Skip to main content

Electromagnetic Singularities and Resonances in Near-Field Optical Probes

  • Chapter
Scanning Probe Microscopy

Abstract

Over the last two decades scanning near-field optical microscopy (SNOM) has demonstrated its ability to provide optical resolution significantly better than the diffraction limit (<20 nm). The general principle of SNOM relies on the approach of a nanometer-sized object in the optical near-field of a sample to be studied. This nano-object (NO) is usually the extremity of a probe. Regardless of the nature of the observed SNOM signal (inelastic scattering, fluorescence, etc.), the detection of the light is achieved in the far-field regime where the NO acts as a mediator between the optical near-field and the detector. Figure 1 is a schematic illustration of the SNOM principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Synge, Phil. Mag. 6, 356 (1928).

    CAS  Google Scholar 

  2. E. A. Ash and G. Nichols, Nature 237, 510 (1972).

    Article  CAS  Google Scholar 

  3. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).

    Article  Google Scholar 

  4. E. Betzig, P. L. Finn, and J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).

    Article  CAS  Google Scholar 

  5. O. J. F. Martin, J. Microscopy. 194, 235 (1999).

    Article  CAS  Google Scholar 

  6. E. Betzig and J. K. Trautman, Science 257, 189 (1992).

    Article  CAS  Google Scholar 

  7. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, Appl. Opt. 37, 7289 (1998).

    Article  CAS  Google Scholar 

  8. R. Stoeckle, Ch. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild, Appl. Phys. Lett. 75, 60 (1999).

    Google Scholar 

  9. T. Saiki and K. Matsuda, Appl. Phys. Lett. 74, 2773 (1999).

    Article  CAS  Google Scholar 

  10. D. Mulin, D. Courjon, J-P. Malugani, and B. Gauthier-Manuel, Appl. Phys. Lett. 71, 437 (1997).

    Article  CAS  Google Scholar 

  11. A. Bouhelier, J. Toquant, H. Tamaru, H.-J. Guentherodt, D. W. Pohl and G. Schider, Appl. Phys. Lett. 79, 683 (2001).

    Article  CAS  Google Scholar 

  12. D. Haefliger and A. Stemmer, Ultramicroscopy 100, 457 (2004).

    Article  CAS  Google Scholar 

  13. Th. Lacoste, Th. Huser, R. Prioli and H. Heinzelmann, Ultramicroscopy 71, 333 (1998).

    Article  CAS  Google Scholar 

  14. J. A. Veerman, A. M. Otter, L. Kuipers, and N. F. Hulst, Appl. Phys. Lett. 7, 3115 (1998).

    Article  Google Scholar 

  15. M. P. O’Boyle and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994).

    Article  Google Scholar 

  16. R. Bachelot, P. Gleyzes, and A. C. Boccara, Microsc. Microanal. Microstruct. 5, 389 (1994).

    CAS  Google Scholar 

  17. Y. Inouye and S. Kawata, Opt. Lett. 19, 159 (1994).

    Google Scholar 

  18. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, Science 249, 1083 (1995).

    Article  Google Scholar 

  19. R. Bachelot, P. Gleyzes, and A. C. Boccara, Opt. Lett. 20, 1924 (1995).

    Google Scholar 

  20. J. Wessel, J. Opt. Soc. Am. B 2, 1538 (1985).

    Article  CAS  Google Scholar 

  21. S. Nie, S. R. Emory, Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

  22. A. D. McFarland and R. P. Van Duyne, Nano. Lett. 3, 1057 (2003).

    Article  CAS  Google Scholar 

  23. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. Aussenegg, Phys. Rev. Lett. 84, 4721 (2000).

