system,” IEEE Photon. Technol. Lett. 4, 790–792 (1992).

    Article  ADS  Google Scholar 

  236. G.P. Agrawal, Fiber-Optic Communication Systems (New York: John Wiley & Sons, 1992).

    Google Scholar 

  237. J. Piprek and J.E. Bowers, “Analog modulation of semiconductor lasers,” in RF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

    Google Scholar 

  238. R.S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J.L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol. 8, 1379–1386 (1990).

    Article  ADS  Google Scholar 

  239. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Pueucheret, and P. Jeppesen, “An Optical FSK Transmitter Based on an Integrated DFB Laser-EA Modulator and Its Application in Optical Labeling,” IEEE Photon. Technol. Lett. 15, 984–986 (2003).

    Article  ADS  Google Scholar 

  240. F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93(1988).

    Article  ADS  Google Scholar 

  241. M. Kuznetsov, J. Stone, and L.W. Stulz, “Time-and frequency-resolved measurements of frequency-modulation and switching of a tunable semiconductor laser,” Appl. Phys. Lett. 59, 2492–2494 (1991).

    Article  ADS  Google Scholar 

  242. M. Kuznetsov and D.O. Caplan, “Time-frequency analysis of optical communication signals and the effects of second and third order dispersion,” in Conference on Lasers and Electro-Optics (CLEO), 2000.

    Google Scholar 

  243. R.A. Linke, “Modulation Induced Transient Chirping in Single Frequency Lasers,” IEEE J. Quantum Electron. QE-21, 593–597 (1985).

    Article  ADS  Google Scholar 

  244. PA. Morton, G.E. Shtengel, L.D. Tzeng, R.D. Yadvish, T. Tanbun-Ek, and R.A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fibre using a low chirp, spectrally filtered, directly modulated 1.55 µm DFB laser,” Electron. Lett. 33, 310–311 (1997).

    Article  Google Scholar 

  245. D.R. Hjelme and A. Royset, “RZ versus NRZ in space communication system using direct current modulated transmitter and optically pre-amplifed receiver with ultra-narrow optical filter,” in LEOS, San Francisco, 1999.

    Google Scholar 

  246. M.M. Strasser, P.J. Winzer, M. Pfennigbauer, and W.R. Leeb, “Significance of Chirp-Parameter for Direct Detection Free-Space Laser Communication,” in SPIE, 2001.

    Google Scholar 

  247. P. Corvini and T. Koch, “Computer simulation of high-bit-rate optical fiber transmission using single-frequency lasers,” J. Lightwave Technol. 5, 1591–1595 (1987).

    Article  ADS  Google Scholar 

  248. D. Mahgerefteh, PS. Cho, J. Goldhar, and H. I. Mandelberg, “Penalty-free propagation over 600 km of nondispersionshifted fiber at 2.5 Gb/s using a directly laser modulated transmitter,” in Conference on Lasers and Electro-Optics (CLEO), 1999.

    Google Scholar 

  249. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z.F. Fan, K. McCallion, and P. Tayebati, “Chirp-Managed Directly Modulated Laser (CML),” Photon. Technol. Lett. 18, 385–386 (2006).

    Article  ADS  Google Scholar 

  250. S. Chandrasekbar, C.R. Doerr, L.L. Buhl, Y. Matsui, D. Mahgerefteh, X. Zheng, K. McCallion, Z. Fan, and P. Tayebati, “Repeaterless Transmission With Negative Penalty Over 285 km at 10 Gb/s Using a Chirp Managed Laser,” Photon. Technol. Lett. 17, 2454–2457 (2005).

    Article  ADS  Google Scholar 

  251. S. Chandrasekbar, A.H. Gnauck, G. Raybon, L.L. Buhl, D. Mahgerefteh, X. Zheng, Y. Matsui, K. McCallion, Z. Fan, and P. Tayebati, “Chirp-Managed Laser and MLSE-RX Enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation” Photonics Technol. Lett. 18, 1560–1562 (2006).

    Article  ADS  Google Scholar 

  252. M. Ito and T. Kimura, “Stationary and transient thermal properties of semiconductor laser diodes,” IEEE J. Quantum Electron. 17, 787–795 (1981).

    Article  ADS  Google Scholar 

  253. H. Shalom, A. Zadok, M. Tur, P.J. Legg, WD. Cornwell, and I. Andonovic, “On the Various Time Constants of Wavelength Changes of a DFB Laser Under Direct Modulation,” IEEE J. Quantum Electron. 34, 1816–1822 (1998).

    Article  ADS  Google Scholar 

  254. A. Ma, J.C. Cartledge, and H.E. Lassen, “Performance implications of the thermal-induced frequency drift in fast wavelength switched systems with heterodyne detection,” J. Lightwave Technol. 14, 1090–1096 (1996).

    Article  ADS  Google Scholar 

  255. D.O. Caplan, G.S. Kanter, and P. Kumar, “Characterization of dynamic optical nonlinearities by continuous time-resolved Z-Scan,” Opt. Lett, 21, 1342–1344 (1996).

    Article  ADS  Google Scholar 

  256. A. A. Saavedra, R. Passy, and J.P. von der Weid, “Thermal drift in wavelength-switching DFB and DBR lasers,” Electron. Lett. 33, 780–781 (1997).

    Article  Google Scholar 

  257. C.R. Giles, T. Erdogan, and V. Mizrahi, “Simultaneous wavelength-stabilization of 980-nm pump lasers,” IEEE Photonics Technol. Lett. 6, (1994).

    Google Scholar 

  258. S. Mohrdiek, T. Plisk, and C. Harder, “Coolerless operation of 980 nm pump modules,” in Optical Fiber Conference (OFC), 2001.

    Google Scholar 

  259. J.-L. Archambault and S.G. Grubb, “Fiber Gratings in Lasers and Amplifiers,” J. Lightwave Technol. 15, 1378–1390 (1997).

    Article  ADS  Google Scholar 

  260. B. R. Hemenway and M.L. Stevens, “Simultaneous TDM/FDM Using Rapidly-tunable Transmitters and Receivers For Multi-access Optical Networks,” presented at IEEE/LEOS Integrated Optoelectronics Proceedings, 1994.

    Google Scholar 

  261. C.H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).

    Article  ADS  Google Scholar 

  262. K. Kojima, K. Kyuma, and T. Nakayama, “Analysis of the spectral linewidth of distributed feedback laser diodes,” J. Lightwave Technol. 3, 1048–1055 (1985).

    Article  ADS  Google Scholar 

  263. H. Nakano, S. Sasaki, S. Tsuji, N. Chinone, and M. Maeda, “Comparison of optical reflection tolerance between conventional and ?/4-shifted DFB lasers in a 2.4 Gbit/s system,” Electron. Lett. 4, 1049–1051(1988).

    Article  Google Scholar 

  264. G. Jacobsen, “Performance of DPSK and CPFSK Systems with Significant Post-Detection Filtering,” J. Lightwave Technol. 11, (1993).

    Google Scholar 

  265. H. Nasu, T. Mukaihara, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “25-GHz-spacing wavelength-monitor integrated DFB laser module for DWDM applications,” Photon. Technol. Lett. 15, 293–295 (2003).

    Article  ADS  Google Scholar 

  266. D.O. Caplan, “Multi-channel DPSK Receiver,” in US Pat. Appl. 11/022,344, 2004.

    Google Scholar 

  267. D.O. Caplan, “Polarization independent optical interferometers,” in US Pat. Appl., 2004.

    Google Scholar 

  268. D.O. Caplan, “Reconfigurable Polarization Independent Interferometers and Methods of Stabilization,” in US Pat. Appl. 11/318,255, 2005.

