Skip to main content

Principles of Near-Field Microwave Microscopy

  • Chapter

Abstract

Near-field microwave microscopy is concerned with quantitative measurement of the microwave electrodynamic response of materials on length scales far shorter than the free-space wavelength of the radiation. Here we review the basic concepts of near-field interactions between a source and sample, present an historical introduction to work in the field, and discuss a novel quantitative modeling approach to interpreting near-field microwave images. We discuss the spatial resolution and a number of concrete applications of near-field microwave microscopy to materials property measurements, as well as future prospects for new types of microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Dressel and G. Grüner, Electrodynamics of Solids, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  2. M. Tinkham, Introduction to Superconductivity, 2nd Edition, McGraw-Hill, New York, 1996, p. 87.

    Google Scholar 

  3. Z. Frait, V. Kambersky, Z. Malek, and M. Ondris, Czeck. J. Phys. B 10, 616 (1960).

    Article  CAS  Google Scholar 

  4. R. F. Soohoo, J. Appl. Phys. 33, 1276 (1962).

    Article  Google Scholar 

  5. R. F. Soohoo, Microwave Magnetics, Harper & Row Publishers, New York, 1985.

    Google Scholar 

  6. E. H. Brandt and G. P. Mikitik, Phys. Rev. Lett. 85, 4164 (2000).

    Article  CAS  Google Scholar 

  7. S. M. Anlage, D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C. Wellstood, “Near-Field Microwave Microscopy of Materials Properties,” in Microwave Superconductivity, ed. by H. Weinstock and M. Nisenoff, (Kluwer, Amsterdam, 2001), p. 239. Also available at http://arXiv.org/abs/cond-mat/0001075.

    Google Scholar 

  8. X.-D. Xiang, C. Gao, Mat. Character. 48, 117 (2002).

    Article  CAS  Google Scholar 

  9. B. T. Rosner, D. W. van der Weide, Rev. Sci. Instrum. 73, 2505 (2002).

    Article  CAS  Google Scholar 

  10. R. Zoughi, Microwave Non-Destructive Testing and Evaluation, Kluwer, The Netherlands, 2000.

    Google Scholar 

  11. A. J. Bahr, R. Zoughi, N. Qaddoumi, “Microwave,” in Nondestructive Evaluation, ed. by P. J. Shull (Marcel Dekker, New York, 2002), p. 645.

    Google Scholar 

  12. C. Gao, T. Wei, F. Duewer, Y. Lu and X.-D. Xiang, Appl. Phys. Lett. 71, 1872 (1997).

    Article  CAS  Google Scholar 

  13. D. W. van der Weide, Appl. Phys. Lett. 70, 677 (1997).

    Article  Google Scholar 

  14. D. E. Steinhauer, C. P. Vlahacos, S. Dutta, F. C. Wellstood, S. M. Anlage, Appl. Phys. Lett. 71, 1736 (1997).

    Article  CAS  Google Scholar 

  15. V. V. Talanov, R. L. Moreland, A. Scherz, A. R. Schwartz, and Y. Liu, Mater. Res. Soc. Symp. Proc. 815, F5.11.1 (2004).

    Google Scholar 

  16. S.-C. Lee, C. P. Vlahacos, B. J. Feenstra, A. Schwartz, D. E. Steinhauer, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. 77, 4404 (2000).

    Article  CAS  Google Scholar 

  17. J. D. Jackson, Classical Electrodynamics, 3rd Edition, Wiley, New York, 1999.

    Google Scholar 

  18. S. Schelkunoff, Antennas, Theory and Practice. Wiley and Sons, Inc., New York, 1952.

    Google Scholar 

  19. S. S. Osofsky, S. E. Swarz, IEEE Trans. Microwave Theory Tech. 40, 1701 (1992).

    Article  Google Scholar 

  20. D. M. Pozar, Microwave Engineering. John Wiley & Sons, Inc., New York, 1998.

    Google Scholar 

  21. E. A. Synge, Phil. Mag. C 6, 356 (1928).

    CAS  Google Scholar 

  22. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    Article  CAS  Google Scholar 

  23. J. B. Pendry, Phys. Rev. Lett. 87, 249704–1 (2001).

    Article  CAS  Google Scholar 

  24. H. A. Bethe, Phys. Rev. 66, 163 (1944).

    Article  Google Scholar 

  25. C. J. Bouwkamp, Philips Res. Rep. 5, 401 (1950).

    Google Scholar 

  26. G. A. Massey, Appl. Optics 23, 658 (1984).

    CAS  Google Scholar 

  27. R. D. Grober, T. Rutherford, T. D. Harris, Appl. Optics 35, 3488 (1996).

    Article  Google Scholar 

  28. S. E. Lofland, S. M. Bhagat, H. L. Ju, G. C. Xiong, T. Venkatesan, and R. L. Greene, Phys. Rev. B 52, 15058 (1995).

    Article  CAS  Google Scholar 

  29. S. E. Lofland, S. M. Bhagat, Q. Q. Shu, M. C. Robson and R. Ramesh, Appl. Phys. Lett. 75, 1947 (1999).

    Article  CAS  Google Scholar 

  30. E. A. Ash and G. Nicholls, Nature 237, 510 (1972).

    Article  CAS  Google Scholar 

  31. C. A. Bryant and J. B. Gunn, Rev. Sci. Instrum. 36, 1614 (1965).

    Article  Google Scholar 

  32. R. G. Bosisio, M. Giroux, and D. Couderc, J. Microwave Power 5, 25 (1970).

    Google Scholar 

  33. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).

