Skip to main content

Dynamic Force Microscopy and Spectroscopy in Vacuum

  • Chapter
  • 6257 Accesses

Abstract

Dynamic force microscopy (DFM) operated in ultrahigh vacuum, which is often also called noncontact atomic force microscopy (NC-AFM), is able to image the atomic structure of surfaces, including observation of point defects independent from the sample’s conductivity. Within the last ten years, a variety of materials, including conductors, semiconductors, and insulators, have been imaged down to the atomic scale. Atomic arrangements and individual defects such as vacancies or impurity atoms have been observed, and chemically different species have been distinguished due to their different energy dissipation properties in DFM. In these atomic-scale images, the contrast is mainly due to short-range interatomic bonding forces, repulsive atom—atom forces, or van der Waals forces. However, in many experiments, electrostatic forces play a significant role in contrast formation, and electrostatic charge distributions can be imaged with high resolution. For example, the charge distribution around charged monoatomic vacancies can be mapped, as well as the charge distribution around individual doping atoms in semiconductors. At higher doping levels, the charge clouds around individual doping atoms overlap, and DFM images the resulting modulation in the surface potential of the sample. Finally, using dynamic force spectroscopy, the relative contributions of long-ranged electrostatic and van der Waals forces as opposed to short-ranged chemical bonding forces can be distinguished and analyzed site-specifically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  2. F.-J. Giessibl, Science 267, 68 (1995).

    Article  CAS  Google Scholar 

  3. Y. Sugawara, M. Otha, H. Ueyama, and S. Morita, Science 270, 1646 (1995).

    Article  CAS  Google Scholar 

  4. T. Albrecht, P. Grütter, D. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).

    Article  Google Scholar 

  5. R. Garcia and R. Pérez, Surf. Sci. Rep. 47, 197 (2002).

    Article  CAS  Google Scholar 

  6. Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer-Verlag, Heidelberg, 2002).

    Google Scholar 

  7. F.-J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

    Article  CAS  Google Scholar 

  8. H. Hölscher and A. Schirmeisen, in Advances in Imaging and Electron Physics, edited by P. W. Hawkes (Academic Press Ltd., London, 2005).

    Google Scholar 

  9. Q. D. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Surf. Sci. Lett. 290, L688 (1993).

    Article  CAS  Google Scholar 

  10. P. K. Hansma, J. P. Cleveland, M. Radmacher, D.A. Walters, P. E. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. B. Prater, J. Massie, L. Fukunaga, L. Gurley, and V. B. Elings, Appl. Phys. Lett. 64, 1738 (1994).

    Article  CAS  Google Scholar 

  11. C. A. J. Putman, K. O. Vanderwerf, B. G. Degrooth, N. F. Vanhulst, and J. Greve, Appl. Phys. Lett. 64, 2454 (1994).

    Article  CAS  Google Scholar 

  12. H. Ueyama, Y. Sugawara, and S. Morita, Appl. Phys. A 66, S295 (1998).

    Article  CAS  Google Scholar 

  13. C. Loppacher, M. Bammerlin, F. Battiston, M. Guggisberg, D. Müller, R. L. H. R. Hidber, E. Meyer, and H.-J. Güntherodt, Appl. Phys. A. 66, S215 (1998).

    Article  CAS  Google Scholar 

  14. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger, Rev. Sci. Instrum. 69, 221 (1998).

    Article  CAS  Google Scholar 

  15. H. Hölscher, A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger, Phys. Rev. B 61, 12678 (2000).

    Article  Google Scholar 

  16. H. Hölscher, B. Gotsmann, W. Allers, U. D. Schwarz, H. Fuchs, and R. Wiesendanger, Phys. Rev. Lett. 88, 019601 (2002).

