Skip to main content

High-Sensitivity Electric Force Microscopy of Organic Electronic Materials and Devices

  • Chapter
Book cover Scanning Probe Microscopy

Abstract

Conducting and semiconducting organic materials have long been known [1], [2], but recent advances in chemical synthesis [3], [4] have enabled organic materials to begin delivering on the promise of mass-produced economical electronic devices. Organic electronic materials are better suited for constructing high-efficiency light-emitting diodes [5]–[8], solar cells [9], [10], and cheap solution-processable thin-film transistors [6], [11]–[18] than are crystalline inorganic semiconductors such as silicon and gallium arsenide. The electronic/optical properties and solubility of organic materials can be tuned independently by chemical synthesis [4]. Since they can be processed and patterned at ambient temperature, organic electronic materials are compatible with flexible large-area substrates [19].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, volume 39 of Monographs in the Physics and Chemistry of Materials (Oxford University Press, New York, 1982).

    Google Scholar 

  2. P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography, Optical Engineering (Marcel Dekker, Inc., New York, 1998).

    Google Scholar 

  3. R. D. McCullough et al., Synth. Met. 55, 1198 (1993).

    Article  CAS  Google Scholar 

  4. U. Mitschke and P. Bauerle, J. Mater. Chem. 10, 1471 (2000).

    Article  CAS  Google Scholar 

  5. J. H. Burroughes et al., Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  6. H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).

    Article  CAS  Google Scholar 

  7. R. H. Friend et al., Nature 397, 121 (1999).

    Article  CAS  Google Scholar 

  8. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Article  CAS  Google Scholar 

  9. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).

    Article  CAS  Google Scholar 

  10. P. Strohriegl and J. V. Grazulevicius, Adv. Mater. 14, 1439 (2002).

    Article  CAS  Google Scholar 

  11. G. Horowitz, X. Pend, D. Ficou, and F. Garnier, J. Appl. Phys. 67, 528 (1990).

    Article  Google Scholar 

  12. A. Dodabalapur, L. Torsi, and H. E. Katz, Science 268, 270 (1995).

    Article  CAS  Google Scholar 

  13. A. Dodabalapur, L. Torsi, H. E. Katz, and R. C. Haddon, Science 269, 1560 (1995).

    Article  CAS  Google Scholar 

  14. L. Torsi, A. Dodabalapur, L. J. Rothberg, A.W. P. Fung, and H. E. Katz, Science 272, 1462 (1996).

    Article  CAS  Google Scholar 

  15. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).

    Article  CAS  Google Scholar 

  16. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).

    Article  CAS  Google Scholar 

  17. H. E. Katz and Z. Bao, J. Phys. Chem. B 104, 671 (2000).

    Article  CAS  Google Scholar 

  18. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).

    Article  CAS  Google Scholar 

  19. S. R. Forrest, Nature 428, 911 (2004).

    Article  CAS  Google Scholar 

  20. J. C. Scott, J. Vac. Sci. Technol. A 21, 521 (2003).

    Article  CAS  Google Scholar 

  21. Y. L. Shen, A. R. Hosseini, M. H. Wong, and G. G. Malliaras, ChemPhysChem 5, 16 (2004).

    Article  CAS  Google Scholar 

  22. T. A. Skotheim, R. L. Elsenbaumer, and J. R. Renolds, editors, Handbook of Conducting Polymers (Marcel Dekker, Inc., New York, second edition, 1998).

    Google Scholar 

  23. S. V. Novikov and A. V. Vannikov, J. Phys. Chem. 99, 14573 (1995).

    Article  CAS  Google Scholar 

  24. Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 245, 351 (1995).

    Article  CAS  Google Scholar 

  25. D. H. Dunlap, P. E. Parris, and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).

    Article  CAS  Google Scholar 

  26. S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).

    Article  CAS  Google Scholar 

  27. P. E. Parris, D. H. Dunlap, and V. M. Kenkre, Phys. Status Solidi B-Basic Res. 218, 47 (2000).

    Article  CAS  Google Scholar 

  28. S. V. Novikov and A. V. Vannikov, Mol. Cryst. Liquid Cryst. 361, 89 (2001).

    CAS  Google Scholar 

  29. R. E. Parris, V. M. Kenkre, and D. H. Dunlap, Phys. Rev. Lett. 87, 26601 (2001).

    Article  CAS  Google Scholar 

  30. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).