    Article  CAS  Google Scholar 

  24. S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002).

    Article  CAS  Google Scholar 

  25. G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. J. Wiederrecht, Phys. Chem. B 107, 14191 (2003).

    Article  CAS  Google Scholar 

  26. G. Wiederrecht, Eur. Phys. J. Appl. Phys. 28, 3 (2004).

    Article  CAS  Google Scholar 

  27. P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, Phil. Trans. R. Soc. Lond. A 362, 821 (2003).

    Google Scholar 

  28. S. Patan, G. P. Gucciardi, M. Labardi, and M. Allegrini, Riv. Nu. Cim. 27, 1 (2004).

    Google Scholar 

  29. R. Bachelot, G. Lerondel, S. Blaize, S. Aubert, A. Bruyant, and P. Royer, Microsc. Res. Tech. 64, 441 (2004).

    Article  Google Scholar 

  30. D. Courjon, Near-Field Microscopy and Near-Field Optics, Imperial College Press (2003).

    Google Scholar 

  31. S. Kawata, M. Ohtsu, and M. Irie, Nano-Optic, Springer Berlin (2002).

    Google Scholar 

  32. W. E. Moerner and D. P. Fromm, Rev. Sc. Instr. 74, 3597 (2003).

    Article  CAS  Google Scholar 

  33. P. N. Prasad, Nanophotonics, John Wiley & Sons, Inc. Hoboken, New Jersey (2004).

    Book  Google Scholar 

  34. A. Bouhelier, Mat. Res. Tech., 69, 563 (2006).

    Article  CAS  Google Scholar 

  35. C. Bohren and D. Huffman. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York (1982).

    Google Scholar 

  36. U. Kreibig and M. Vollmer. Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science. Springer, Berlin (1996).

    Google Scholar 

  37. J. Jackson, Classical Electrodynamics. John Wiley & Sons, New York, 2nd. edition (1975)

    Google Scholar 

  38. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and Gratings. Springer, Berlin (1988).

    Google Scholar 

  39. E. Hutter and J. H. Fendler, Adv. Mater. 16, 1685 (2004).

    Article  CAS  Google Scholar 

  40. A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, J. Phys. Chem. B 109, 3195 (2005).

    Article  CAS  Google Scholar 

  41. W. Denk and D. W. Pohl, J. Vac. Sci. Technol B 9, 510 (1991).

    Article  CAS  Google Scholar 

  42. U. Ch. Fisher and D. W. Pohl, Phys. Rev. Lett. 62, 458 (1989).

    Article  Google Scholar 

  43. T. J. Silva, S. Schultz, and D. Weller, Appl. Phys. Lett. 65, 658 (1994).

    Article  CAS  Google Scholar 

  44. O. Sqalli, M.-P. Bernal, P. Hoffmann, and F. Marquis-Weible, Appl. Phys. Lett. 76, 2134 (2000).

    Article  CAS  Google Scholar 

  45. Th. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, J. Microsc. 202, 72 (2000).

    Article  Google Scholar 

  46. O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-weible, J. Appl. Phys. 92, 1078 (2002).

    Article  CAS  Google Scholar 

  47. S.-K. Eah, H. M. Jaeger, N. F. Scherer, G. P. Wiederrecht, and X.-M. Lin, Appl. Phys. Lett. 86, 031902 (2005).

    Article  CAS  Google Scholar 

  48. M. Gu and P. C. Ke, Opt. Lett. 24, 74 (1999).

    CAS  Google Scholar 

  49. J. Zeleni, Science 79, 269 (1932).

    Article  Google Scholar 

  50. D. J. Mallan, Physics of Lightning. London: English University Press (1963).

    Google Scholar 

  51. J. A. Chalmers, Weather 20, 183 (1965).

    Google Scholar 

  52. L. Libioulle, Y. Houbion, and J.-M. Gilles, J. Vac. Sci. Technol. B 13, 1325 (1995).

    Article  CAS  Google Scholar 

  53. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B 68, 115433 (2003).

    Article  CAS  Google Scholar 

  54. B. Ren, G. Picardi, and B. Pettinger, Rev. Sci. Instr. 75, 837 (2004).

    Article  CAS  Google Scholar 

  55. E. J. Sànchez, J. T. Krug II, and X. S. Xie, Rev. Sci. Instr. 73, 3901 (2002).

    Article  CAS  Google Scholar 

  56. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, Chem. Phys. Lett. 335, 369 (2001).

