Skip to main content

Principles of Kelvin Probe Force Microscopy

  • Chapter
Book cover Scanning Probe Microscopy

Abstract

In this chapter we describe and discuss Kelvin probe force microscopy (KPFM), a scanning probe microscopy technique designed to obtain laterally resolved work function images by measuring the electrostatic forces between probe and sample surface. By operating the microscope in ultrahigh vacuum, even absolute work function measurements with very high lateral and energy resolution can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  Google Scholar 

  2. Y. Leng, C. C. Willams, L. C. Su, and G. B. Stringfellow, Appl. Phys. Lett. 66, 1264 (1995).

    Article  CAS  Google Scholar 

  3. S. Saraf, R. Shikler, J. Yang, and Y. Rosenwaks, Appl. Phys. Lett. 80, 2586 (2002).

    Article  CAS  Google Scholar 

  4. Y. Rosenwaks, R. Shikler, T. Glatzel, and S. Sadewasser, Phys. Rev. B 70, 085320 (2004).

    Article  Google Scholar 

  5. M. Shvebelman, P. Urenski, R. Shikler, G. Rosenman, M. Molotskii and Y. Rosenwaks, Appl. Phys. Lett. 80, 1806 (2002).

    Article  CAS  Google Scholar 

  6. T. Glatzel, H. Hoppe, N. S. Sariciftci, M. C. Lux-Steiner, and M. Komiyama, Jap. J. Appl. Phys. 44, 5370 (2005).

    Article  CAS  Google Scholar 

  7. A. Kikukawa, S. Hosaka, and R. Imura, Appl. Phys. Lett. 66, 3510 (1995).

    Article  CAS  Google Scholar 

  8. A. Chavez-Pirson, O. Vatel, M. Tanimoto, H. Ando, H. Iwamura and H. Kanbe, Appl. Phys. Lett. 67, 3069 (1995).

    Article  CAS  Google Scholar 

  9. T. Mizutani, M. Arakawa, and S. Kishimoto, IEEE Elec. Dcv. Lett 18, 423 (1997).

    Article  CAS  Google Scholar 

  10. M. Arakawa, S. Kishimoto, and T. Mizutani, Jap. J. Appl. Phys. 36, 1826 (1997).

    Article  CAS  Google Scholar 

  11. R. Shikler, T. Meoded, N. Fried, B. Mishori, and Y. Rosenwaks, J. Appl. Phys. 86, 107 (1999).

    Article  CAS  Google Scholar 

  12. R. Shikler, T. Meoded, N. Fried, and Y. Rosenwaks, Appl. Phys. Lett. 74, 2972 (1999).

    Article  CAS  Google Scholar 

  13. T. Glatzel, D. F. Marrón, T. Schedel-Niedrig, S. Sadewasser, and M. C. Lux-Steiner, Appl. Phys. Lett. 81, 2017 (2002).

    Article  CAS  Google Scholar 

  14. S. Sadewasser, T. Glatzel, M. Rusu, A. Jäger-Waldau, and M. C. Lux-Steiner, Appl. Phys. Lett. 80, 2979 (2002).

    Article  CAS  Google Scholar 

  15. L. Bürgi, H. Sirringhaus, and R. Friend, Appl. Phys. Lett. 80, 2913 (2002).

    Article  Google Scholar 

  16. T. D. Krauss, S. O’Brien, and L. E. Brus, J. Phys. Chem. B 105, 1725 (2001).

    Article  CAS  Google Scholar 

  17. O. Douhéret, S. Anand, T. Glatzel, K. Maknys, and S. Sadewasser, Appl. Phys. Lett. 85, 5245 (2004).

    Article  Google Scholar 

  18. S. Kitamura, K. Suzuki, M. Iwatsuki, and C. B. Mooney, Appl. Surf. Sci. 157, 222 (2000).

    Article  CAS  Google Scholar 

  19. K. Okamoto, Y. Sugawara, and S. Morita, Appl. Sur. Sci. 188, 381 (2002).

    Article  CAS  Google Scholar 

  20. N. Duhayon, P. Eyben, M. Fouchier, T. Clarysse, W. Vandervorst, D. Alvarez, S. Schoemann, M. Ciappa, M. Stangoni, P. Formanek, V. Raineri, F. Gian-nazzo, D. Goghero, Y. Rosenwaks, R. Shikler, S. Saraf, S. Sadewasser, N. Barreau, Th. Glatzel, M. Verheijen, S.A.M. Mentink, M. von Sprekselen, T. Maltezopoulos, R. Wiesendanger and L. Hellemans, J. Vac. Sci. Tech. B 22, 385 (2004).

