Skip to main content

Scanning Probe Measurements of Electron Transport in Molecules

  • Chapter
Scanning Probe Microscopy
  • 6278 Accesses

Abstract

The ability to control the placement of molecules is essential for the patterning and fabrication of nanoscale electronic devices. We apply selective chemistry and self-assembly to reach higher resolution, greater precision, and chemical versatility in the nanostructures that we create. These methods demonstrate the possibilities of patterning films by exploiting the intrinsic properties and interactions of the molecules. We employ self-assembled monolayers as a means to isolate molecules with various electronic properties to determine the fundamental transport mechanisms, and the relationships between molecular structure, environment, connection, coupling, and function. Using self-assembly techniques in combination with scanning tunneling microscopy (STM), we are able to study candidate molecular switches individually and in small bundles. Alkanethiolate self-assembled mono-layers on gold are used as a host two-dimensional matrix to isolate and to insulate electrically the molecular switches. We then individually address and electronically probe each molecule using STM. The conjugated molecules exhibit reversible conductance switching, manifested as a change in apparent topographic height in STM images. The origins of switching and the relevant aspects of the molecular structure and environment required are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Rai-Chaudhury, Handbook of Microlithography, Micromachining, and Microfabrication; SPIE: London, (1997).

    Google Scholar 

  2. Y. N. Xia and G. M. Whitesides, Ang. Chem. Int. Ed. 37, 551 (1998).

    Article  Google Scholar 

  3. X. M. Zhao, Y. N. Xia, and G. M. Whitesides, J. Mat. Chem. 7, 1069 (1997).

    Article  CAS  Google Scholar 

  4. R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, Nature 325, 419 (1997).

    Article  Google Scholar 

  5. D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).

    Article  CAS  Google Scholar 

  6. P. S. Weiss and D. M. Eigler, in NATO ASI Series E: Applied Sciences 235, 213 (1993).

    CAS  Google Scholar 

  7. J. K. Gimzewski and C. Joachim, Science 283, 1683 (1999).

    Article  CAS  Google Scholar 

  8. S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder, Phys. Rev. Lett. 85, 2777 (2000).

    Article  CAS  Google Scholar 

  9. A. Ulman, An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly; Academic: San Diego, (1991).

    Google Scholar 

  10. A. Ulman, Chem. Rev. 96, 1533 (1996).

    Article  CAS  Google Scholar 

  11. R. G. Nuzzo and D. L. Allara, J. Am. Chem. Soc. 105, 4481 (1983).

    Article  CAS  Google Scholar 

  12. D. L. Allara, Biosens. Bioelec. 10, 771 (1995).

    Article  CAS  Google Scholar 

  13. C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 111, 7164 (1989).

    Article  CAS  Google Scholar 

  14. C. D. Bain and G. M. Whitesides, Langmuir 5, 1370 (1989).

    Article  CAS  Google Scholar 

  15. L. H. Dubois and R. G. Nuzzo, Ann. Rev. Phys. Chem. 43, 437 (1992).

    CAS  Google Scholar 

  16. G. E. Poirier, Chem. Rev. 97, 1117 (1997).

    Article  CAS  Google Scholar 

  17. S. Hong, J. Zhu, and C. A. Mirkin, Science 286, 523 (1999).

    Article  CAS  Google Scholar 

  18. G.-Y. Liu, S. Xu, and Y. L. Qian, Acc. Chem. Res. 33, 457 (2000).

    Article  CAS  Google Scholar 

  19. M. Zharnikov, S. Frey, K. Heister, and M. Grunze, Langmuir 16, 2697 (2000).

    Article  CAS  Google Scholar 

  20. A. Gölzhäuser, W. Geyer, V. Stadler, W. Eck, M. Grunze, K. Edinger, T. Weimann, and P. Hinze, J. Vac. Sci. Technol. B 18, 3414 (2000).