    Article  Google Scholar 

  34. E. Betzig, M. Isaacson and A. Lewis, Appl. Phys. Lett. 51, 2088 (1987).

    Article  Google Scholar 

  35. M. Fee, S. Chu and T. W. Hänsch, Optics Communications 69, 219 (1989).

    Article  CAS  Google Scholar 

  36. M. Golosovsky and D. Davidov, Appl. Phys. Lett. 68, 1579 (1996).

    Article  CAS  Google Scholar 

  37. M. Golosovsky, A. Galkin, and D. Davidov, IEEE Micro. Theor. Tech. 44, 1390 (1996).

    Article  CAS  Google Scholar 

  38. J. Bae, T. Okamoto, T. Fujii, K. Mizuno, T. Nozokido, Appl. Phys. Lett. 71, 3581 (1997).

    Article  CAS  Google Scholar 

  39. T. Nozokido, R. Iibuchi, J. Bae, K. Mizuno, Rev. Sci. Instrum. 76, 033702 (2005).

    Article  CAS  Google Scholar 

  40. G. P. Kochanski, Phys. Rev. Lett. 62, 2285 (1989).

    Article  CAS  Google Scholar 

  41. Y. Manassen, R. J. Hamers, J. E. Demuth, A. J. Castellano Phys. Rev. Lett. 62, 2531 (1989).

    Article  Google Scholar 

  42. R. J. Hamers and D. G. Cahill, Appl. Phys. Lett. 57, 2031 (1990).

    Article  CAS  Google Scholar 

  43. M. Völcker, W. Krieger, H. Walther, Phys. Rev. Lett. 66, 1717 (1991).

    Article  Google Scholar 

  44. W. Seifert, E. Gerner, M. Stachel, K. Dransfeld, Ultramicroscopy 42, 379 (1992).

    Article  Google Scholar 

  45. U. Ch. Fischer, M. Zapletal, Ultramicroscopy 42–44, 393 (1992).

    Article  Google Scholar 

  46. B. Michel, W. Mizutani, R. Schierle, A. Jarosch, W. Knop, H. Benedickter, W. Bächtold, H. Rohrer, Rev. Sci. Instrum. 63, 4080 (1992).

    Article  CAS  Google Scholar 

  47. W. Mizutani, B. Michel, R. Schierle, H. Wolf, H. Rohrer, Appl. Phys. Lett. 63, 147 (1993).

    Article  CAS  Google Scholar 

  48. G. Nunes, M. R. Freeman, Science 262, 1029 (1993).

    Article  CAS  Google Scholar 

  49. S. J. Stranick and P. S. Weiss, Rev. Sci. Instrum. 64, 1232 (1993).

    Article  CAS  Google Scholar 

  50. S. J. Stranick and P. S. Weiss, Rev. Sci. Instrum. 65, 918 (1994).

    Article  Google Scholar 

  51. L. A. Bumm and P. S. Weiss, Rev. Sci. Instrum. 66, 4140 (1995).

    Article  CAS  Google Scholar 

  52. A. Kramer, F. Keilmann, B. Knoll, R. Guckenberger, Micron 27, 413 (1996).

    Article  Google Scholar 

  53. F. Keilmann, D. W. van der Weide, T. Eickelkamp, R. Merz, and D. Stöckle, Optics Commun. 129, 15 (1996).

    Article  CAS  Google Scholar 

  54. T. Leinhos, O. Rudow, M. Stopka, A. Vollkopf, E. Oesterschulze, J. Microscopy 194, 349 (1999).

    Article  CAS  Google Scholar 

  55. F. Demming, J. Jersch, S. Klein, K. Dickmann, J. Microscopy 201, 383 (2001).

    Article  CAS  Google Scholar 

  56. Š. Lányi, M. Hruškovic, Rev. Sci. Instrum. 73, 2923 (2002).

    Article  CAS  Google Scholar 

  57. A. Imtiaz and S. M. Anlage, Ultramicroscopy 94, 209 (2003).

    Article  CAS  Google Scholar 

  58. L. A. Valiente, A. A. P. Gibson, A. D. Haigh, Electron. Lett. 40, 1483 (2004).

    Article  Google Scholar 

  59. A. Imtiaz, M. Pollak, S.M. Anlage, J. D. Barry and J. Melngailis, J. Appl. Phys. 97, 044302 (2005).

    Article  CAS  Google Scholar 

  60. F. Keilmann, Infrared Phys. Technol. 36, 217 (1995).

    Article  CAS  Google Scholar 

  61. S. J. Stranick, L. A. Bumm, M. M. Kamna, P. S. Weiss, “Linear and nonlinear spectroscopy with the tunable AC scanning tunneling microscope,” in Photons and Local Probes, ed. by O. Marti and R. Möller (Kluwer, Dordrecht, 1995), p. 221.