    Google Scholar 

  269. J.B. Abshire, et. al., “The Geoscience Laser Altimeter System (GLAS) for the ICESat mission,” presented at Conference on Lasers and Electro-Optics (CLEO), 2000.

    Google Scholar 

  270. M. Albota, et. al., “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” MIT Lincoln Lab. J. 13, 351–370 (2002).

    Google Scholar 

  271. W.T. Roberts, “Cavity-dumped communication laser design,” 42–152, Feb. 2003.

    Google Scholar 

  272. X. Sun, et. al., “Cloud and aerosol lidar channel design and performance of the Geoscience Laser Altimeter System on the ICESat mission,” presented at Conference on Lasers and Electro-Optics (CLEO), 2004.

    Google Scholar 

  273. X. Sun, et. al., “Design and performance measurement of the mercury laser altimeter,” in Conference on Lasers and Electro-Optics (CLEO), 2004.

    Google Scholar 

  274. M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD,” IEEE J. Quantum Electron. 29, 2088–2096 (1993).

    Article  ADS  Google Scholar 

  275. W.S.C. Chang, “Multiple quantum well electroabsorption modulators for RF photonic links,” in RF Photonic Technology in Optical Fiber Links, W.S.C. Chang, Ed. (Cambridge Univ. Press, 2002).

    Google Scholar 

  276. G. Raybon, U. Koren, M.G. Young, B.I. Miller, M. Chien, T.H. Wood, and H. M. Presby, “Low chirp transmission at 5.0 Gbit/s using an integrated DBR laser-modulator transmitter,” Electron. Lett. 30, 1330–1331 (1994).

    Article  ADS  Google Scholar 

  277. Y. Akage, K. Kawano, S. Oku, R. Iga, H. Okamoto, Y. Miyamoto, and H. Takeuchi, “Wide bandwidth of over 50 GHz travelling-wave electrode electroabsorption modulator integrated DFB lasers,” Electron. Lett. 37, 299–300 (2001).

    Article  Google Scholar 

  278. A.H. Gnauck, S.K. Korotky, J.J. Veselka, J. Nagel, C.T. Kemmerer, W. J. Minford, and D. T. Moser, “Dispersion penalty reduction using an optical modulator with adjustable chirp,” IEEE Photon. Technol. Lett. 3, 916–918 (1991).

    Article  ADS  Google Scholar 

  279. A.H. Gnauck, S.K. Korotky, and J.E. Zucker, “Tunable chirp, lightwave modulator for dispersion compensation,” in US Pat. 5,303,079,. USA, 1992.

    Google Scholar 

  280. R.M. Jopson and A.H. Gnauck, “Dispersion compensation for optical fiber systems,” IEEE Communi. Mag., 33, 96–102 (1995).

    Article  Google Scholar 

  281. L. Zehnder, “Ein neuer Interferenzrefractor,” Z. Instrkde 11, 275–285 (1891).

    Google Scholar 

  282. L. Mach, “Uber einer Interferenzrefractor” Z. Instrkde 12, 89–93 (1892).

    Google Scholar 

  283. R.C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Technol., 82, 1121–1137 (1982).

    Article  ADS  Google Scholar 

  284. R.C. Alferness, “Corrections to “Waveguide Electrooptic Modulators”,” IEEE Trans. Microwave Theory Technol. 83, 315 (1983).

    Article  ADS  Google Scholar 

  285. R.C. Alferness, L.L. Buhl, J.L. Jackel, S. P. Lyman, and V. Ramaswamy, “Fabrication method for LiNbO3 and LiTaO3 integrated optics devices,” in U.S. Pat. 4,439,265, USA, 1984.

    Google Scholar 

  286. L. Thylen, “Integrated optics in LiNbO3: recent developments in devices for telecommunication,” J. Lightwave Technol. 6, 847–861 (1988).

    Article  ADS  Google Scholar 

  287. K. Noguchi, O. Mitomi, and H. Miyazawa, “Low-voltage and broadband Ti:LiNbO3 modulators operating in the millimeter wavelength region,” in Optical Fiber Conference (OFC), 1996.

    Google Scholar 

  288. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modula tors,” J. Lightwave Technol. 16, 615–619 (1998).

    Article  ADS  Google Scholar 

  289. G.E. Betts, “LiNbO3 external modulators and their use in high performance analog links,” in RF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

    Google Scholar 

  290. M.M. Howerton and W.K. Burns, “Broadband traveling wave modulators in LiNbO3,” in RF Photonic Technology in Optical Fiber Links, W.S. C. Chang, Ed. (Cambridge Univ. Press, 2002).

    Google Scholar 

  291. O. Leclerc, et. al., “40 Gbit/s polarization-independent, push-pull InP Mach-Zehnder modulator for all-optical regeneration,” presented at Optical Fiber Conference (OFC), PD35, 1999.

    Google Scholar 

  292. O. Leclerc, B. Dany, D. Rouvillain, P. Brindel, E. Desurvire, C. Duchet, A. Shen, F. Devaux, E. Coquelin, M. Goix, S. Bouchoule, L. Fleury, and P. Nouchi, “Simultaneously regenerated 4×40 Gbit/s dense WDM transmission over 10000 km using single 40 GHz InP Mach-Zehnder modulator,” Electron. Lett. 36, 1574–1575 (2000).

    Article  Google Scholar 

  293. B. Li, et. al., “SiGe/Si Mach-Zehnder Interferometer Modulator based on the Plasma Dispersion Effect,” Appl. Phys. Lett. 74, (1999).

    Google Scholar 

  294. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, “High speed silicon Mach-Zehnder modulator,” Opt. Express, 13, (2005).

    Google Scholar 

  295. G. L. Li and P.K.L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010–2030 (2003).

    Article  ADS  Google Scholar 

  296. J.P. Sokoloff, PR. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett.5, (1993).

    Google Scholar 

  297. T. Durhuus, C. Joergensen, B. Mikkelsen, and K.E. Stubkjaer, “Penalty free all-optical wavelength conversion by SOA’s in Mach-Zehnder configuration,” in ECOC’93. Montreux, 1993.

    Google Scholar 

  298. B. Mikkelsen, et. al., “20 Gbit/s polarisation insensitive wavelength conversion in semiconductor optical amplifiers,” in ECOC’93. Montreux, 1993.

    Google Scholar 

  299. N. Patel, et. al., “40-Gb/s demultiplexing using an ultrafast nonlinear interferometer (UNI),” IEEE Photon. Technol. Lett. 8, 1695–1697 (1996).

    Article  ADS  Google Scholar 

  300. N.S. Patel, K. L. Hall, and K.A. Rauschenbach, “Interferometric all optical switches for ultrafast signal processing,” Appl. Opt. 37, 2831–2842 (1998).

    Article  ADS  Google Scholar 

  301. C. Janz, F. Poingt, F. Pommereau, W. Grieshaber, F. Gaborit, D. Leclerc, I. Guillemot, and M. Renaud, “All-active Dual Order Mode (DOMO) Mach-Zehnder wavelength converter for 10 Gb/s operation,” Electron. Lett. 35, 1862 (1999).