    Article  CAS  Google Scholar 

  21. C. C. Williams, Annual Review of Materials Science 29, 471 (1999).

    Article  CAS  Google Scholar 

  22. P. De Wolf, M. Geva, T. Hantschel, W. Vandervorst, and R. B. Bylsma, Appl. Phys. Lett. 73, 2155 (1998).

    Article  Google Scholar 

  23. S. Hudlet, M. S. Jean, B. Roulet, J. Berger, and C. Guthmann, J. Appl. Phys. 77, 3308 (1995).

    Article  CAS  Google Scholar 

  24. A. K. Henning, T. Hochwitz, J. Slinkman, J. Never, S. Hoffmann, P. Kaszuba and C. Daghlian, J. Appl. Phys. 77, 1888 (1995).

    Article  CAS  Google Scholar 

  25. F. Giessibl, and M. Tortonese, Appl. Phys. Lett. 70, 2529 (1997).

    Article  CAS  Google Scholar 

  26. F. Giessibl, Phys. Rev. B 56, 16010 (1997).

    Article  CAS  Google Scholar 

  27. F. Giessibl, H. Bielefcldt, S. Hembacher, and J. Mannhart, Appl. Surf. Sci. 140, 352 (1999).

    Article  CAS  Google Scholar 

  28. D. Abraham, C. Williams, J. Slinkman, and H. Wickramasinghe, J. Vac. Sci. Technol. B 9, 703 (1991).

    Article  CAS  Google Scholar 

  29. A. Kikukawa, S. Hosaka, and R. Imura, Rev. Sci. Instrum. 67, 1463 (1996).

    Article  CAS  Google Scholar 

  30. C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jäger-Waldau, and M. C. Lux-Steiner, Appl. Phys. Lett. 75, 286 (1999).

    Article  CAS  Google Scholar 

  31. C. Sommerhalter, T. Glatzel, T. Matthes, A. Jäger-Waldau, and M. C. Lux-Steiner, Appl. Surf. Sci. 157, 263 (2000).

    Article  CAS  Google Scholar 

  32. S. Kitamura, K. Suzuki, and M. Iwatsuki, Jpn. J. Appl. Phys. 37, 3765 (1998).

    Article  CAS  Google Scholar 

  33. S. Kitamura, K. Suzuki, and M. Iwatsuki, Appl. Surf. Sci. 140, 265 (1999).

    Article  CAS  Google Scholar 

  34. T. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).

    Article  Google Scholar 

  35. T. Glatzel, S. Sadewasser, and M. C. Lux-Steiner, Appl. Surf. Sci. 210, 84 (2003).

    Article  CAS  Google Scholar 

  36. T. Glatzel, S. Sadewasser, R. Shikler, Y. Rosenwaks, and M. C. Lux-Steiner, Mat. Sci. Engineer. B 102, 138 (2003).

    Article  Google Scholar 

  37. T. Fukuma, K. Kimura, K. Kobayashi, K. Matsushige, and H. Yamada, Appl. Phys. Lett. 85, 6287 (2004).

    Article  CAS  Google Scholar 

  38. H. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, J. Appl. Phys. 84, 1168 (1998).

    Article  CAS  Google Scholar 

  39. T. Hochwitz, A. Henning, C. Levey, C. Daghlian, and J. Slinkman, J. Vac. Sci. Technol. B 14, 457 (1996).

    Article  CAS  Google Scholar 

  40. S. Hudlet, M. S. Jean, C. Guthmann, and J. Berger, Eur. Phys. J. B 2, 5 (1998).

    Article  CAS  Google Scholar 

  41. S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Appl. Phys. A 66, 239 (1998).

    Article  Google Scholar 

  42. H. O. Jacobs and A. Stemmer, Surf. Interface Anal. 27, 361 (1999).

    Article  CAS  Google Scholar 

  43. R. Shikler, PhD thesis, Tel-Aviv University, 2003.

    Google Scholar 

  44. A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, 1989).

    Google Scholar 

  45. S. V. Kalinin, D. A. Bonnell, M. Freitag, and A. T. Johnson, Appl. Phys. Lett. 81, 754 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Glatzel, T., Lux-Steiner, M., Strassburg, E., Boag, A., Rosenwaks, Y. (2007). Principles of Kelvin Probe Force Microscopy. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_5

Download citation

Publish with us

Policies and ethics