    Article  CAS  Google Scholar 

  57. R. Eckert, J. M. Freyland, H. Gersen, H. Heinzelmann, G. Schürmann, W. Noell, U. Staufer, and N. F. de Rooij, Appl. Phys. Lett. 77, 3695 (2000).

    Article  CAS  Google Scholar 

  58. L. T. Nieman, G. M. Krampert, and R. E. Martinez, Rev. Sci. Instr. 72, 1691 (2001).

    Article  CAS  Google Scholar 

  59. T. Yatsui, K. Itsumi, M. Kourogi, and M. Ohtsu, Appl. Phys. Lett. 80, 2257 (2002).

    Article  CAS  Google Scholar 

  60. T. Matsumoto, T. Ichimura, T. Yatsui, M. Kourogi, T. Siaki, and M. Ohtsu, Opt. Rev. 5, 369 (1998).

    Article  CAS  Google Scholar 

  61. H. G. Frey, F. Keilmann, A. Kriele, and R. Guckenberger, Appl. Phys. Lett. 81, 5030 (2002).

    Article  CAS  Google Scholar 

  62. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, Phys. Rev. Lett 93, 200801 (2004).

    Article  CAS  Google Scholar 

  63. A. Bouhelier, J. Renger, M.R. Beversluis, and L. Novotny, J. Microsc. 210, 220 (2003).

    Article  CAS  Google Scholar 

  64. L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dändliker, Appl. Phys. Lett. 83, 584 (2003).

    Article  CAS  Google Scholar 

  65. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, J. Appl. Phys. 88, 3785 (2000).

    Article  Google Scholar 

  66. F. Keilmann, J. Microsc. 194, 567 (1999).

    Article  CAS  Google Scholar 

  67. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).

    Article  CAS  Google Scholar 

  68. O. J. F. Martin and Ch. Girard, Appl. Phys. Lett. 70, 705 (1997).

    Article  Google Scholar 

  69. Y. C. Martin, H. F. Hamann, and H. K. Wickramasinghe, J. Appl. Phys. 89, 5774 (2001).

    Article  CAS  Google Scholar 

  70. J. L. Bohn, D. J. Nesbitt, and A. Gallagher, J. Opt. Soc. Am. A 17, 2998 (2001).

    Google Scholar 

  71. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 123601 (2002).

    Article  CAS  Google Scholar 

  72. W.-X. Sun, Z.-X. Shen, J. Opt. Soc. Am. A 20, 2254 (2003).

    Google Scholar 

  73. S. Kawata and Y. Inouye, Ultramicrosc. 57, 313 (1995).

    Article  CAS  Google Scholar 

  74. J. Jersch and K. Dickmann, Appl. Phys. Lett. 68, 868 (1995).

    Article  Google Scholar 

  75. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, Appl. Phys. Lett. 71, 575 (1997).