    Article  Google Scholar 

  21. K. Heister, M. Zharnikov, M. Grunze, L. S. O. Johansson, and A. Ulman, Langmuir 17, 8 (2001).

    Article  CAS  Google Scholar 

  22. J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett. 76, 1941 (2000).

    Article  CAS  Google Scholar 

  23. J. Collet, and D. Vuillaume, Appl. Phys. Lett. 73, 2681 (1998).

    Article  CAS  Google Scholar 

  24. C. Boulas, J. V. Davidovits, F. Rondelez, and D. Vuillaume, Phys. Rev. Lett. 76, 4797 (1996).

    Article  CAS  Google Scholar 

  25. S. A. Lee, Y. Yoshida, M. Fukuyama, and S. Hotta, Syn. Metals 106, 39 (1999).

    Article  CAS  Google Scholar 

  26. C. D. Bain and G. M. Whitesides, J. Am. Chem. Soc. 110, 6560 (1988).

    Article  CAS  Google Scholar 

  27. C. D. Bain, J. Evall, and G. M. Whitesides, J. Am. Chem. Soc. 111, 7155 (1989).

    Article  CAS  Google Scholar 

  28. J. P. Folkers, P. E. Laibinis, G. M. Whitesides, and J. Deutch, J. Phys. Chem. 98, 563 (1994).

    Article  CAS  Google Scholar 

  29. R. K. Smith, S. M. Reed, P. A. Lewis, J. D. Monnell, R. S. Clegg, K. F. Kelly, L. A. Bumm, J. E. Hutchison, and P. S. Weiss, J. Phys. Chem. B 105, 1119 (2001).

    Article  CAS  Google Scholar 

  30. S. J. Stranick, A. N. Parikh, Y.-T. Tao, D. L. Allara, and P. S. Weiss, J. Phys. Chem. B 98, 7636 (1994).

    Article  CAS  Google Scholar 

  31. S. J. Stranick, S. V. Atre, A. N. Parikh, M. C. Wood, D. L. Allara, N. Winograd, and P. S. Weiss, Nanotechnology 7, 438 (1996).

    Article  CAS  Google Scholar 

  32. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).

    Article  CAS  Google Scholar 

  33. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  34. E. Delamarche, B. Michel, C. Gerber, D. Anselmetti, H.-J. Güntherodt, H. Wolf, and H. Ringsdorf, Langmuir 10, 2869 (1994).

    Article  CAS  Google Scholar 

  35. D. Anselmetti, A. Baratoff, H.-J. Güntherodt, E. Delamarche, B. Michel, C. Gerber, H. Kang, H. Wolf, and H. Ringsdorf, Europhys. Lett. 27, 365 (1994).

    CAS  Google Scholar 

  36. N. Camillone, P. Eisenberger, T. Y. B. Leung, P. Schwartz, G. Scoles, G. E. Poirier, and M. J. Tarlov, J. Chem. Phys. 101, 11031 (1994).

    Article  CAS  Google Scholar 

  37. M. T. Cygan, T. D. Dunbar, J. J. Arnold, L. A. Bumm, N. F. Shedlock, T. P. Burgin, L. Jones, D. L. Allara, J. M. Tour, and P. S. Weiss, J. Am. Chem. Soc. 120, 2721 (1998).

    Article  CAS  Google Scholar 

  38. L. A. Bumm, J. J. Arnold, M. T. Cygan, T. D. Dunbar, T. P. Burgin, L. Jones II, D. L. Allara, J. M. Tour, and P. S. Weiss, Science 271, 1705 (1996).

    Article  CAS  Google Scholar 

  39. V. J. Langlais, R. R. Schlittler, H. Tang, A. Gourdon, C. Joachim, and J. K. Gimzewski, Phys. Rev. Lett. 83, 2809 (1999).

    Article  CAS  Google Scholar 

  40. F. Moresco, G. Meyer, K.-H. Rieder, H. Tang, A. Gourdon, and C. Joachim, Phys. Rev. Lett. 86, 672 (2001).

    Article  CAS  Google Scholar 

  41. Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, A. M. Rawlett, D. L. Allara, J. M. Tour, and P. S. Weiss, Science, 292, 2303 (2001).