    Article  CAS  Google Scholar 

  31. D. Cahen and A. Kahn, Adv. Mater. 15, 271 (2003).

    Article  CAS  Google Scholar 

  32. A. Kahn, N. Koch, and W. Y. Gao, J. Polym. Sci. Pt. B-Polym. Phys. 41, 2529 (2003).

    Article  CAS  Google Scholar 

  33. M. Abkowitz, J. S. Facci, and J. Rehm, J. Appl. Phys. 83, 2670 (1998).

    Article  CAS  Google Scholar 

  34. B. H. Hamadani and D. Natelson, Appl. Phys. Lett. 84, 443 (2004).

    Article  CAS  Google Scholar 

  35. R. J. Chesterfield et al., J. Appl. Phys. 95, 6396 (2004).

    Article  CAS  Google Scholar 

  36. M. J. Loiacono, E. L. Granstrom, and C. D. Frisbie, J. Phys. Chem. B 102, 1679 (1998).

    Article  CAS  Google Scholar 

  37. C. Shafai, D. J. Thomson, M. Simard-Normandin, G. Mattiussi, and P. J. Scanlon, Appl. Phys. Lett. 64, 342 (1994).

    Article  CAS  Google Scholar 

  38. B. Alperson, S. Cohen, I. Rubinstein, and G. Hodes, Phys. Rev. B 52, R17017 (1995).

    Article  CAS  Google Scholar 

  39. J. N. Nxumalo, D. T. Shimizu, and D. J. Thomson, J. Vac. Sci. Tech. B 14, 386 (1996).

    Article  CAS  Google Scholar 

  40. H. Dai, E. W. Wong, and C. M. Leiber, Science 272, 523 (1996).

    Article  CAS  Google Scholar 

  41. T. W. Kelley, E. L. Granstrom, and C. D. Frisbie, Adv. Mater. 11, 261 (1999).

    Article  CAS  Google Scholar 

  42. T. W. Kelley and C. D. Frisbie, J. Vac. Sci. Technol. B 18, 632 (2000).

    Article  CAS  Google Scholar 

  43. A. B. Chwang and C. D. Frisbie, J. Phys. Chem. B 104, 12202 (2000).

    Article  CAS  Google Scholar 

  44. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, Science 251, 1468 (1991).

    Article  Google Scholar 

  45. S. K. Buratto, Curr. Opinion in Solid State and Mater. Sci. 1, 485 (1996).

    Article  CAS  Google Scholar 

  46. P. F. Barbara, D. M. Adams, and D. B. O’Connor, Ann. Rev. Mater. Sci. 29, 433 (1999).

    Article  CAS  Google Scholar 

  47. D. A. V. Bout, J. Kerimo, D. A. Higgens, and P. F. Barbara, Acc. Chem. Res. 30, 204 (1997).

    Article  Google Scholar 

  48. J. A. DeAro, K. D. Weston, S. K. Buratto, and U. Lemmer, Chem. Phys. Lett. 277, 532 (1997).

    Article  CAS  Google Scholar 

  49. J. A. DeAro, D. Moses, and S. K. Buratto, Appl. Phys. Lett. 75, 3814 (1999).

    Article  CAS  Google Scholar 

  50. G. M. Credo et al., J. Chem. Phys. 112, 7864 (2000).

    Article  CAS  Google Scholar 

  51. O. A. Semenikhin, L. Jiang, T. Iyoda, K. Hashimoto, and A. Fujishima, J. Phys. Chem. 100, 18603 (1996).

    Article  CAS  Google Scholar 

  52. O. A. Semenikhin, L. Jiang, T. Iyoda, K. Hashimoto, and A. Fujishima, Eletrochemica ACTA 42, 3321 (1997).

    Article  CAS  Google Scholar 

  53. O. A. Semenikhin, L. Jiang, K. Hashimoto, and A. Fujishima, Synth. Met. 110, 115 (2000).

    Article  CAS  Google Scholar 

  54. T. Hassenkam, D. R. Greve, and T. Bjornholm, Adv. Mater. 13, 631 (2001).

    Article  Google Scholar 

  55. S. F. Alvarado, P. F. Seidler, D. G. Lidzey, and D. D. C. Bradley, Phys. Rev. Lett. 81, 1082 (1998).

    Article  CAS  Google Scholar 

  56. S. F. Alvarado et al., Adv. Funct. Mater. 12, 117 (2002).

    Article  CAS  Google Scholar 

  57. Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, Appl. Phys. Lett. 52, 1103 (1988).