    Article  CAS  Google Scholar 

  76. A. V. Bragas, S. M. Landi, and O. E. Martínez, Appl. Phys. Lett. 72, 2075 (1998).

    Article  CAS  Google Scholar 

  77. B. Knoll and K. Keilmann, Nature 399, 134 (1999).

    Article  CAS  Google Scholar 

  78. L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A. C. Boccara, and J. C. Rivoal, Opt. Lett. 24, 187 (1999).

    CAS  Google Scholar 

  79. F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, Appl. Phys. Lett. 79, 4019 (2001).

    Article  CAS  Google Scholar 

  80. N. Hayazawa, A. Tarun, Y. Inouye, and S. Kawata, J. Appl. Phys. 92, 6983 (2002).

    Article  CAS  Google Scholar 

  81. R. Hillenbrand and F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000).

    Article  CAS  Google Scholar 

  82. T. J. Yang, G. A. Lessard, and S. T. Quake, Appl. Phys. Lett. 76, 378 (2000).

    Article  CAS  Google Scholar 

  83. H. Furukawa and S. Kawata, Opt. Comm. 148, 221 (1998).

    Article  CAS  Google Scholar 

  84. H. F. Hamann, G. Gallagher, and D. J. Nesbitt, Appl. Phys. Lett. 73, 1469 (1998).

    Article  CAS  Google Scholar 

  85. R. G. Milner and D. Richards, J. Microsc. 202, 66 (2000).

    Article  Google Scholar 

  86. H. Kano, S. Mizugushi, and S. Kawata, J. Opt. Soc. Am. B 15, 1381 (1998).

    CAS  Google Scholar 

  87. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 82, 4482 (2000).

    Article  Google Scholar 

  88. L. Novotny, E. J. Sànchez, and X. S. Xie, Ultramicrosc. 71, 21 (1998).

    Article  CAS  Google Scholar 

  89. E. J. Sánchez, L. Novotny, and X. S. Xie, Phys. Rev. Lett. 82, 4014 (1999).

    Article  Google Scholar 

  90. A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, Phys. Rev. Lett. 90, 13903 (2003).

    Article  CAS  Google Scholar 

  91. A. Bouhelier, M. R. Beversluis, and L. Novotny, Appl. Phys. Lett. 82, 4596 (2003).

    Article  CAS  Google Scholar 

  92. A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, Phys. Rev. Lett. 90, 95503 (2003).

    Article  CAS  Google Scholar 

  93. A. Bouhelier, M. R. Beversluis, and L. Novotny, Ultramicrosc. 100, 413 (2004).

    Article  CAS  Google Scholar 

  94. Handbook of Chemistry and Physics, 72nd edition, CRC Press, (1992).

    Google Scholar 

  95. Y. Kawata, C. Xu, and W. Denk, J. Appl. Phys. 85, 1294 (1999).

    Article  CAS  Google Scholar 

  96. A. V. Zayats, Opt. Comm. 161, 156 (1999).

    Article  CAS  Google Scholar 

  97. A. Wokaum, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48, 957 (1982).

    Article  Google Scholar 

  98. H. F. Hamann, M. Kuno, A. Gallagher, and D. J. Nesbitt, J. Chem. Phys. 144, 8596 (2001).

    Article  CAS  Google Scholar 

  99. V. V. Protasenko, M. Kuno, A. Gallagher, and D. J. Nesbitt, Opt. Comm. 210, 11 (2002).

    Article  CAS  Google Scholar 

  100. H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, Microwave. Opt. Techno. Lett. 18, 120 (1997).

    Article  Google Scholar 

  101. J. T. Krug II, E. J. Sánchez, and X. S. Xie, J. Chem. Phys. 116, 10895 (2002).

    Article  CAS  Google Scholar 

  102. M. B. Raschke and Ch. Lienau, Appl. Phys. Lett. 83, 5089 (2003).

    Article  CAS  Google Scholar 

  103. J. A. Porto, O. Johansson, S. P. Apell, and T. López-Ríos, Phys. Rev. B 67, 085409 (2003).

    Article  CAS  Google Scholar 

  104. J. Renger, S. Grafstrom, L. Eng, and V. Deckert, J. Opt. Soc. Am. A 21, 1362 (2004).

    Article  CAS  Google Scholar 

  105. F. Festy, A. Demming, and D. Richards, Ultramicrosc. 100, 437 (2004).

    Article  CAS  Google Scholar 

  106. L. Aigouy, F. X. Andréani, A. C. Boccara, J. C. Rivoal, J. A. Porto, R. Carminati, J. J. Greffet, and R. Mégy, Appl. Phys. Lett. 76, 397 (2000).