    Google Scholar 

  62. H. Yokoyama, M. J. Jeffery and T. Inoue, Jpn. J. Appl. Phys. 32, L1845 (1993).

    Article  CAS  Google Scholar 

  63. H. Yokoyama and M. J. Jeffery, Colloids and Surfaces A 93, 359 (1994).

    Article  CAS  Google Scholar 

  64. Y. Cho, A. Kirihara and T. Saeki, Rev. Sci. Instrum. 67, 2297 (1996).

    Article  CAS  Google Scholar 

  65. Y. Cho, S. Kazuta, and K. Matsuura, Appl. Phys. Lett. 75, 2833 (1999).

    Article  CAS  Google Scholar 

  66. M. Tabib-Azar, Y. Wang, IEEE Trans. Microwave Theory Tech. 52, 971 (2004).

    Article  Google Scholar 

  67. H. G. Frey, F. Keilmann, A. Kriele, R. Guckenberger, Appl. Phys. Lett. 81, 5030 (2002).

    Article  CAS  Google Scholar 

  68. W. Park, J. Kim, K. Lee, Appl. Phys. Lett. 79, 2642 (2001).

    Article  CAS  Google Scholar 

  69. R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. T. Nemeth, D. Koelle, F. Ludwig, and J. Clarke, Appl. Phys. Lett. 66, 99–101 (1995).

    Article  CAS  Google Scholar 

  70. R. C. Black, F. C. Wellstood, E. Dantsker, A. H. Miklich, D. Koelle, F. Ludwig, and J. Clarke, IEEE Trans. Appl. Supercon. 5, 2137 (1995).

    Article  Google Scholar 

  71. S.-C. Lee and S. M. Anlage, Appl. Phys. Lett. 82, 1893 (2003).

    Article  CAS  Google Scholar 

  72. S.-C. Lee and S. M. Anlage, IEEE Trans. Applied Supercond. 13, 3594 (2003).

    Article  CAS  Google Scholar 

  73. S.-C. Lee and S. M. Anlage, Physica C 408–410, 324 (2004).

    Article  CAS  Google Scholar 

  74. S.-C. Lee, M. Sullivan, G. R. Ruchti, S. M. Anlage, B. Palmer, B. Maiorov, E. Osquiguil, Phys. Rev. B 71, 014507 (2005).

    Article  CAS  Google Scholar 

  75. S.-C. Lee, S.-Y. Lee, and S. M. Anlage Phys. Rev. B 72, 024527 (2005).

    Article  CAS  Google Scholar 

  76. C. P. Vlahacos, R. C. Black, S. M. Anlage and F. C. Wellstood, Appl. Phys. Lett. 69, 3272 (1996).

    Article  CAS  Google Scholar 

  77. M. Tabib-Azar, N. Shoemaker and S. Harris, Meas. Sci. Tech., 4, 583 (1993).

    Article  Google Scholar 

  78. A. Tselev, S. M. Anlage, H. Christen, R. L. Moreland, V. V. Talanov, and A. R. Schwartz, Rev. Sci. Instrum. 74, 3167 (2003).

    Article  CAS  Google Scholar 

  79. E. Betzig, P. L. Finn, J. S. Weiner, Appl. Phys. Lett. 60, 2484 (1992).

    Article  CAS  Google Scholar 

  80. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, Appl. Phys. Lett. 60, 2957 (1992).

    Article  CAS  Google Scholar 

  81. K. Karrai, R. D. Grober, Appl. Phys. Lett. 66, 1842 (1995).

    Article  CAS  Google Scholar 

  82. M. S. Kim, S. Kim, J. Kim, K. Lee, B. Friedman, J.-T. Kim, J. Lee, Rev. Sci. Instrum. 74, 3675 (2003).

    Article  CAS  Google Scholar 

  83. C.-G. Gao, B. Hu, I. Tackeuchi, K.-S. Chang, X.-D. Xiang, and G. Wang, Meas. Sci. Tech. 16, 248 (2005).

    Article  CAS  Google Scholar 

  84. H. Odagawa and Y. Cho, Jpn. J. Appl. Phys. 39, 5719 (2000).

    Article  CAS  Google Scholar 

  85. D. W. van der Weide, P. Neuzil, J. Vac. Sci. Technol. B 14, 4144 (1996).

    Article  Google Scholar 

  86. Scanning Tunneling Microscopy, ed. by J. A. Stroscio and W. J. Kaiser, Academic Press, New York (1993).

    Google Scholar 

  87. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge (1994).