    Article  CAS  Google Scholar 

  17. B. Gotsmann, D. Krüger, and H. Fuchs, Europhys. Lett. 39, 153 (1997); ibid 41, 581 (1998).

    Article  CAS  Google Scholar 

  18. B. Gotsmann, B. Ancykowski, C. Seidel, and H. Fuchs, Appl. Surf. Sci. 140, 314 (1999).

    Article  CAS  Google Scholar 

  19. H. Hölscher, B. Gotsmann, W. Allers, U. D. Schwarz, H. Fuchs, and R. Wiesendanger, Phys. Rev. B 64, 75402 (2001).

    Article  CAS  Google Scholar 

  20. B. Gotsmann and H. Fuchs, Appl. Surf. Sci. 188, 355 (2002).

    Article  CAS  Google Scholar 

  21. H. Hölscher, B. Gotsmann, and A. Schirmeisen, Phys. Rev. B 68, 153401 (2003).

    Article  CAS  Google Scholar 

  22. U. Dürig, N. J. of Phys. 2, 5.1 (2000).

    Google Scholar 

  23. F.-J. Giessibl, Phys. Rev. B 56, 16010 (1997).

    Article  CAS  Google Scholar 

  24. U. Dürig, Appl. Phys. Lett. 75, 433 (1999).

    Article  Google Scholar 

  25. H. Hölscher, U. D. Schwarz, and R. Wiesendanger, Appl. Surf. Sci. 140, 344 (1999).

    Article  Google Scholar 

  26. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger, Phys. Rev. B 61, 2837 (2000).

    Article  CAS  Google Scholar 

  27. V. Caciuc, H. Hölscher, S. Blügel, and H. Fuchs, Nanotechnology 16, S59 (2005).

    Article  CAS  Google Scholar 

  28. M. Ohta, H. Ueyama, Y. Sugawara, and S. Morita, Jpn. J. Appl. Phys. 34, L1692 (1995).

    Article  CAS  Google Scholar 

  29. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger, Appl. Surf. Sci. 140, 293 (1999).

    Article  CAS  Google Scholar 

  30. S. H. Ke, T. Uda, R. Pérez, I. Štich, and K. Terakura, Phys. Rev. B 60, 11631 (1999).

    Article  CAS  Google Scholar 

  31. S. H. Ke, T. Uda, I. Štich, and K. Terakura, Phys. Rev. B 63, 245323 (2001).

    Article  CAS  Google Scholar 

  32. N. Uehara, H. Hosoi, K. Sueoka, and K. Mukasa, Nanotechnology 15, S97 (2004).

    Article  CAS  Google Scholar 

  33. N. Uehara, H. Hosoi, K. Sueoka, and K. Mukasa, Jap. J. Appl. Phys. 43, 4676 (2004).

    Article  CAS  Google Scholar 

  34. T. Minobe, T. Uchihashi, T. Tsukamoto, S. Orisaka, Y. Sugawara, and S. Morita, Appl. Surf. Sci. 140, 298 (1999).

    Article  CAS  Google Scholar 

  35. S. Morita and Y. Sugawara, Ultramicroscopy 91, 89 (2002).

    Article  CAS  Google Scholar 

  36. R. Pérez, I. Štich, M. C. Payne, and K. Terakura, Phys. Rev. B 58, 10835 (1998).

    Article  Google Scholar 

  37. K. Yokoyama, T. Ochi, Y. Sugawara, and S. Morita, Phys. Rev. Lett. 83, 5023 (1999).

    Article  CAS  Google Scholar 

  38. S. Morita and Y. Sugawara, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer-Verlag, Heidelberg, Germany, 2002), pp. 47–77.

    Google Scholar 

  39. G. Schwarz, A. Kley, J. Neugebauer, and M. Scheffler, Phys. Rev. B 58, 1392 (1998).

    Article  CAS  Google Scholar 

  40. M. Gauthier, L. Kantorovich, and M. Tsukada, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer-Verlag, Heidelberg, Germany, 2002), pp. 371–394.

    Google Scholar 

  41. H.-J. Hug and A. Baratoff, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer-Verlag, Heidelberg, Germany, 2002), pp. 395–431.

    Google Scholar 

  42. T. Uchihashi, Y. Sugawara, T. Tsukamoto, M. Otha, S. Morita, and M. Suzuki, Phys. Rev. B 56, 9834 (1997).

    Article  CAS  Google Scholar 

  43. S. Morita, Y. Sugawara, K. Yokoyama, and T. Uchihashi, Nanotechnology 11, 120 (2000).

    Article  CAS  Google Scholar 

  44. N. Oyabu, O. Custance, I. Yi, Y. Sugawara, and S. Morita, Phys. Rev. Lett. 90, 176102 (2003).

    Article  CAS  Google Scholar 

  45. M. Guggisberg, M. Bammerlin, C. Loppacher, O. Pfeiffer, A. Abdurixit, V. Barwich, R. Bennewitz, A. Baratoff, E. Meyer, and H.-J. Güntherodt, Phys. Rev. B 61, 11151 (2000).