    Article  CAS  Google Scholar 

  107. M. Ashino and M. Ohtsu, Appl. Phys. Lett. 72, 1299 (1998).

    Article  CAS  Google Scholar 

  108. Th. Kalkbrenner, U. Hakanson, and V. Sandoghdar, Nano. Lett. 4, 2309 (2004).

    Article  CAS  Google Scholar 

  109. A. V. Zayats, T. Kalkbrenner, V. Sandoghdar, and J. Mlynek, Phys. Rev. B 61, 4545 (2000).

    Article  CAS  Google Scholar 

  110. A. V. Zayats, and I. I. Smolyaninov, Phil. Trans. R. Soc. Lond. A 362, 843 (2004).

    Article  CAS  Google Scholar 

  111. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).

    Article  CAS  Google Scholar 

  112. R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, Chem. Phys. Lett. 318, 131 (2000).

    Article  Google Scholar 

  113. B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, J. Electro. Chem. 554, 293 (2003).

    Article  CAS  Google Scholar 

  114. B. Pettinger, B. Ben, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92, 096101 (2004).

    Article  CAS  Google Scholar 

  115. A. Hartschuh, M. R. Beversluis, A. Bouhelier, and L. Novotny, Phil. Trans. R. Soc. Lond. A. A 362, 807 (2003).

    Google Scholar 

  116. A. Hartschuh, N. Anderson, and L. Novotny, J. Microsc. 201, 234 (2003).

    Article  Google Scholar 

  117. N. Anderson, A. Hartschuh, and L. Novotny, J. Am. Chem. Soc, 127, 2533 (2005).

    Article  CAS  Google Scholar 

  118. H. Hayazawa, T. Ichimura, M. Hashimoto, Y. Inouye, and S. Kawata, J. Appl. Phys. 418, 2676 (2004).

    Article  CAS  Google Scholar 

  119. T. Ichimura, H. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, Phys. Rev. Lett. 92, 220801 (2004).

    Article  CAS  Google Scholar 

  120. Y. R. Shen, The Principles of Nonlinear Optics, New-York: Wiley (1984).

    Google Scholar 

  121. F. M. Schellenberg, SelectedPapers on Resolution Enhancement Techniques in Optical Lithography, SPIE Press (2004).

    Google Scholar 

  122. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopuolos, Appl. Phys. Lett. 82, 1146 (2003).

    Article  CAS  Google Scholar 

  123. G. Wurtz, R. Bachelot, F. HDhili, P. Royer, C. Triger, C. Ecoffet, and D. J. Lougnot, Jpn. J. Appl. 39, 98 (2000).

    Article  Google Scholar 

  124. X. Yin, N. Fang, X. Zhang, I. B. Martini, and B. J. Schwartz, Appl. Phys. Lett. 81, 3663 (2002).

    Article  CAS  Google Scholar 

  125. A. Tarun, M. R. H. Daza, N. Hayazawa, Y. Inouye, and S. Kawara, Appl. Phys. Lett. 80, 3400 (2002).

    Article  CAS  Google Scholar 

  126. Y. F. Lu, Z. H. Mai, G. Qiu, and W. K. Chim, Appl. Phys. Lett. 75, 2359 (1999).

    Article  CAS  Google Scholar 

  127. M. K. Herdon, R. T. Collins, R. E. Hollingswouth, P. R. Larson, and M. B. Johnson, Appl. Phys. Lett. 74, 41 (1999).

    Google Scholar 

  128. F. H’Dhili, R. Bachelot, A. Rumyantseva, G. Lerondel, and P. Royer, J. Microsc. 209, 214 (2002).

    Google Scholar 

  129. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Lampel, J. P. Boilot, and K. Lahlil, J. Appl. Phys. 94, 2060 (2003).

    Article  CAS  Google Scholar 

  130. C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S. Chang, S. K. Gray, G. P. Wiederrecht, and G. C. Schatz, Nano Lett. 5, 615 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bouhelier, A., Bachelot, R. (2007). Electromagnetic Singularities and Resonances in Near-Field Optical Probes. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_9

Download citation

Publish with us

Policies and ethics