    Google Scholar 

  88. B. Knoll, F. Keilmann, A. Kramer, R. Guckenberger, Appl. Phys. Lett. 70, 2667 (1997).

    Article  CAS  Google Scholar 

  89. M. Tabib-Azar, D.-P. Su, A. Pohar, S. R. LeClair, G. Ponchak, Rev. Sci. Instrum. 70, 1725 (1999).

    Article  CAS  Google Scholar 

  90. F. Duewer, C. Gao, I. Takeuchi, X.-D. Xiang, Appl. Phys. Lett. 74, 2696 (1999).

    Article  CAS  Google Scholar 

  91. F. Duewer, C. Gao, I. Takeuchi, X.-D. Xiang, Rev. Sci. Instrum. 71, 2414 (2000).

    Article  CAS  Google Scholar 

  92. B. Knoll and F. Keilmann, Appl. Phys. Lett. 77, 980 (2000).

    Article  Google Scholar 

  93. D. E. Steinhauer, C. P. Vlahacos, S. K. Dutta, B. J. Feenstra, F. C. Wellstood, S. M. Anlage, Appl. Phys. Lett. 72, 861 (1998).

    Article  CAS  Google Scholar 

  94. A. S. Thanawalla, S. K. Dutta, C. P. Vlahacos, D. E. Steinhauer, B. J. Feenstra, S. M. Anlage, and F. C. Wellstood, Appl. Phys. Lett. 73, 2491 (1998).

    Article  CAS  Google Scholar 

  95. A.N. Reznik, N.V. Yurasova, Tech. Phys., 49, 485 (2004).

    Article  CAS  Google Scholar 

  96. S. Ramo, J. R. Whinnery, T.V. Duzer, Fields andWaves in Communication Electronics. John Wiley & Sons, Inc., New York, 1994.

    Google Scholar 

  97. Z.-Y. Shen, High-Temperature Superconductive Microwave Circuits. Artech House, Inc., Boston, 1994.

    Google Scholar 

  98. R. E. Matick, Transmission Lines for Digital and Communication Networks, IEEE Press, New York, 1995.

    Google Scholar 

  99. M. Hein, High-Temperature-Superconductor Thin Films at Microwave Frequencies, Springer Tracts in Modern Physics, Vol. 155, Springer-Verlag, 1999.

    Google Scholar 

  100. S.-C. Lee, Ph.D. thesis, University of Maryland, 2004.

    Google Scholar 

  101. C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, S. M. Anlage, and F. C. Wellstood, Appl. Phys. Lett., 72, 1778 (1998).

    Article  CAS  Google Scholar 

  102. D. E. Steinhauer, Ph.D. Thesis, University of Maryland (2000).

    Google Scholar 

  103. V. V. Talanov, L. V. Mercaldo, S. M. Anlage, and J. H. Claassen, Rev. Sci. Instrum. 71, 2136 (2000).

    Article  CAS  Google Scholar 

  104. T. Tran, D. R. Oliver, D. J. Thomson, and G. E. Bridges, Rev. Sci. Instrum. 72, 2618(2001).

    Article  CAS  Google Scholar 

  105. C. Gao, and X.-D. Xiang, Rev. Sci. Instrum. 69, 3846 (1998).

    Article  CAS  Google Scholar 

  106. M. Tabib-Azar, D. Akinwande, G. Ponchak, and S. R. LeClair, Rev. Sci. Instrum. 70, 3381 (1999).

    Article  CAS  Google Scholar 

  107. M. Tabib-Azar, D. Akinwande, Rev. Sci. Instrum., 71, 1460 (2000).

    Article  CAS  Google Scholar 

  108. M. Tabib-Azar, T. Zhang, and S. R. LeClair, IEEE Trans. Instrum. Meas. 51, 1126 (2002).

    Article  Google Scholar 

  109. Waveguide handbook, ed. N. Marcuvitz. McGraw-Hill Book Co., Inc., New York, 1951.

    Google Scholar 

  110. D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevski, J. Melngailis, R. Ramesh, F. C. Wellstood, and S. M. Anlage, Appl. Phys. Lett. 75, 3180 (1999).

    Article  CAS  Google Scholar 

  111. X.-D. Xiang, C. Gao, P. G. Schultz, T. Wei, US Patent # 6,532,806 (2003).

    Google Scholar 

  112. R.W. P. King, M. Owens, T. T. Wu, Lateral Electromagnetic Waves, Springer-Verlag, New York, 1992.

    Google Scholar 

  113. A. Imtiaz and S. M. Anlage, J. Appl. Phys. (in press), August 1, (2006).

    Google Scholar 

  114. V.V. Talanov, A. Scherz, R. L. Moreland, A. R. Schwartz, Appl. Phys. Lett. 88, 134106(2006); ibid 88, 192906 (2006); V. V. Talanov, A. Scherz, A. R. Schwartz, Appl. Phys. Lett. 88, 262901 (2006).