    Article  Google Scholar 

  302. B.S. Robinson, S.A. Hamilton, and E.P. Ippen, “Demultiplexing of 80 Gbit/s pulse-position modulated data with an ultrafast nonlinear interferometer,” IEEE Photon. Technol. Lett. 14, 2002.

    Google Scholar 

  303. G. Raybon, Y. Su, J. Leuthold, R.-J. Essiambre, T. Her, C. Joergensen, P. Steinvurzel, and K. D. K. Feder, “40 Gbit/s pseudo-linear transmission over one million kilometers,” in Optical Fiber Conference (OFC): Paper FD10-1, 2002.

    Google Scholar 

  304. J. Leuthold, G. Raybon, Y. Su, R. Essiambre, S. Cabot, J. Jaques, and M. Kauer, “40 Gbit/s transmission and cascaded all-optical wavelength conversion over 1000000 km,” Electron. Lett. 38, 890–892 (2002).

    Article  Google Scholar 

  305. Y. Su, G. Raybon, R.-J. Essiambre, and T.-H. Her, “All-optical 2R regeneration of 40-Gb/s signal impaired by intrachannel four-wave mixing,” Photonics Technol. Lett. 15, 350–352 (2003).

    Article  ADS  Google Scholar 

  306. J. Nayyer and H. Nagata, “Suppression of thermal drifts of high speed TiiLiNbO3 optical modulators,” IEEE Photon. Technol. Lett. 6, 952–955 (1994).

    Article  ADS  Google Scholar 

  307. S.K. Korotky and J.J. Veselka, “An RC network analysis of long term Ti:LiNb03 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).

    Article  ADS  Google Scholar 

  308. A. Waksberg and J. Wood, “An Automatic Optical Bias Control for Laser Modulators,” Rev. Sei. Instrum., 43, 1271–1273 (1972).

    Article  Google Scholar 

  309. C.T. Mueller and J.G. Coffer, “Temperature-dependent bias drift in proton-exchanged lithium niobate Mach-Zehnder modulators,” in Conference on Lasers and Electro-Optics (CLEO), 1999.

    Google Scholar 

  310. H. Nagata, “DC drift failure rate estimated on 10 Gb/s x-cut lithium niobate modulators,” IEEE Photon. Technol. Lett. 12, 1477–1479 (2000).

    Article  ADS  Google Scholar 

  311. H. Nagata, N. Papasavvas, and D.R. Maack, “Bias stability of OC48 x-cut lithium-niobate optical modulators: four years of biased aging test results,” Photon. Technol. Lett. 15,42–44 (2003).

    Article  ADS  Google Scholar 

  312. H. Nagata, G. D. Feke, Y. Li, and W.R. Bosenberg, “DC drift of Z-cut LiNb03 modulators,” IEEE Photon. Technol. Lett. 16, 1655–1657 (2004).

    Article  ADS  Google Scholar 

  313. H. Nagata, Y. Li, D.R. Maack, and W.R. Bosenberg, “Reliability Estimation From Zero-Failure LiNb03 Modulator Bias Drift Data,” IEEE Photon. Technol. Lett. 16, 1477–1479 (2004).

    Article  ADS  Google Scholar 

  314. D.O. Caplan, “A technique for measuring and optimizing modulator extinction ratio,” in Conference on Lasers and Electro-Optics (CLEO), 2000.

    Google Scholar 

  315. N. Kuwata, H. Nishimoto, T. Horimatsu, and T. Touge, “Automatic bias control circuit for Mach-Zehnder modulator,” presented at Nat. Meet. Inst. Electon. Comm. Eng., Japan, 1990.

    Google Scholar 

  316. A.H. Gnauck and CR. Giles, “2.5 and 10 Gb/s transmission experiments using a 137 photon/bit erbium-fiber preamplifier receiver,” IEEE Photon. Technol. Lett. 4, 80–82 (1992).

    Article  ADS  Google Scholar 

  317. Q. Jiang and M. Kavehrad, “A Subcarrier-Multiplexed Coherent FSK System Using a Mach-Zehnder Modulator with Automatic Bias Control,” IEEE Photon. Technol. Lett. 5,941–943 (1993).

    Article  ADS  Google Scholar 

  318. H. Nagata, Y. Li, K. R. Voisine, and W.R. Bosenberg, “Reliability of Nonhermetic Bias-Free LiNb03 Modulators,” IEEE Photon. Technol. Lett. 16, (2004).

    Google Scholar 

  319. L. Fenghai, C.J. Rasmussen, and R.J.S. Pedersen, “Experimental verification of a new model describing the influence of incomplete signal extinction ratio on the sensitivity degradation due to multiple interferometric crosstalk,” IEEE Photon. Technol. Lett. 11, 137 (1999).

    Article  ADS  Google Scholar 

  320. Z. Li, Y He, B.F. Jorgensen, and R.J. Pedersen, “Extinction ratio effect for high-speed optical fiber transmissions,” presented at Int. Conf. on Comm. Tech. Proc. (ICCT’ 98), 1998.

    Google Scholar 

  321. M. Pauer and P.J. Winzer, “Impact of Extinction Ratio on Return-to-Zero Coding Gain in Optical Noise Limited Receivers,” IEEE Photon. Technol. Lett. 15, 879–881 (2003).

    Article  ADS  Google Scholar 

  322. H. Kim and A.H. Gnauck, “Chirp characteristics of dual-drive mach-zehnder modulator with a finite dc extinction ratio,” IEEE Photonics Tech. Lett., 14, (2002).

    Google Scholar 

  323. T. Kawanishi, T. Sakamoto, M. Tsuchiya, and M. Izutsu, “70 dB extinction-ratio LiNb03 optical intensity modulator for two-tone lightwave generation,” in Optical Fiber Conference (OFC), 2006.

    Google Scholar 

  324. “Measuring extinction ratio of optical transmitters,” Hewlett Packard App. Note, 1550-8, 1998.

    Google Scholar 

  325. P.O. Andersson and K. Akermark, “Accurate-optical extinction ratio measurement,” IEEE Photon. Technol. Lett. 6, 1356–1358 (1994).

    Article  ADS  Google Scholar 

  326. CR. Yang, W.-Y. Hwang, H. Park, H.H. Hong, and S.G. Han, “Off-level sampling method for bias stabilisation of electro-optic Mach-Zehnder modulator,” Electron. Lett. 35,590–591 (1999).

    Article  Google Scholar 

  327. R.C. Alferness, S.K. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. 20,301–309 (1984).

    Article  ADS  Google Scholar 

  328. R.C Alferness, “Traveling wave, electrooptic devices with effective velocity matching” in US Pat. 4,448,479, 1984.

    Google Scholar 

  329. O. Mitomi, K. Noguchi, and H. Miyazawa, “Broadband and low driving-voltage LiNb03, optical modulators,” IEE Proc. Optoelectron. 145, 360–364 (1998).

    Article  Google Scholar 

  330. R.C. Alferness, “Guided-wave devices for optical communication,” IEEE J. Quantum Electron. 17,946–959 (1981).

    Article  ADS  Google Scholar 

  331. N. Henmi, T. Saito, and T. Ishida, “N. Henmi, T. Saito, and T. Ishida, “Prechirp technique as a linear dispersion compensation for ultrahigh-speed long-span intensity modulation direct detection optical communication systems,” J. Lightwave Technol. 12, 1706–1719 (1994).