    Article  CAS  Google Scholar 

  46. A. Schwarz, W. Allers, U. D. Schwarz, and R. Wiesendanger, Phys. Rev. B 62, 13617 (2000).

    Article  CAS  Google Scholar 

  47. Y. Sugawara, T. Uchihashi, M. Abe, and S. Morita, Appl. Surf. Sci. 140, 371 (1999).

    Article  CAS  Google Scholar 

  48. S. Morita, M. Abe, K. Yokoyama, and Y. Sugawara, J. Cryst. Growth 210, 408 (2000).

    Article  CAS  Google Scholar 

  49. T. Arai and M. Tomitori, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer-Verlag, Heidelberg, Germany, 2002), pp. 79–92.

    Google Scholar 

  50. W. Allers, S. Langkat, and R. Wiesendanger, Appl. Phys. A 72, S27 (2001).

    Google Scholar 

  51. A. S. Foster and A. L. Shluger, Surf. Sci. 490, 211 (2001).

    Article  CAS  Google Scholar 

  52. A. S. Foster, C. Barth, A. L. Shluger, and M. Reichling, Phys. Rev. Lett. 86, 2373 (2001).

    Article  CAS  Google Scholar 

  53. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger, Appl. Surf. Sci. 140, 247 (1999).

    Article  CAS  Google Scholar 

  54. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger, Phys. Rev. B. 62, 6967 (2000).

    Article  Google Scholar 

  55. M. Ashino, A. Schwarz, H. Hölscher, U. D. Schwarz, and R. Wiesendanger, Nanotechnology 16, S134 (2005).

    Article  CAS  Google Scholar 

  56. S. Hembacher, F. J. Giessibl, J. Mannhart, and C. F. Quate, Proc. Natl. Acad. Sci. 100, 12539 (2003).

    Article  CAS  Google Scholar 

  57. W. Allers, A. Schwarz, U. D. Schwarz, and R. Wiesendanger, Europhys. Lett. 49, 276 (1999).

    Article  Google Scholar 

  58. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger, Appl. Phys. A 72, S35 (2001).

    Article  Google Scholar 

  59. N. A. Burnham and R. J. Colton, J. Vac. Sci. Technol. A.

    Google Scholar 

  60. B. Gotsmann and H. Fuchs, Phys. Rev. Lett. 86, 2597 (2001).

    Article  CAS  Google Scholar 

  61. U. Dürig, Appl. Phys. Lett. 76, 1203 (2000).

    Article  Google Scholar 

  62. F.-J. Giessibl, Appl. Phys. Lett. 78, 123 (2001).

    Article  CAS  Google Scholar 

  63. J. E. Sader and S. P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004).

    Article  CAS  Google Scholar 

  64. M. A. Lantz, H. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, and H.-J. Güntherodt, Science 291, 2580 (2001).

    Article  CAS  Google Scholar 

  65. C. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Lüthi, R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, Phys. Rev. Lett. 90, 066107 (2003).

    Article  CAS  Google Scholar 

  66. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  67. L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Physik VII: Elastizitätstheorie (Akademie-Verlag, Berlin, 1991).

    Google Scholar 

  68. U. D. Schwarz, J. Colloid Interface Sci. 261, 99 (2003).

    Article  CAS  Google Scholar 

  69. D. Maugis, J. Colloid Interface Sci. 150, 243 (1992).

    Article  CAS  Google Scholar 

  70. B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).

    Article  Google Scholar 

  71. M. Guggisberg, M. Bammerlin, A. Baratoff, R. Lüthi, C. Loppacher, F. Battiston, J. Lü, R. Bennewitz, E. Meyer, and H.-J. Güntherodt, Surf. Sci. 461, 255 (2000).

    Article  CAS  Google Scholar 

  72. T. Stowe, T.W. Kenny, D. J. Thomson, and D. Rugar, Appl. Phys. Lett. 75, 2785 (1999).

    Article  CAS  Google Scholar 

  73. N. Sasaki and M. Tsukada, Jpn. J. Appl. Phys 39, L1334 (2000).

    Article  CAS  Google Scholar 

  74. L. N. Kantorovich and T. Trevethan, Phys. Rev. Lett. 93, 236102 (2004).

    Article  CAS  Google Scholar 

  75. R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, L. Howald, C. Gerber, and H.-J. Güntherodt, Surf. Rev. Lett. 4, 1025 (1997).

    Article  Google Scholar 

  76. R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, C. Loppacher, S. Schär, M. Guggisberg, E. Meyer, and A. L. Shluger, Phys. Rev. B 62, 2074 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwarz, U.D., Hölscher, H. (2007). Dynamic Force Microscopy and Spectroscopy in Vacuum. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_19

Download citation

Publish with us

Policies and ethics