    Article  CAS  Google Scholar 

  115. M. Tabib-Azar, P. S. Pathak, G. Ponchak, and S. LeClair, Rev. Sci. Instrum. 70, 2783 (1999).

    Article  CAS  Google Scholar 

  116. J. Kim, M. Kim, H. Kim, D. Song, K. Lee, B. Friedman, Appl. Phys. Lett. 83, 1026(2003).

    Article  CAS  Google Scholar 

  117. M. Kim, J. Kim, H. Kim, S. Kim, J. Yang, H. Yoo, S. Kim, K. Lee, B. Friedman, Rev. Sci. Instrum. 75, 684 (2004).

    Article  CAS  Google Scholar 

  118. V. S. Zuev and A. V. Frantsesson, J. Commun. Tech. and Electronics 43, 1021 (1998).

    Google Scholar 

  119. Š. Lányi, M. Hruškovic, J. Phys. D 36, 598 (2003).

    Article  Google Scholar 

  120. J. H. Lee, S. Hyun, K. Char, Rev. Sci. Instrum. 72, 1425 (2001).

    Article  CAS  Google Scholar 

  121. S. M. Anlage, B. J. Feenstra, D. E. Steinhauer, US Patent # 6,376,836 (2002).

    Google Scholar 

  122. R. Hillenbrand, F. Keilmann, Phys. Rev. Lett. 85, 3029 (2000).

    Article  CAS  Google Scholar 

  123. E. Tanabe and W. T. Joines, IEEE Trans. Instrum. Meas. IM-25, 222 (1976).

    Google Scholar 

  124. M. A. Stuchly and S. S. Stuchly, IEEE Trans. Instrum. and Meas. IM-29, 176 (1980).

    Article  Google Scholar 

  125. Y. Lu, T. Wei, F. Duewer, Y. Lu, N. Ming, P. G. Schultz and X.-D. Xiang, Science 276, 2004 (1997).

    Article  CAS  Google Scholar 

  126. B. J. Feenstra, C. P. Vlahacos, A. S. Thanawalla, D. E. Steinhauer, S. K. Dutta, F. C. Wellstood and S. M. Anlage, IEEE MTT-S Int. Microwave Symp. Digest, p. 965 (1998).

    Google Scholar 

  127. C. P. Vlahacos, D. E. Steinhauer, S. M. Anlage, F. C. Wellstood, S. K. Dutta, J. B. Feenstra, The Americas Microscopy and Analysis, January, 13 (2000).

    Google Scholar 

  128. Y. G. Wang, M. E. Reeves, F. J. Rachford, Appl. Phys. Lett. 76, 3295 (2000).

    Article  CAS  Google Scholar 

  129. Y. Cho, S. Kazuta, K. Ohara, H. Odagawa, Jpn. J. Appl. Phys. 39, 3086 (2000).

    Article  CAS  Google Scholar 

  130. D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, S. M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, and J. Melngailis, Rev. Sci. Instrum. 71, 2751 (2000).

    Article  CAS  Google Scholar 

  131. D. E. Steinhauer and S. M. Anlage, J. Appl. Phys. 89, 2314 (2001).

    Article  CAS  Google Scholar 

  132. Y. G. Wang, M. E. Reeves, W. J. Kim, J. S. Horwitz, and F. J. Rachford, Appl. Phys. Lett. 78, 3872 (2001).

    Article  CAS  Google Scholar 

  133. Y. J. Feng, L. Y. Wu, T. Jiang, L. Liu, L. Kang, S. Z. Yang, P. H. Wu, Supercond. Sci. Technol. 15, 390 (2002).

    Article  CAS  Google Scholar 

  134. Y.-C. Chen, H.-F. Cheng, G. Wang, X.-D. Xiang, C.-M. Lei, I.-N. Lin, Jpn. J. Appl. Phys. 41, 7214 (2002).

    Article  CAS  Google Scholar 

  135. Z. Wang, M. A. Kelly, Z.-X. Shen, G. Wang, X.-D. Xiang, J. T. Wetzel, J. Appl. Phys. 92, 808 (2002).

    Article  CAS  Google Scholar 

  136. C. Gao, B. Hu, P. Zhang, M. Huang, W. Liu, I. Takeuchi, Appl. Phys. Lett. 84, 4647(2004).

    Article  CAS  Google Scholar 

  137. A. Tselev and S. M. Anlage, in preparation, 2006.

    Google Scholar 

  138. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P. G. Schultz, X.-D. Xiang, R. P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett. 72, 2185 (1998).

    Article  CAS  Google Scholar 

  139. H. Chang, I. Takeuchi, X.-D. Xiang, Appl. Phys. Lett. 74, 1165 (1999).

    Article  CAS  Google Scholar 

  140. Y. K. Yoo, F. Duewer, T. Fukumura, H. Yang, D. Yi, S. Liu, H. Chang, T. Hasegawa, M. Kawasaki, H. Koinuma, X.-D. Xiang, Phys. Rev. B 63, 224421 (2001).

    Article  CAS  Google Scholar 

  141. H. Chang, K.-M. Yu, Y. Dong, X.-D. Xiang, Appl. Phys. Lett. 81, 2062 (2002).

    Article  CAS  Google Scholar 

  142. N. Okazaki, S. Okazaki, H. Higuma, S. Miyashita, Y. Cho, J. Nishimaru, T. Fukumura, M. Kawasaki, M. Murakami, Y. Yamamoto, Y. Matsumoto, H. Koinuma, T. Hasegawa, Applied Surface Science 223, 196 (2004).