    Article  ADS  Google Scholar 

  332. S.K. Kim, O. Mizuhara, Y.K. Park, L.A. Tzeng, Y.S. Kim, and J. Jeong, “Theoretical and experimental studies of 10 Gb/s transmission performance using 1.55 µm LiNbO3 — based transmitters using adjustable extinction ratio and chirp,” J. Lightwave Technol. 17, 1320–1325(1999).

    Article  ADS  Google Scholar 

  333. J.J. Veselka, S.K. Korotky, P. V. Mamyshev, A.H. Gnauck, G. Raybon, and N. M. Froberg, “A Soliton Transmitter Using a CW Laser and an NRZ Driven Mach-Zehnder Modulator,” IEEE Photon. Technol. Lett. 8, 950–952 (1996).

    Article  ADS  Google Scholar 

  334. N.M. Froberg, A.H. Gnauck, G. Raybon, and J.J. Veselka, “Method and Apparatus for Generating Data Encoded Pulses in Return-to-Zero Format,” in US Pat. 5,625,722, 1997.

    Google Scholar 

  335. B. Zhu, L. Leng, A.H. Gnauck, M.O. Pedersen, D. Peckham, L.E. Nelson, S. Stulz, S. Kado, L. Gruner-Nielsen, R.L. Lingle, Jr., S. Knudsen, J. Leuthold, C. Doerr, S. Chandrasekhar, G. Baynham, P. Gaarde, Y. Emori, and S. Namiki, “Transmission of 3.2 Tb/s (80 × 42.7 Gb/s) over 5200 km of UltraWave™ fiber with 100-km dispersion-managed spans using RZ-DPSK format,” in ECOC: Paper PD4.2, 2002.

    Google Scholar 

  336. P.J. Winzer, “Optical transmitters, receivers, and noise,” in Wiley Encyclopedia of Telecommunications, J.G. Proakis, Ed. (New York: Wiley, 2002), pp. 1824–1840.

    Google Scholar 

  337. M.L. Dennis, W. I. Kaechele, W.K. Burns, T. F. Carruthers, and I.N. Duling, “Photonic Serial-Parallel Conversion of High-Speed OTDM Data,” IEEE Photon. Technol. Lett. 12, 1561–1563(2000).

    Article  ADS  Google Scholar 

  338. R.C. Williamson, J.L. Wasserman, G.E. Betts, and J.C. Twichell, “Sinusoidal Drives for Optical Time Demultiplexers,” IEEE Trans. Microwave Theory and Technol. 49, 1945–1949(2001).

    Article  ADS  Google Scholar 

  339. V.W.S. Chan, “Optical satellite networks” J. Lightwave Technol. 21, 2811–2827 (2003).

    Article  ADS  Google Scholar 

  340. M. J.F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (New York: Marcel Dekker, 1993).

    Google Scholar 

  341. CR. Giles and T. Li, “Optical amplifiers transform long-distance lightwave telecommunications” Proc. IEEE, 84, 870–883 (1996).

    Article  Google Scholar 

  342. J.-M.P. Delavaux and J.A. Nagel, “Multi-Stage Erbium-Doped Fiber Amplifier Designs,” J. Lightwave Technol. 13, 703–720 (1995).

    Article  ADS  Google Scholar 

  343. L. Boivin, M.C. Nuss, J. Shah, D.A.B. Miller, and H.A. Haus, “Receiver sensitivity improvement by impulsive coding,” Photon. Technol. Lett. 9, 684–686 (1997).

    Article  ADS  Google Scholar 

  344. L. Boivin and G.J. Pendock, “Receiver sensitivity for optically amplified RZ signals with arbitrary duty cycle,” presented at Optic. Amplifiers and their Applications (OAA’99), 1999.

    Google Scholar 

  345. P.J. Winzer and A. Kalmar, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Lightwave Technol. 8, 171–177 (1999).

    Article  ADS  Google Scholar 

  346. W.R. Leeb, P.J. Winzer, and M. Pauer, “The potential of return-to-zero coding in optically amplified lasercom systems,” in LEOS, 1999, pp. 224–225.

    Google Scholar 

  347. M. Pauer, P.J. Winzer, and W.R. Leeb, “Booster EDFAs in RZ-coded links: Are they average-power limited?,” in Proc. SPIE, (Free-Space Laser Communication Technologies XIII), vol. 4272, 118–127, San Jose, USA, 2001.

    Article  ADS  Google Scholar 

  348. P.J. Winzer, A. Kalmar, and W.R. Leeb, “Role of amplied spontaneous emission in optical free-space communication links with optical amplication — impact on isolation and data transmission; utilization for pointing, acquisition, and tracking,” in Proc. SPIE (Free-Space Laser Communication Technologies XI), vol. 3615, 104–114, San Jose, CA, USA, 1999.

    Article  ADS  Google Scholar 

  349. D.J. DiGiovanni and CR. Giles, “Multistage optical amplifiers” in US Pat. 5115338, 1992.

    Google Scholar 

  350. R.I. Laming, M.N. Zervas, and D.N. Payne, “Erbium-Doped Fiber Amplifier with 54 dB Gain and 3.1 dB Noise Figure,” IEEE Photon. Technol. Lett. 4, 1345–1347 (1992).

    Article  ADS  Google Scholar 

  351. T. Pliska, S. Mohrdiek, and C. Harder, “Power stabilisation of uncooled 980 nm pump laser modules from l0 to 100°C,” Electron. Lett. 37, 33–34 (2001).

    Article  Google Scholar 

  352. B. Schmidt, S. Pawlik, N. Matuschek, J. Muller, T. Pliska, J. Troger, N. Lichtenstein, A. Wittmann, S. Mohrdiek, B. Sverdlov, and C. Harder, “980 nm single mode modules yielding 700 mW fiber coupled pump power,” in Optical Fiber Conference (OFC), 2002.

    Google Scholar 

  353. F. Hakimi, E.S. Kintzer, and R.S. Bondurant, “High-power single-polarization EDFA with wavelength mulitplexed pumps,” in Conference on Lasers and Electro-Optics (CLEO), 1998.

    Google Scholar 

  354. D.O. Caplan and F. Hakimi, “A high-power high-gain single-polarization EDFA,” in Conference on Lasers and Electro-Optics (CLEO), 2000.

    Google Scholar 

  355. C. Lester, A. Bjarklev, T. Rasmussen, and P. G. Dinesen, “Modeling of Yb3+-Sensitized Er3+-Doped Silica Waveguide Amplifiers,” J. Lightwave Technol. 13, 740–743 (1995).

    Article  ADS  Google Scholar 

  356. Z. J. Chen, J.D. Minelly, and Y. Gu, “Compact low cost Er3+/Yb3+ co-doped fibre amplifiers pumped by 827 nm laser diode,” Electron. Lett. 32, 1812–1813 (1996).

    Article  Google Scholar 

  357. M. Karasek, “Optimum Design of Er3+-Yb3+ Codoped Fibers for Large-Signal High-Pump-Power Applications,” IEEE J. Quantum Electron. 33, 1699–1705 (1997).

    Article  ADS  Google Scholar 

  358. J. Nilsson, P. Scheer, and B. Jaskorzynska, “Modeling and Optimization of Short Yb3+-Sensitized Er3+-Doped Fiber Amplifiers,” Photon. Technol. Lett. 6, 383–385 (1994).

    Article  ADS  Google Scholar 

  359. A. Galvanauskas and B. Samson, “High Fiber,” in SPIE’s oemagazine, 2004, pp. 15–17.

    Google Scholar 

  360. I. Berishev, A. Komissarov, N. Moshegov, P. Trubenko, L. Wright, A. Berezin, S. Todorov, and A. Ovtchinnikov, “AlGalnAs/GaAs record high-power conversion efficiency and record high-brightness coolerless 915-nm multimode pumps,” in SPIE, 2005.