    Article  Google Scholar 

  58. M. Nonnenmacher, M. P. Oboyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991).

    Article  Google Scholar 

  59. L. Burgi, T. Richards, M. Chiesa, R. H. Friend, and H. Sirringhaus, Synth. Met. 146, 297 (2004).

    Article  CAS  Google Scholar 

  60. E. M. Muller and J. A. Marohn, Adv. Mater. 17, 1410 (2005).

    Article  CAS  Google Scholar 

  61. J. A. Nichols, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 83, 2366 (2003).

    Article  CAS  Google Scholar 

  62. L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003).

    Article  CAS  Google Scholar 

  63. K. P. Puntambekar, P. V. Pesavento, and C. D. Frisbie, Appl. Phys. Lett. 83, 5539 (2003).

    Article  CAS  Google Scholar 

  64. O. Tal, W. Gao, C. K. Chan, A. Kahn, and Y. Rosenwaks, Appl. Phys. Lett. 85, 4148 (2004).

    Article  CAS  Google Scholar 

  65. W. R. Silveira and J. A. Marohn, Phys. Rev. Lett. 93, 116104 (2004).

    Article  CAS  Google Scholar 

  66. L. Bürgi, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 80, 2913 (2002).

    Article  CAS  Google Scholar 

  67. C. Schönenberg and S. F. Alvarado, Phys. Rev. Lett. 65, 3162 (1990).

    Article  Google Scholar 

  68. T. Krauss and L. Brus, Phys. Rev. Lett. 83, 4840 (1999).

    Article  CAS  Google Scholar 

  69. T. Krauss, S. O’Brien, and L. Brus, J. Phys. Chem. B 105, 1725 (2001).

    Article  CAS  Google Scholar 

  70. R. Ludeke and E. Cartier, Appl. Phys. Lett. 78, 3998 (2001).

    Article  CAS  Google Scholar 

  71. W. R. Silveira and J. A. Marohn, Rev. Sci. Instrum. 74, 267 (2003).

    Article  CAS  Google Scholar 

  72. C. Renner, P. Niedermann, A. D. Kent, and O. Fischer, Rev. Sci. Instrum. 61, 965 (1990).

    Article  Google Scholar 

  73. S. R. Garner, S. Kuehn, J. M. Dawlaty, N. E. Jenkins, and J. A. Marohn, Appl. Phys. Lett. 84, 5091 (2004).

    Article  CAS  Google Scholar 

  74. J. Siegel, J. Witt, N. Venturi, and S. Field, Rev. Sci. Instrum. 66, 2520 (1995).

    Article  CAS  Google Scholar 

  75. R. C. Richardson and E. N. Smith, Experimental Techniques in Condensed Matter Physics at Low Temperatures (Addison-Wesley, 1988).

    Google Scholar 

  76. A. D. Drake and D. C. Leiner, Rev. Sci. Instrum. 55, 162 (1984).

    Article  Google Scholar 

  77. D. Rugar, H. J. Mamin, and P. Guethner, Appl. Phys. Lett. 55, 2588 (1989).

    Article  CAS  Google Scholar 

  78. K. Bruland et al., Rev. of Sci. Instr. 70, 3542 (1999).

    Article  CAS  Google Scholar 

  79. D. Miller and N. Moshegov, J. Vac. Sci. Tech. A 19, 386 (2001).

    Article  CAS  Google Scholar 

  80. M. Tortonese, H. Yamada, R. C. Barrett, and C. F. Quate, Atomic force microscopy using a piezoresistive cantilever, in 1991 International Conference on Solid-State. Sensors and Actuators, Jun 24–28 1991, pp. 448–451, San Francisco, CA, USA, 1991.