    Article  CAS  Google Scholar 

  143. H.-W. Cheng, X.-J. Zhang, S.-T. Zhang, Y. Feng, Y.-F. Chen, Z.-G. Liu, G.-X. Cheng, Appl. Phys. Lett. 85, 2319 (2004).

    Article  CAS  Google Scholar 

  144. X.-D. Xiang, Appl. Surf. Sci. 223, 54 (2004).

    Article  CAS  Google Scholar 

  145. I. Takeuchi, R.B. van Dover, and H. Koinuma, Mater. Res. Soc. Bull. 27, 301 (2002).

    CAS  Google Scholar 

  146. H. Koinuma, I. Takeuchi, Nature Materials 3, 429 (2004).

    Article  CAS  Google Scholar 

  147. Y. Cho and K. Ohara, Appl. Phys. Lett. 79, 3842 (2001).

    Article  CAS  Google Scholar 

  148. C. Hubert, J. Levy, Rev. Sci. Instrum. 70, 3684 (1999).

    Article  CAS  Google Scholar 

  149. C. Hubert, J. Levy, E. J. Cukauskas, S. W. Kirchoefer, Phys. Rev. Lett. 85, 1998 (2000).

    Article  CAS  Google Scholar 

  150. S. Hyun, J. H. Lee, S. S. Kim, K. Char, S. J. Park, J. Sok, E. H. Lee, Appl. Phys. Lett. 77, 3084 (2000).

    Article  CAS  Google Scholar 

  151. H. Odagawa and Y. Cho, Appl. Phys. Lett. 80, 2159 (2002).

    Article  CAS  Google Scholar 

  152. M. J. Werner and R. J. King, MRS Proc. 430, 67 (1996).

    CAS  Google Scholar 

  153. Y. S. Xu and R. G. Bosisio, IEE Proc. H 139, 500 (1992).

    Google Scholar 

  154. R. J. Gutman and J. M. Borrego, IEEE MTT Digest, 281 (1987).

    Google Scholar 

  155. H. Bhimnathwala and J. M. Borrego, J. Vac. Sci. Technol. B 12, 395 (1994).

    Article  CAS  Google Scholar 

  156. T. Nozokido, J. Bae, K. Mizuno, IEEE Trans. Microwave Theory Tech. 49, 491 (2001).

    Article  Google Scholar 

  157. Y. Huang, C. C. Williams, J. Slinkman, Appl. Phys. Lett. 66, 344 (1995).

    Article  CAS  Google Scholar 

  158. M. Tabib-Azar, D. Akinwande, G. Ponchak, S. R. LeClair, Rev. Sci. Instrum. 70, 3083 (1999).

    Article  CAS  Google Scholar 

  159. C. C. Watson, W. K. Chan, Appl. Phys. Lett. 78, 129 (2001).

    Article  CAS  Google Scholar 

  160. M. Tabib-Azar, R. Ciocan, G. Ponchak, and S. R. LeClair, Rev. Sci. Instrum. 70, 3387 (1999).

    Article  CAS  Google Scholar 

  161. J.-P. Bourgoin, M. B. Johnson, B. Michel, Appl. Phys. Lett. 65, 2045 (1994).

    Article  CAS  Google Scholar 

  162. B. Knoll and F. Keilmann, Optics Commun. 182, 321 (2000).

    Article  CAS  Google Scholar 

  163. A comprehensive discussion of the VideoDisc technology may be found in a collection of articles published in RCA Rev. 39 (1978).

    Google Scholar 

  164. J. R. Matey and J. Blanc, J. Appl. Phys. 57, 1437 (1985).

    Article  Google Scholar 

  165. C. D. Bugg and P. J. King, J. Phys. E 21, 147 (1988).

    Article  CAS  Google Scholar 

  166. H. P. Kleinknecht, J. R. Sandercock, H. Meier, Scanning Microscopy 2, 1839 (1988).

    Google Scholar 

  167. Š. Lányi, J. Török, P. Řehuřek, Rev. Sci. Instrum. 65, 2258 (1994).

    Article  Google Scholar 

  168. Š. Lányi, J. Török, P. Řehuřek, J. Vac. Sci. Technol. B 14, 892 (1996).

    Article  Google Scholar 

  169. A. F. Lann, M. Golosovsky, D. Davidov, and A. Frenkel, Appl. Phys. Lett. 73, 2832 (1998).

    Article  CAS  Google Scholar 

  170. A. Kim, J. Kim, S. Hyun, S. S. Kim, T. Kim, K. Char, Rev. Sci. Instrum. 74, 3164 (2003).

    Article  CAS  Google Scholar 

  171. S. M. Anlage, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, A. Thanawalla, and F. C. Wellstood, Particle Accelerators 61, 321./57 (1998). Also available at http://www.arXiv.org/abs/cond-mat/9808195.