    Google Scholar 

  361. V. Gapontsev, I. Berishev, G. Ellis, A. Komissarov, N. Moshegov, O. Raisky, P. Trubenko, V. Ackermann, E. Shcherbakov, J. Steineke, and A. Ovtchinnikov, “High-efficiency 970-nm multimode pumps” in SPIE, 2005.

    Google Scholar 

  362. V. Gapontsev, I. Berishev, G. Ellis, A. Komissarov, N. Moshegov, A. Ovtchinnikov, O. Raisky, P. Trubenko, V. Ackermann, and E. Shcherbakov, “9xx nm single emitter pumps for multi-kW systems,” in SPIE, 2006.

    Google Scholar 

  363. D J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibres using imbedded v-grooves,” Electron. Lett. 31, 2204–2205 (1995).

    Article  Google Scholar 

  364. L. Goldberg, B. Cole, and E. Snitzer, “V-groove side-pumped 1.5 µm fibre amplifier,” Electron. Lett. 33, 2127–2129 (1997).

    Article  Google Scholar 

  365. L. Goldberg and J. Koplow, “Compact, side-pumped 25 dBm Er/Yb co-doped double cladding fibre amplifier,” Electron. Lett. 34, 2027–2028 (1998).

    Article  Google Scholar 

  366. D.J. DiGiovanni and A.M. Vengsarkar, “Article comprising a cladding-pumped optical fiber laser,” in US Pat. 5,708,669, 1998.

    Google Scholar 

  367. D.J. DiGiovanni and A.J. Stentz, “Tapered fiber bundles for coupling light into and out of cladding-pumped fiber devices,” in US Pat. 5,864,644, 1999.

    Google Scholar 

  368. V.P. Gapontsev and I. Samartsev, “Coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length,” in US Pat. 5,999,673, 1999.

    Google Scholar 

  369. R.P. Espindola, I. Ryazansky, A.J. Stentz, K. L. Walker, and P.F. Wysocki, “Multi-stage optical fiber amplifier having high conversion efficiency,” in US Pat. 6,104,733, 2000.

    Google Scholar 

  370. F. Hakimi and H. Hakimi, “New side coupling method for double-clad fiber amplifiers,” in Conference on Lasers and Electro-Optics (CLEO), 2001.

    Google Scholar 

  371. L. Goldberg and M. Le Flohic, “Optical fiber amplifiers and lasers and optical pumping device therefor” in US Pat. 6,608,951, 2003.

    Google Scholar 

  372. A.B. Grudinin, D.N. Payne, W. Paul, L.J.A. Nilsson, M.N. Zervas, M. Ibsen, and M.K. Durkin, “Multi-fibre arrangements for high power fibre lasers and amplifiers” in US Pat. 6,826,335, 2004.

    Google Scholar 

  373. Y. Jeong, J. Sahu, D.B.S. Soh, C.A. Codemark, and J. Nilsson, “High-power, tunable, single-frequency, single-mode erbiumiytterbium codoped large core fiber master-oscillator power amplifier source,” Opt. Lett. 30, 2997 (2005).

    Article  ADS  Google Scholar 

  374. Y. Jeong, J. Nilsson, J. Sahu, D.B.S. Soh, C. Alegria, P. Dupriez, C.A. Codemark, and D.N. Payne, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30, 459–461 (2005).

    Article  ADS  Google Scholar 

  375. N.G. Walker and G.R. Walker, “Polarization Control for Coherent Communications,” J. Lightwave Technol. 8, 438–458 (1990).

    Article  ADS  Google Scholar 

  376. F. Heismann and M.S. Whalen, “Fast Automatic Polarization Control System,” Photonics Technol. Lett. 4, 503–505 (1992).

    Article  ADS  Google Scholar 

  377. P. Oswald and C.K. Madsen, “Deterministic Analysis of Endless Tuning of Polarization Controllers,” J. Lightwave Technol. 24, 2932–2939 (2006).

    Article  ADS  Google Scholar 

  378. Duling, I.N. III and R.D. Esman, “Single-polarisation fibre amplifier,” Electron. Lett. 28, 1126–1128 (1992).

    Article  ADS  Google Scholar 

  379. D.O. Caplan, “Method and apparatus for stabilizing a high-gain, high-power single polarization EDFA,” in US Pat. 6,831,779, 2004.

    Google Scholar 

  380. F. Hakimi, D.O. Caplan, H. Hakimi, and A.L. Tuffli, “Radiation effects on a two-stage double-pass single-polarization erbium fiber amplifier,” in Conference on Lasers and Electro-Optics (CLEO), 2002.

    Google Scholar 

  381. K. Morito and S. Tanaka, “Record High Saturation Power (+22 dBm) and Low Noise Figure (5.7 dB) Polarization-Insensitive SOA Module,” in Optical Amplifiers and Their Applications (OAA) Topical Meeting, paper TuC2, 2005.

    Google Scholar 

  382. Z. Jiang, D.E. Leaird, and A.M. Weiner, “Optical Arbitrary Waveform Generation and Characterization Using Spectral Line-by-Line Control,” J. Lightwave Technol. 24, 2487–2494 (2006).

    Article  ADS  Google Scholar 

  383. J. Nilsson, Y. Jeong, C. Alegria, R. Selvas, J. Sahu, R. Williams, K. Furusawa, W. Clarkson, D. Hanna, D. Richardson, T. Monro, D. Payne, K. Yla-Jarkko, S. Alam, and A. Grudinin, “Beyond 1 kW with Fiber Lasers and Amplifiers,” in Optical Fiber Conference (OFC), 2003.

    Google Scholar 

  384. J. Limpert, A. Liem, H. Zellmer, and A. Tuennermann, “Continuous wave ultrahigh brightness fiber laser systems,” in IEEE Photonics West, 2003.

    Google Scholar 

  385. I.T. McKinnie, J.E. Koroshetz, W.S. Pelouch, D.D. Smith, J.R. Unternahrer, S.W. Henderson, and M. Wright, “Self-imaging waveguide Nd:YAG laser with 58% slope efficiency,” in Conference on Lasers and Electro-Optics (CLEO), 2002.

    Google Scholar 

  386. M.D. Mermelstein, A.D. Yablon, and C. Headley, “Suppression of Stimulated Brillouin Scattering in an Er-Yb Fiber Amplifier Utilizing Temperature-Segmentation,” in OAA, Paper TuD3, Budapest, Hungary, 2005.

    Google Scholar 

  387. R.G. Smith and S.D. Personick, “Receiver Design,” in Semiconductor Devices for Optical Communication, H. Kressel, Ed. (New York: Springer-Verlag, 1980).

    Google Scholar 

  388. Y. Miyamoto, Y. Hagimoto, and T. Kagawa, “A 10 Gb/s high sensitivity optical receiver using an InGaAs-InAlAs superlattice APD at 1.3 µm/1.5 µm,” IEEE Photon. Technol. Lett. 3, 372–374 (1991).

    Article  ADS  Google Scholar 

  389. T.Y. Yun, M.S. Park, J.H. Han, I. Watanabe, and K. Makita, “IO-Gigabit-per-Second High-Sensitivity and Wide-Dynamic-Range APD-HEMT Optical Receiver,” Photonics Technol. Lett. 8, 1232–1234(1996).