    Google Scholar 

  81. G. Meyer and N. Amer, Appl. Phys. Lett. 53, 1045 (1988).

    Article  Google Scholar 

  82. S. Alexander et al., J. Appl. Phys. 65, 164 (1989).

    Article  CAS  Google Scholar 

  83. T. Albrecht, P. Grütter, D. Rugar, and D. Smith, Ultramicroscopy 42–44, 1638 (1992).

    Article  Google Scholar 

  84. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  CAS  Google Scholar 

  85. T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).

    Article  Google Scholar 

  86. M. A. Abkowitz and H. A. Mizes, Appl. Phys. Lett. 66, 1288 (1995).

    Article  CAS  Google Scholar 

  87. Y. N. Gartstein and E. M. Conwell, Chem. Phys. Lett. 255, 93 (1996).

    Article  CAS  Google Scholar 

  88. A. Ioannidis, J. S. Facci, and M. A. Abkowitz, J. Appl. Phys. 84, 1439 (1998).

    Article  CAS  Google Scholar 

  89. U. Wolf, V. I. Arkhipov, and H. Bässler, Phys. Rev. B 59, 7507 (1999).

    Article  CAS  Google Scholar 

  90. J. C. Scott and G. G. Malliaras, Chem. Phys. Lett. 299, 115 (1999).

    Article  CAS  Google Scholar 

  91. M. A. Baldo and S. R. Forrest, Phys. Rev. B 6408, 1948 (2001).

    Google Scholar 

  92. Y. L. Shen, M. W. Klein, D. B. Jacobs, J. C. Scott, and G. G. Malliaras, Phys. Rev. Lett. 86, 3867 (2001).

    Article  CAS  Google Scholar 

  93. Y. Shen, A. Hosseini, M. H. Wong, and G. G. Malliaras, ChemPhysChem 5, 16 (2004).

    Article  CAS  Google Scholar 

  94. P. N. Murgatroyd, J. Phys. D-Appl. Phys. 3, 151 (1970).

    Article  Google Scholar 

  95. H. J. Yuh and D. M. Pai, Mol. Cryst. Liq. Cryst. 183, 217 (1990).

    CAS  Google Scholar 

  96. A. A. Grinberg, S. Luryi, M. R. Pinto, and N. L. Schryer, IEEE Trans. Elec. Dev. 36, 1162 (1989).

    Article  Google Scholar 

  97. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Adv. Funct. Mater. 13, 199 (2003).

    Article  CAS  Google Scholar 

  98. J. Veres, S. Ogier, G. Lloyd, and D. D. Leeuw, Chem. Mat. 16, 4543 (2004).

    Article  CAS  Google Scholar 

  99. P. R. Emtage and J. J. O’Dwyer, Phys. Rev. Lett. 16, 356 (1966).

    Article  CAS  Google Scholar 

  100. F. Willig, Chem. Phys. Lett. 40, 331 (1976).

    Article  CAS  Google Scholar 

  101. K. J. Donovan, N. E. Fisher, and E. G. Wilson, Synth. Met. 28, D557 (1989).

    Article  CAS  Google Scholar 

  102. A. L. Burin and M. A. Ratner, J. Poly. Sci. B: Poly. Phys. 41, 2601 (2003).

    Article  CAS  Google Scholar 

  103. L. M. Do, E. M. Han, Y. Niidome, and M. Fujihira, J. Appl. Phys. 76, 5118 (1994).

    Article  CAS  Google Scholar 

  104. P. F. Smith, P. Gerroir, S. Xie, A. M. Hor, and Z. Popovic, Langmuir 14, 5946 (1998).

    Article  CAS  Google Scholar 

  105. H. Fujikawa, M. Ishii, S. Tokito, and Y. Taga, Mat. Res. Soc. Symp. Proc. 621, 1 (2000).

    Google Scholar 

  106. E. M. Han, L. M. Do, M. Fujihira, H. Inada, and Y. Shirota, J. Appl. Phys. 80, 3297 (1996).

    Article  CAS  Google Scholar 

  107. F. Khan, A. M. Hor, and P. R. Sundararajan, J. Phys. Chem. B 108, 117 (2004).

    Article  CAS  Google Scholar 

  108. C. D. Dimitrakopoulos et al., Adv. Mater. 11, 1372 (1999).

    Article  CAS  Google Scholar 

  109. H. Klauk and T. N. Jackson, Solid State Technol. 43, 63 (2000).

    CAS  Google Scholar 

  110. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).

    Article  CAS  Google Scholar 

  111. A. R. Volkel, R. A. Street, and D. Knipp, Phys. Rev. B 66, 195336 (2002).

    Article  CAS  Google Scholar 

  112. S. Verlaak, V. Arkhipov, and P. Heremans, Appl. Phys. Lett. 82, 745 (2003).

    Article  CAS  Google Scholar 

  113. D. Knipp, R. A. Street, and A. R. Volkel, Appl. Phys. Lett. 82, 3907 (2003).

    Article  CAS  Google Scholar 

  114. R. A. Street, D. Knipp, and A. R. Volkel, Appl. Phys. Lett. 80, 1658 (2002).

    Article  CAS  Google Scholar 

  115. Y. J. Zhang et al., Adv. Mater. 15, 1632 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silveira, W.R., Muller, E.M., Ng, T.N., Dunlap, D., Marohn, J.A. (2007). High-Sensitivity Electric Force Microscopy of Organic Electronic Materials and Devices. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_30

Download citation

Publish with us

Policies and ethics