    Google Scholar 

  172. S. M. Anlage, D. E. Steinhauer, C. P. Vlahacos, B. J. Feenstra, A. S. Thanawalla, W. Hu, S. K. Dutta, and F. C. Wellstood, IEEE Trans. Appl. Supercond. 9, 4127 (1999).

    Article  Google Scholar 

  173. Y. J. Feng, L. Liu, Z. L. Fu, L. Y. Wu, Q. G. Liu, L. X. You, L. Kang, S. Z. Yang, P. H. Wu, S. Z. Wang, IEEE Trans. Applied Supercond. 11, 123 (2001).

    Article  Google Scholar 

  174. F. Sakran, M. Golosovsky, H. Goldberger, D. Davidov, A. Frenkel, Appl. Phys. Lett. 78, 1634 (2001).

    Article  CAS  Google Scholar 

  175. J. Kim, K. Lee, B. Friedman, D. Cha, Appl. Phys. Lett. 83, 1032 (2003).

    Article  CAS  Google Scholar 

  176. Z. Wang, M. A. Kelly, Z.-X. Shen, L. Shao, W.-K. Chu, H. Edwards, Appl. Phys. Lett. 86, 153118 (2005).

    Article  CAS  Google Scholar 

  177. M. Abu-Teir, F. Sakran, M. Golosovsky, D. Davidov, A. Frenkel, Appl. Phys. Lett. 80, 1776 (2002).

    Article  CAS  Google Scholar 

  178. A. F. Lann, M. Golosovsky, D. Davidov, A. Frenkel, Appl. Phys. Lett. 75, 603 (1999).

    Article  CAS  Google Scholar 

  179. S. Hyun, J. H. Cho, A. Kim, J. Kim, T. Kim, and K. Char, Appl. Phys. Lett. 80, 1574 (2002).

    Article  CAS  Google Scholar 

  180. B. A. Auld, and D. K. Winslow, “Microwave Eddy-Current Experiments with Ferromagnetic Resonance Probes,” in Eddy-Current Characterization of Materials and Structures (ASTM Special Technical Publication 722, Philadelphia, 1981), p. 348.

    Google Scholar 

  181. F. Sakran, A. Copty, M. Golosovsky, and D. Davidov, P. Monod, Appl. Phys. Lett. 84, 4499 (2004).

    Article  CAS  Google Scholar 

  182. Z. Zhang, P. C. Hammel and P. Wigen, Appl. Phys. Lett. 68, 2005 (1996).

    Article  CAS  Google Scholar 

  183. Z. Zhang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, Appl. Phys. Lett. 73, 2036 (1998).

    Article  CAS  Google Scholar 

  184. G. R. Eaton and S. S. Eaton, Bull. Mag. Res. 10, 22 (1987).

    Google Scholar 

  185. M. Ikeya and T. Miki, Jap. J. Appl. Phys. 26, L929 (1987).

    Article  CAS  Google Scholar 

  186. M. Ikeya, M. Furusawa, and M. Kasuyai, Scanning Microscopy 4, 245 (1990).

    CAS  Google Scholar 

  187. M. Ikeya, “ESR Microscopy,” in New Applications of Electron Spin Resonance (World Scientific, Singapore, 1993), p. 427.

    Google Scholar 

  188. M. Hirai, C. Yamanaka, M. Ikeya, Appl. Radiation and Isotopes 44, 385 (1993).

    Article  CAS  Google Scholar 

  189. K. Wago, D. Botkin, C. S. Yannoni, and D. Rugar, Appl. Phys. Lett. 72, 2757 (1998).

    Article  CAS  Google Scholar 

  190. F. Sakran, A. Copty, M. Golosovsky, N. Bontemps, D. Davidov, A. Frenkel, Appl. Phys. Lett. 82, 1479 (2003).

    Article  CAS  Google Scholar 

  191. Y. Manassen, Adv. Mater. 6, 401 (1994).

    Article  CAS  Google Scholar 

  192. C. Durkan and M. E. Welland, Appl. Phys. Lett. 80, 458 (2002).

    Article  CAS  Google Scholar 

  193. I. Takeuchi, T. Wei, F. Duewer, Y. K. Yoo, X.-D. Xiang, V. Talyansky, S. P. Pai, G. J. Chen, and T. Venkatesan, Appl. Phys. Lett. 71, 2026 (1997).

    Article  CAS  Google Scholar 

  194. A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, A. Goldgirsch, and V. Berlin, Appl. Phys. Lett. 75, 1766 (1999).

    Article  CAS  Google Scholar 

  195. S. M. Anlage, C. P. Vlahacos, S. Dutta, and F. C. Wellstood, IEEE Trans. Appl. Supercond. 7, 3686 (1997).

    Article  Google Scholar 

  196. A. F. Lann, M. Abu-Teir, M. Golosovsky, D. Davidov, S. Djordjevic, N. Bontemps, and L. F. Cohen, Rev. Sci. Instrum. 70, 4348 (1999).