    Article  ADS  Google Scholar 

  390. T.V. Muoi, “Extremely sensitive direct detection receiver for laser communications,” in Conference on Lasers and Electro-Optics (CLEO), 1987.

    Google Scholar 

  391. A. MacGregor and B. Dion, “39 Photons/bit direct detection receiver at 810 nm, BER= 1E∓6, 60 Mb/s, QPPM,” Proc. SPIE (Free-Space Laser Communication Technologies III), 1417, (1991).

    Google Scholar 

  392. H. Matsuda, A. Miura, H. Irie, S. Tanaka, K. Ito, S. Fujisaki, T. Toyonaka, H. Takahashi, H. Chiba, S. Irikura, R. Takeyari, and T. Harada, “High-sensitivity and wide-dynamic-range 10 Gbit/s APD/preamplifier optical receiver module,” Electron. Lett. 38, 650–651 (2002).

    Article  Google Scholar 

  393. J.R. Lesh, “Power Efficient Communications for Space Applications,” in International Telemetering Conference, 1982.

    Google Scholar 

  394. B.E. Moision and J. Hamkins, “Deep-Space Optical Communications Downlink Budget: Modulation and Coding,” JPLIPN Progress Report 42-154, 2003.

    Google Scholar 

  395. X. Sun, et. al., “Space-qualified silicon avalanche-photodiode single-photon-counting modules,” J. Mod. Optics 51, 1333–1350 (2004).

    ADS  Google Scholar 

  396. D.M. Boroson, R.S. Bondurant, and D. V. Murphy, “LDORA: A Novel Laser Communication Receiver Array Architecture,” Proc. SPIE 5338, 16–28 (2004).

    Article  ADS  Google Scholar 

  397. O.M. Efimov, L.B. Glebov, L.N. Glebova, K.C. Richardson, and V.I. Smirnov, “High-Efficiency Bragg gratings in photothemorefractive glass,” Appl. Opt. 38, 619–627 (1999).

    Article  ADS  Google Scholar 

  398. D.O. Caplan, “Spectral Filtering,” in Mars Laser Communication Demonstration (MLCD) Receiver Final Report (MIT Lincoln Laboratory, 2005).

    Google Scholar 

  399. F. Herzog, K. Kudielka, D. Erni, and W. Bachtold, “Optical Phase Locking by Local Oscillator Phase Dithering,” IEEE J. Quantum Electron. 42, 973–985 (2006).

    Article  ADS  Google Scholar 

  400. H.P. Yuen and V.W.S. Chan, “Noise in Homodyne and Heterodyne Detection,” Opt. Lett. 8, 177–179 (1983).

    Article  ADS  Google Scholar 

  401. G.L. Abbas, V.W.S. Chan, and T.K. Yee, “A Dual-Detector Optical Heterodyne Receiver for Local Oscillator Noise Suppression,” IEEE J. Lightwave Technol. LT-3(5), 1110–1122 (October 1985).

    Article  ADS  Google Scholar 

  402. S.B. Alexander, “Design of Wide-Band Optical Heterodyne Balanced Mixer Receivers,” J. Lightwave Technol. LT-5, 523–537 (1987).

    Article  ADS  Google Scholar 

  403. L.G. Kazovsky and O.K. Tonguz, “Sensitivity of Direct-Detection Lightwave Receivers Using Optical Preamplifiers,” Photon. Technol. Lett. 3, 53–55 (1991).

    Article  ADS  Google Scholar 

  404. S.R. Chinn, D.M. Boroson, and J.C. Livas, “Sensitivity of optically preamplified DPSK receivers with Fabry-Perot filters,” J. Lightwave Technol. 14, (1996).

    Google Scholar 

  405. P.J. Winzer, M. Pfennigbauer, M.M. Strasser, and W.R. Leeb, “Optimum filter bandwidths for optically preamplified NRZ receivers,” J. Lightwave Technol. 19, 1263–1273 (2001).

    Article  ADS  Google Scholar 

  406. M. Pfennigbauer, M.M. Strasser, M. Pauer, and P.J. Winzer, “Dependence of Optically Preamplified Receiver Sensitivity on Optical and Electrical Filter Bandwidths-Measurement and Simulation,” Photon. Technol. Lett. 14, 831–833 (2002).

    Article  ADS  Google Scholar 

  407. L. Y. Lin, M.C. Wu, and T. Itoh, “Figure of merit for high-power, high-speed photodetectors,” in Optical Fiber Conference (OFC), 1997.

    Google Scholar 

  408. A.M.D. Beling, D. Schmidt, H.-G. Bach, G.G. Mekonnen, R. Ziegler, V. Eisner, M. Stollberg, G. Jacumeit, E. Gottwald, and J.-J. Weiske, “High power 1550 nm twin-photodetector modules with 45 GHz bandwidth based on InP,” in Optical Fiber Conference (OFC), 2002.

    Google Scholar 

  409. T.S. Rose, D. Gunn, and G.C. Valley, “Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements,” J. Lightwave Technol. 19, 1918–1923 (2001).

    Article  ADS  Google Scholar 

  410. RA. Humblet, “Design of optical matched filters,” in Globecom ′91, 1991.

    Google Scholar 

  411. H.L. Van Trees, Detection, estimation, and modulation theory, Part 1 (New York: Wiley, 1968).

    Google Scholar 

  412. H. Geiger, M. Ibsen, and R.I. Laming, “Optimum receivers with fiber gratings,” in Optical Fiber Conference (OFC), 1998.

    Google Scholar 

  413. S.R. Chinn, “Error-rate performance of optical amplifiers with Fabry-Perot filters,” Electron. Lett. 31, 756–757 (1995).

    Article  ADS  Google Scholar 

  414. R.C. Steele and G.R. Walker, “High-sensitivity FSK signal detection with an erbium-doped fiber preamplifier and Fabry-Perot étalon demodulation,” IEEE Photon. Technol. Lett. 2, 753–755 (1990).

    Article  ADS  Google Scholar 

  415. J.D. Berger, F. Ilkov, D. King, A. Tselikov, and D. Anthon, “Widely tunable, narrow optical bandpass Gaussian filter using a silicon microactuator,” in Optical Fiber Conference (OFC), 2003.

    Google Scholar 

  416. A. D’Errico, R. Proietti, N. Calabretta, L. Giorgi, G. Contestabile, and E. Ciaramella, “WDM-DPSK Detection by Means of Frequency-Periodic Gaussian Narrow Filtering” in Optical Fiber Conference (OFC), 2006.

    Google Scholar 

  417. B.E. Little, et. al., “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Tech. Lett. 16, 2263–2265 (2004).

    Article  ADS  Google Scholar 

  418. C.K. Madsen and J.H. Zhao, Optical filter design and analysis (New York: John Wiley & Sons, Inc., 1999).

    Book  Google Scholar 

  419. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N x N wavelength multiplexer,” J. Lightwave Technol. 13, 447–455 (1995).

    Article  ADS  Google Scholar 

  420. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “A 25-GHz-Spaced 1080-Channel Tandem Multi/Demultiplexer Covering the S-, C-, and L-Bands Using an Arrayed-Waveguide Grating With Gaussian Passbands as a Primary Filter,” Photon. Technol. Lett. 14, 648–650 (2002).

    Article  ADS  Google Scholar 

  421. I. Littler, M. Rochette, and B. Eggleton, “Adjustable bandwidth dispersionless bandpass FBG optical filter,” Opt. Express 13, 3397–3407 (2005).