    Article  CAS  Google Scholar 

  42. C. Joachim, J. K. Gimzewski, R. R. Schlittler, and C. Chavy, Phys. Rev. Lett. 74, 2102 (1995).

    Article  CAS  Google Scholar 

  43. M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 78, 3735 (2001).

    Article  CAS  Google Scholar 

  44. J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).

    Article  CAS  Google Scholar 

  45. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science, 286, 1550 (1999).

    Article  CAS  Google Scholar 

  46. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 122, 3015 (2000).

    Article  CAS  Google Scholar 

  47. J. M. Seminario, A. G. Zacarias, and J. M. Tour, J. Am. Chem. Soc. 120, 3970 (1998).

    Article  CAS  Google Scholar 

  48. J. M. Tour, Chem. Rev. 96, 537 (1996).

    Article  CAS  Google Scholar 

  49. J. M. Tour, M. Kozaki, and J. M. Seminario, J. Am. Chem. Soc. 120, 8486 (1998).

    Article  CAS  Google Scholar 

  50. J. M. Tour, W. A. Reinerth, L. Jones II, T. P. Burgin, C. W. Zhou, C. J. Muller, M. R. Deshpande, and M. A. Reed, in Molecular Electronics: Science and Technology 852, 197 (1998).

    CAS  Google Scholar 

  51. M. Di Ventra, S. G. Kim, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 86 288 (2001).

    Article  CAS  Google Scholar 

  52. M. Weck, J. J. Jackiw, P. S. Weiss, and R. H. Grubbs, Proc. Poly. Mat. Sci. Eng. 79, 72 (1998).

    CAS  Google Scholar 

  53. M. Weck, J. J. Jackiw, R. R. Rossi, P. S. Weiss, and R. H. Grubbs, J. Am. Chem. Soc. 121, 4088 (1999).

    Article  CAS  Google Scholar 

  54. L. F. Charles, Masters thesis, The Pennsylvania State University: University Park (1999).

    Google Scholar 

  55. H. Sakaguchi, K. F. Kelly, Z. J. Donhauser, P. A. Lewis, and P. S. Weiss, manuscript in preparation.

    Google Scholar 

  56. Z. J. Donhauser, D. W. Price II, J. M. Tour, and P. S. Weiss, J. Am. Chem. Soc. 125, 11462 (2003).

    Article  CAS  Google Scholar 

  57. Molecular Imaging Corp., Phoenix, AZ, USA.

    Google Scholar 

  58. B. A. Mantooth, Z. J. Donhauser, K. F. Kelly, and P. S. Weiss, Rev. Sci. Instrum. 73, 313 (2002).

    Article  CAS  Google Scholar 

  59. J. F. Jorgensen, L. L. Madsen, J. Garneaes, K. Carneiro, and K. Schaumburg, J. Vac. Sci. Technol. B 12, 1698 (1994).

    Article  Google Scholar 

  60. J. F. Jorgensen, K. Carneiro, L. L. Madsen, and K. Conradsen, J. Vac. Sci. Technol. B 12, 1702 (1994).

    Article  Google Scholar 

  61. Supplemental material: An example set of movies demonstrating drift and image extraction can be found at http://www.nano.psu.edu/supplemental/tracking.html