    Article  CAS  Google Scholar 

  197. W. Hu, B. J. Feenstra, A. S. Thanawalla, F. C. Wellstood, and S. M. Anlage Appl. Phys. Lett. 75, 2824 (1999).

    Article  CAS  Google Scholar 

  198. S. M. Anlage, W. Hu, C. P. Vlahacos, D. Steinhauer, B. J. Feenstra, S. K. Dutta, A. Thanawalla, and F. C. Wellstood, J. Supercond. 12, 353 (1999).

    Article  CAS  Google Scholar 

  199. E. C. Burdette, F. L. Cain, and J. Seals, IEEE Trans. Microwave Theory Tech.MTT-28, 414 (1980).

    Article  CAS  Google Scholar 

  200. T. W. Athey, M. A. Stuchly and S. S. Stuchly, IEEE Trans. Microwave Theory and Tech. MTT-30, 82 (1982).

    Article  Google Scholar 

  201. M. A. Stuchly, T.W. Athey, G. M. Samaras and G. E. Taylor, IEEE Trans. Microwave Theory and Tech. MTT-30, 87 (1982).

    Article  Google Scholar 

  202. M. Tabib-Azar, J. L. Katz, and S. R. LeClair, IEEE Trans. Instrum. Meas. 48, 1111 (1999).

    Article  Google Scholar 

  203. S. M. Anlage, A. S. Thanawalla, A. P. Zhuravel’, W. Hu, C. P. Vlahacos, D. E. Steinhauer, S. K. Dutta, and F. C. Wellstood, “Near-Field Scanning Microwave Microscopy of Superconducting Materials and Devices,” in Advances in Superconductivity XI, ed. by N. Koshizuka and S. Tajima, (Springer-Verlag, Tokyo, 1999), pp. 1079.

    Google Scholar 

  204. A. S. Thanawalla, W. Hu, D. E. Steinhauer, S. K. Dutta, B. J. Feenstra, S. M. Anlage, F. C. Wellstood, and R. B. Hammond, IEEE Trans. Appl. Supercond. 9, 3042 (1999).

    Article  Google Scholar 

  205. S. Hong, J. Kim, W. Park, K. Lee, Appl. Phys. Lett. 80, 524 (2002).

    Article  CAS  Google Scholar 

  206. K. S. Chang, M. Aronova, O. Famodu, I. Takeuchi, S. E. Lofland, J. Hattrick-Simpers, H. Chang, Appl. Phys. Lett. 79, 4411 (2001).

    Article  CAS  Google Scholar 

  207. L. B. Felsen, N. Marcuvitz, Radiaiton and Scattering of Waves, IEEE Press, Piscataway, NJ, 1994.

    Google Scholar 

  208. C. Gao, F. Duewer, and X.-D. Xiang, Appl. Phys. Lett. 75, 3005 (1999).

    Article  CAS  Google Scholar 

  209. H. Zheng, J. Wang. S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661 (2004).

    Article  CAS  Google Scholar 

  210. E. Saitoh, H. Miyajima, T. Yamaoka, G. Tatara, Nature 432, 203 (2004).

    Article  CAS  Google Scholar 

  211. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, Appl. Phys. Lett. 81, 4401 (2002).

    Article  CAS  Google Scholar 

  212. K. Fujimoto and Y. Cho, Jpn. J. Appl. Phys. 43, 2818 (2004).

    Article  CAS  Google Scholar 

  213. A. V. Balatsky, Y. Manassen, R. Salem, Phys. Rev. B 66, 195416 (2002).

    Article  CAS  Google Scholar 

  214. C. Durkan, Contemp. Phys. 45, 1 (2004).

    CAS  Google Scholar 

  215. S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, D. C. Ralph, Nature 425, 380 (2003).

    Article  CAS  Google Scholar 

  216. F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhögl, M. Liebau, E. Unger and W. Hönlein, Microelec. Eng. 64, 399 (2002).

    Article  CAS  Google Scholar 

  217. P. J. Burke, IEEE Trans. Nanotech. 1, 129 (2002).

    Article  Google Scholar 

  218. A. Copty, M. Golosovsky, D. Davidov, A. Frenkel, IEEE Trans. Microwave Th. Tech. 52, 1957 (2004).

    Article  Google Scholar 

  219. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).

    Article  CAS  Google Scholar 

  220. V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967) glish translation: Sov. Phys. Usp. 10, 509 (1968).

    CAS  Google Scholar 

  221. A. A. Houck, J. B. Brock, I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).

    Article  CAS  Google Scholar 

  222. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, J. B. Pendry, Appl Phys. Lett. 82, 1506 (2003).

    Article  CAS  Google Scholar 

  223. N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005).

    Article  CAS  Google Scholar 

  224. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, J. Phys. Condens. Matter 10, 4785 (1998).

    Article  CAS  Google Scholar 

  225. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, Nature 391, 667 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anlage, S.M., Talanov, V.V., Schwartz, A.R. (2007). Principles of Near-Field Microwave Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_8

Download citation

Publish with us

Policies and ethics