    Article  ADS  Google Scholar 

  422. A. Nosratinia, “Self-characteristic Distributions,” J. Franklin Institute 36, 1219–1224 (1999).

    Article  MathSciNet  Google Scholar 

  423. A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

    Article  ADS  Google Scholar 

  424. L.F. Mollenauer, “Ultra-long distance soliton transmission: putting fiber nonlinearity to work,” in LEOS, 1993.

    Google Scholar 

  425. J. O’Reilly, J. da Rocha, and K. Schumacher, “Optical Fiber Direct Detection Receivers Optimally Tolerant to Jitter,” IEEE Trans. Commun. 34, 1141–1147 (1986).

    Article  Google Scholar 

  426. J.P. Gordon and H.A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986).

    Article  ADS  Google Scholar 

  427. G. Bosco, R. Gaudino, and P. Poggiolini, “An exact analysis of RZ versus NRZ sensitivity in ASE noise limited optical systems,” in ECOC, 2001.

    Google Scholar 

  428. G. Bosco, A. Carena, V. Curri, R. Gaudino, and P. Poggiolini, “On the Use of NRZ, RZ, and CSRZ Modulation at 40 Gb/s With Narrow DWDM Channel Spacing,” J. Lightwave Technol. 20, 1694–1704 (2002).

    Article  ADS  Google Scholar 

  429. J.H. Shapiro, “Signal-to-Noise Ratio Analysis for a Preamplified Direct-Detection Receiver with Pre-and Post-Detection Matched Filters,” private communication, 2005.

    Google Scholar 

  430. G. Bosco and P. Poggiolini, “The Effect of Receiver Imperfections on the Performance of Direct-Detection Optical Systems using DPSK Modulation,” in Optical Fiber Conference (OFC), 2003.

    Google Scholar 

  431. G. Bosco and P. Poggiolini, “The Impact of Receiver Imperfections on the Performance of Optical Direct-Detection DPSK,” J. Lightwave Technol. 23, 842–848 (2005).

    Article  ADS  Google Scholar 

  432. J. Hsieh, A. Chiayu, V. Chien, X. Liu, A. Gnauck, and X. Wei, “Athermal Demodulator for 42.7-Gb/s DPSK Signals,” in ECOC, 2005.

    Google Scholar 

  433. X. Liu, A.H. Gnauck, X. Wei, J. Hsieh, C. Ai, and V. Chien, “Athermal optical demodulator for OC-768 DPSK and RZ-DPSK signals,” Photon. Technol. Lett. 17, 2610–2612 (2005).

    Article  ADS  Google Scholar 

  434. M.L. Stevens, “A High-speed DPSK encoder,” private communication, 1998.

    Google Scholar 

  435. W. Kaiser, T. Wuth, M. Wichers, and W. Rosenkranz, “Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance,” Photon. Technol. Lett. 13, 884–886 (2001).

    Article  ADS  Google Scholar 

  436. I. Kang, C. Xie, C. Dorrer, and A. Gnauck, “Implementations of alternate-polarization differential-phase-shift-keying transmission,” Electron. Lett. 40, 333–335 (2004).

    Article  Google Scholar 

  437. C. Schramm, H.-G. Bach, A.M.D. Beling, G. Jacumeit, S. Ferber, R. Ludwig, R. Ziegler, G. G. Mekonnen, R. Kunkel, D. Schmidt, W. Schlaak, and G. Unterborsch, “High-bandwidth balanced photoreceiver suitable for 40-gb/s RZ-DPSK modulation formats,” IEEE Sel. Topics Quantum Electron. 11, 127–134 (2005).

    Article  Google Scholar 

  438. E.A. Swanson, J.C. Livas, and R.S. Bondurant, “High sensitivity optically preamplified direct detection DPSK receiver with active delay-line stabilization,” IEEE Photon. Technol. Lett. 6, 263–265 (1994).

    Article  ADS  Google Scholar 

  439. D.G. Heflinger, J.S. Bauch, and T. E. Humes, “Apparatus and method for tuning an optical interferometer,” in US Pat. 6,396,605, 2002.

    Google Scholar 

  440. F. Séguin and F. Gonthier, “Tuneable All-Fiber® Delay-Line Interferometer for DPSK Demodulation,” in Optical Fiber Conference (OFC), 2005.

    Google Scholar 

  441. D.O. Caplan, “Polarization Independent Interferometer designs,” MIT Lincoln Laboratory, private correspondence, 1999.

    Google Scholar 

  442. D.A. Rockwell, D. H. Matsuoka, and C. L. Schulz, “Differential Phase Shift Keyed Demodulator System,” in US Pat. 6,834,146 B2, 2004.

    Google Scholar 

  443. M.L. Stevens, S. Constantine, and D.O. Caplan, “Measured and calculated DPSK SNR change due to frequency offset error at 40 Gbit/s,” private communication, 2006.

    Google Scholar 

  444. P.J. Winzer, F. Fidler, M.J. Matthews, L.E. Nelson, H.J. Thiele, J.H. Sinsky, S. Chan-drasekbar, M. Winter, D.M. Castagnozzi, L.W. Stulz, and L.L. Buhl, “10-Gb/s Upgrade of Bidirectional CWDM Systems Using Electronic Equalization and FEC,” J. Lightwave Technol. 23, 203–210 (2005).

    Article  ADS  Google Scholar 

  445. S.K. Nielsen, B.F. Skipper, and J.P. Vailladsen, “Universal AFC for use in optical DPSK systems,” Electron. Lett. 29, 1445–1446 (1993).

    Article  Google Scholar 

  446. K. Kudielka and W. Klaus, “Optical homodyne PSK receiver: Phase synchronization by maximizing base-band signal power,” in LEOS, 1999.

    Google Scholar 

  447. A.H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, and E. Burrows, “25 × 40-Gb/s copolarized DPSK transmission over 12 × 100-km NZDF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 15, 467–469 (2003).

    Article  ADS  Google Scholar 

  448. H. Bissessur, G. Charlet, E. Gohin, C. Simonneau, L. Pierre, and W. Idler, “1.6 Tbit/s (40 × 40 Gbit/s) DPSK transmission over 3 × 100 km of TeraLight fibre with direct detection,” Electron. Lett. 39, 192–193 (2003).

    Article  Google Scholar 

  449. T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue, and T. Takahashi, “Mach-Zehnder Interferometer Exactly Aligned With ITU Grid Frequencies,” Photon. Technol. Lett. 18, 325–327 (2006).

    Article  ADS  Google Scholar 

  450. T. Hoshida and H. Onaka, “Method and system for demultiplexing non-intensity modulated wavelength division multiplexed (WDM) signals,” in U.S. Pat. 7,035,543, 2006 (filed 2001).

    Google Scholar 

  451. P.J. Winzer, “Optical Receiver for Wavelength-Division-Multiplexed Signals,” in US Pat. Appl. 2004/0258423 Al, 2004.

    Google Scholar 

  452. B. Zhu, L. E. Nelson, S. Stultz, A.H. Gnauck, C. Doerr, J. Leuthold, L. Gruner-Nielsen, M.O. Pedersen, and R.L. Lingle, Jr., “High Spectral Density Long-Haul 40-Gb/s Transmission Using CSRZ-DPSK Format,” J. Lightwave Technol. 22, 208–214 (2004).