    Google Scholar 

  62. D. W. Pohl and R. Moller, Rev. Sci. Instrum. 59, 840 (1988).

    Article  Google Scholar 

  63. M. Aketagawa, K. Takada, Y. Minao, Y. Oka, and J. D. Lee, Rev. Sci. Instrum. 70, 2053 (1999).

    Article  CAS  Google Scholar 

  64. B. S. Swartzentruber, Phys. Rev. Lett. 76, 459 (1996).

    Article  CAS  Google Scholar 

  65. L. J. Lauhon, and W. Ho, J. Chem. Phys. 111, 5633 (1999).

    Article  CAS  Google Scholar 

  66. S. Renisch, R. Schuster, J. Wintterlin, and G. Ertl, Phys. Rev. Lett. 82, 3839 (1999).

    Article  CAS  Google Scholar 

  67. G. Tziritas, and C. Labit, Motion Analysis for Image Sequence Coding, Elsevier Science B. V., New York (1994).

    Google Scholar 

  68. C. Stiller, and J. Konrad, IEEE Signal Process. Mag. 16, 70 (1999).

    Article  Google Scholar 

  69. J. P. Lewis, http://www.idiom.com/;zilla/Papers/nvisionInterface/nip.html, Industrial Light & Magic.

    Google Scholar 

  70. D. I. Barnea, and H. F. Silverman, IEEE Trans. Comput. 21, 179 (1972).

    Article  Google Scholar 

  71. Handbook of Image and Video Processing, edited by A. Bovik; Academic Press, San Diego, CA (2000).

    Google Scholar 

  72. W. D. Lockwood, and A. P. Reynolds, Mater. Charact. 42, 123 (1999).

    Article  CAS  Google Scholar 

  73. S. J. T. van Noort, K. O. van der Werf, B. G. deGrooth, and J. Greve, Biophys. J. 77, 2295 (1999).

    Article  Google Scholar 

  74. J. Romer, M. Plaschke, and J. I. Kim, Ultramicroscopy 85, 99 (2000).

    Article  CAS  Google Scholar 

  75. G. C. Rosolen, and W. D. King, Scanning 20, 495 (1998).

    Article  Google Scholar 

  76. L. A. Bumm, and P. S. Weiss, Rev. Sci. Instrum. 66, 4140 (1995).

    Article  CAS  Google Scholar 

  77. J. J. Jackiw, Doctoral thesis, The Pennsylvania State University: University Park (2001).

    Google Scholar 

  78. J. C. Russ, The Image Processing Handbook, 2nd ed. (Chemical Rubber, Ann Arbor) 1995.

    Google Scholar 

  79. Q. X. Zheng, and J. C. Klewicki, Meas. Sci. Technol. 11, 1282 (2000).

    Article  CAS  Google Scholar 

  80. W. H. Huang, W. W. Wang, A. D. Xia, N. Jin, and Z. Q. J. Hu, J. Vac. Sci. Technol. B 18, 2027 (2000).

    Article  CAS  Google Scholar 

  81. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, the Art of Scientific Computing (Cambridge University, Cambridge) 1986.

    Google Scholar 

  82. Fast Fourier transform libraries often return a Fourier domain image where the dc peak is in the corners of the image; for this calculation the dc peak must be shifted to the center of the image. In addition, note that the multiplication of Fourier domain images is elemental, and not matrix multiplication. When computing the inverse Fourier transform, the correlation image is flattened into only real numbers by calculating the absolute value of the real and imaginary (resulting from rounding errors) components returned by a Fourier transform.

    Google Scholar 

  83. A. V. Oppenheim, and R.W. Schafer, Discrete-Time Signal Processing (Prentice Hall, Englewood Cliffs, NJ), pp. 63–67, 447, 746–747, 839–842 (1989).

    Google Scholar 

  84. The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

    Google Scholar 

  85. C. F. Herrmann and J. J. Boland, J. Phys. Chem. B 103, 4207 (1999).

    Article  CAS  Google Scholar 

  86. H. C. Akpati, P. Norlander, L. Lou, and P. Avouris, Surf. Sci. 372, 9 (1997).

    Article  CAS  Google Scholar 

  87. Y.-T. Tao, C. C. Wu, J. Y. Eu, W. L. Lin, and K. C. Wu, Langmuir 13, 4018 (1997).

    Article  CAS  Google Scholar 

  88. H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, J. Am. Chem. Soc. 115, 9389 (1993).

    Article  CAS  Google Scholar 

  89. P. E. Kornilovitch, and A. M. Bratkovsky, Phys. Rev. B 64, 5413 (2001).

    Article  CAS  Google Scholar 

  90. A. A. Dameron, J.W. Ciszek, J. M. Tour, and P. S. Weiss, J. Phys. Chem. B 108, 16761 (2004).

    Article  CAS  Google Scholar 

  91. P. A. Lewis, C. E. Inman, Y. Yao, J. M. Tour, J. E. Hutchison, and P. S. Weiss, J. Am. Chem. Soc. 126, 12214 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kelly, K.F., Weiss, P.S. (2007). Scanning Probe Measurements of Electron Transport in Molecules. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_14

Download citation

Publish with us

Policies and ethics