    Article  ADS  Google Scholar 

  453. D.A. Atlas and L.G. Kazovsky, “An optical PSK homodyne transmission experiment using 1320 nm diode-pumped Nd:YAG lasers,” IEEE Photon. Technol. Lett. 2, 367–370 (1990).

    Article  ADS  Google Scholar 

  454. D.M. Castagnozzi, J.C. Livas, E.A. Bücher, L.L. Jeromin, and J.W. Miller, “Performance of a 1 Gbit/s optically preamplified communication system with error correcting coding,” Electron. Lett. 30, 65–66 (1994).

    Article  Google Scholar 

  455. D.O. Caplan, S. Constantine, and M.L. Stevens, “Near-quantum-limited OOK and binary-FSK receiver sensitivity using a Filtered Direct-Drive pulse-carved MOPA transmiter and an optically preamplified receiver at 1.25 Gbit/s,” private communication, 2006.

    Google Scholar 

  456. R.A. Linke, et. al., “Coherent lightwave transmission over 150km fiber lengths at 400 Mbit/s and 1 Gbit/s data rates using phase modulation,” Electron. Lett. 22, 30–31 (1985).

    Article  Google Scholar 

  457. T. Imai, T. N. Ohkawa, Y. Ichihashi, T. Sugie, and T. Ito, “Over 300 km CPFSK transmission experiment using 67 photon/bit sensitivity receiver at 2.5 Gbit/s,” Electron. Lett. 26, 357–358 (1990).

    Article  Google Scholar 

  458. J.M. Kahn, A.H. Gnauck, J.J. Veselka, S.K. Korotky, and B.L. Kasper, “4-Gb/s PSK homo-dyne transmission system using phase-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 2, 285–287 (1990).

    Article  ADS  Google Scholar 

  459. T. Chikama, et. al., “Modulation and demodulation techniques in optical heterodyne PSK transmission systems,” J. Lightwave Technol. 8, 309–321 (1990).

    Article  ADS  Google Scholar 

  460. I. Hardcastle, T. Large, F. Davis, and A. Hadjifotiou, “High performance 140 Mbit/s FSK coherent system,” Electron. Lett. 26, 1523–1525 (1990).

    Article  Google Scholar 

  461. T. Naito, T. Chikama, and G. Ishikawa, “Optimum system parameters for multigigabit CPFSK optical heterodyne detection systems,” J. Lightwave Technol. 12, 1835–1841 (1994).

    Article  ADS  Google Scholar 

  462. S. Norimatsu, H. Mawatari, Y. Yoshikuni, O. Ishida, and K. Iwashita, “10 Gbit/s optical BPSK homodyne detection experiment with solitary DFB laser diodes,” Electron. Lett. 31, 125–127(1995).

    Article  Google Scholar 

  463. R.I. Laming, A.H. Gnauck, C.R. Giles, M.N. Zervas, and D.N. Payne, “High-sensitivity two-stage erbium-doped fiber preamplifier at 10 Gb/s,” IEEE Photon. Technol. Lett. 4, 1348–1350 (1992).

    Article  ADS  Google Scholar 

  464. E. Meissner, “116 photons/bit in a 565 Mbit/s optical DPSK heterodyne transmission experiment,” Electron. Lett. 25, 281–282 (1989).

    Article  Google Scholar 

  465. T.J. Paul, E.A. Swanson, J.C. Livas, R.S. Bondurant, and R.J. Magliocco, “3 Gbit/s optically preamplified direct detection DPSK receiver with 116 photon/bit sensitivity,” Electron. Lett. 29, 614–615 (1993).

    Article  Google Scholar 

  466. Y.K. Park, J.-M. P. Delavaux, Mizuhara, L.D. Tzend, T.V. Nguyen, M.L. Kao, P.D. Yeates, S.W. Granlund, and S. J., “5 Gbit/s Optical Preamplifier Receiver with 135 Photons/bit Usable Receiver Sensitivity,” in Optical Fiber Conference (OFC), paper TuD4, 1993.

    Google Scholar 

  467. T. Saito, Y. Sunohara, K. Fukagai, S. Ishikawa, N. Henmi, S. Fujita, and Y. Aoki, “High Receiver Sensitivity at 10 Gb/s Using an Er-Doped Fiber Preamplifier Pumped with a 0.98 µm Laser Diode “IEEE Photon. Technol. Lett. 3, 551–553 (1991).

    Article  ADS  Google Scholar 

  468. P.P. Smyth, R. Wyatt, A. Fidler, P. Eardley, A. Sayles, and S. Craig-Ryan, “152 photons per bit detection at 622 Mbit/s to 2.5 Gbit/s using an erbium fibre preamplifier,” Electron. Lett. 26, 1604–1605 (1990).

    Article  Google Scholar 

  469. L.D. Tzeng, R.E. Frahm, and W. Asous, “A high-performance optical receiver for 622 Mb/s direct-detection systems,” Photon. Technol. Lett. 2, 759–761 (1990).

    Article  ADS  Google Scholar 

  470. K. Kannan, et. al., “High-sensitivity receiver optical preamplifiers,” IEEE Photon. Technol. Lett. 4, 272–275 (1992).

    Article  ADS  Google Scholar 

  471. A.H. Gnauck, K.C. Reichmann, J.M. Kahn, S.K. Korotky, J.J. Veselka, and T.L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett. 2, 908–910 (1990).

    Article  ADS  Google Scholar 

  472. T. Kataoka, Y. Miyamoto, K. Hagimoto, and K. Noguchi, “20 Gbit/s long distance transmission using a 270 photon/bit optical preamplifier receiver,” Electron. Lett. 30, 716–716 (1994).

    ADS  Google Scholar 

  473. M. Shikada, et. al., “1.5 m high bit rate long span transmission experiments employing a high power DFB-DC-PBH laser diode,” in European Conference on Optical Communication (Istituto Internazionale delle Communicazioni: Genva, 1985).

    Google Scholar 

  474. J.C. Campbell, et. al., “High performance avalanche photodiode with separate absorption grading and multiplication regions,” Electron. Lett. 19, 818–820 (1983).

    Article  ADS  Google Scholar 

  475. K. Hagimoto, et. al., “Twenty-Gbit/s signal transmission using a simple high-sensitivity optical receiver,” in Optical Fiber Conference (OFC), 1992, paper Tul3.

    Google Scholar 

  476. V. Vilnrotter, C.-W. Lau, M. Srinivasan, K. Andrews, and R. Mukai, “Optical Array Receiver for Communication Through Atmospheric Turbulence,” J. Lightwave Technol. 23, 1664–1675 (2005)..

    Article  ADS  Google Scholar 

  477. D.O. Caplan and J.J. Carney, “Angstrom class narrow band filters at 1060-1080 nm,” MIT Lincoln Laboratory, internal memorandum, 2003.

    Google Scholar 

  478. D.O. Caplan, “Spectral Filtering” in Mars Laser Communication Demonstration (MLCD) Preliminary Design Review (PDR) (MIT Lincoln Laboratory and NASA, 2005).

    Google Scholar 

  479. D.O. Caplan and B.S. Robinson, “WDM Mitigation of Nonlinear Impairments in Low-Duty-Cycle M-PPM Free-Space Optical Transmitters,” submitted to OFC2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Caplan, D.O. (2007). Laser communication transmitter and receiver design. In: Free-Space Laser Communications. Optical and Fiber Communications Reports, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28677-8_4

Download citation

Publish with us

Policies and ethics